Research article

Numerical simulations of a mixed finite element method for damped plate vibration problems

  • Received: 03 September 2022 Revised: 26 December 2022 Accepted: 06 January 2023 Published: 14 February 2023
  • The mixed finite element method can reduce the requirement for the smoothness of the finite element space and simplify the interpolation space for finite elements, and hence is especially effective in solving high order differential equations. In this work, we establish a mixed finite element scheme for the initial boundary conditions of damped plate vibrations and prove the existence and uniqueness of the solution of the semi-discrete and backward Euler fully discrete schemes. We use linear element approximation for the introduced intermediate variables, conduct the error analysis, and obtain the optimal order error estimate. We verify the efficiency and the accuracy of the mixed finite element scheme via numerical case studies and quantify the influence of the damping coefficient on the frequency and amplitude of the vibration.

    Citation: Ruxin Zhang, Zhe Yin, Ailing Zhu. Numerical simulations of a mixed finite element method for damped plate vibration problems[J]. Mathematical Modelling and Control, 2023, 3(1): 7-22. doi: 10.3934/mmc.2023002

    Related Papers:

  • The mixed finite element method can reduce the requirement for the smoothness of the finite element space and simplify the interpolation space for finite elements, and hence is especially effective in solving high order differential equations. In this work, we establish a mixed finite element scheme for the initial boundary conditions of damped plate vibrations and prove the existence and uniqueness of the solution of the semi-discrete and backward Euler fully discrete schemes. We use linear element approximation for the introduced intermediate variables, conduct the error analysis, and obtain the optimal order error estimate. We verify the efficiency and the accuracy of the mixed finite element scheme via numerical case studies and quantify the influence of the damping coefficient on the frequency and amplitude of the vibration.



    加载中


    [1] A. W. Leissa, The free vibration of rectangular plates, J. Sound Vib., 31 (1973), 257–293. http://doi.org/10.1016/s0022-460x(73)80371-2 doi: 10.1016/s0022-460x(73)80371-2
    [2] A. W. Leissa, J. K. Lee, A. Wang, Vibrations of cantilevered shallow cylindrical shells of rectangular planform, J. Sound Vib., 78 (1981), 311–328. https://doi.org/10.1016/S0022-460X(81)80142-3 doi: 10.1016/S0022-460X(81)80142-3
    [3] P. S. Nair, S. Durvasula, On quasi-degeneracies in plate vibration problems, Int. J. Mech. Sci., 15 (1973), 975–986. https://doi.org/10.1016/0020-7403(73)90107-0 doi: 10.1016/0020-7403(73)90107-0
    [4] J. Wang, K. Chen, Vibration problems of flexible circular plates with initial deflection, Applied Mathematics and Mechanics, 14 (1993), 177–184. https://doi.org/10.1007/BF02453360 doi: 10.1007/BF02453360
    [5] H. Li, X. Ren, C. Yu, J. Xiong, X. Wang, J. Zhao, Investigation of vibro-acoustic characteristics of FRP plates with porous foam core, Int. J. Mech. Sci., 209 (2021), 106697. https://doi.org/10.1016/j.ijmecsci.2021.106697 doi: 10.1016/j.ijmecsci.2021.106697
    [6] H. Li, Z. Li, Z. Xiao, J. Xiong, X. P. Wang, Q. K. Han, et al., Vibro-impact response of FRP sandwich plates with a foam core reinforced by chopped fiber rods, Composites Part B, 242 (2022), 110077. https://doi.org/10.1016/j.compositesb.2022.110077 doi: 10.1016/j.compositesb.2022.110077
    [7] H. Li, Z. Li, B. Safaei, W. Rong, W. Wang, Z. Qin, J. Xiong, Nonlinear vibration analysis of fiber metal laminated plates with multiple viscoelastic layers, Thin-Walled Structures, 168 (2021), 108297. https://doi.org/10.1016/j.tws.2021.108297 doi: 10.1016/j.tws.2021.108297
    [8] H. Li, X. Wang, X. Hu, J. Xiong, Q. Han, X. Wang, Z. Guan, Vibration and damping study of multifunctional grille composite sandwich plates with an IMAS design approach, Composites Part B: Engineering, 223(2021), 109078. https://doi.org/10.1016/j.compositesb.2021.109078 doi: 10.1016/j.compositesb.2021.109078
    [9] H. Li, X. Wang, J. Sun, S. Ha, Z. Guan, Theoretical and experimental investigations on active vibration control of the MRE multifunctional grille composite sandwich plates, Compos. Struct., 295 (2022), 115783. https://doi.org/10.1016/j.compstruct.2022.115783 doi: 10.1016/j.compstruct.2022.115783
    [10] T. Rock, E. Hinton, Free vibration and transient response of thick and thin plates using the finite element method, Earthquake Engineering and Structural Dynamics, 3 (1974), 51–63. https://doi.org/10.1002/eqe.4290030105 doi: 10.1002/eqe.4290030105
    [11] G. Bezine, A mixed boundary integral-finite element approach to plate vibration problems, Mech. res. commun., 7 (1980), 141–150. https://doi.org/10.1016/0093-6413(80)90003-8 doi: 10.1016/0093-6413(80)90003-8
    [12] L. Qian, S. Gu, J. Jiang, A finite element model of cracked plates and application to vibration problems, Computers and structures, 39 (1991), 483–487. https://doi.org/10.1016/0045-7949(91)90056-R doi: 10.1016/0045-7949(91)90056-R
    [13] M. Xu, D. Cheng, Solving vibration problem of thin plates using integral equation method, Applied Mathematics and Mechanics, 17 (1996), 693–698. https://doi.org/10.1007/BF00123113 doi: 10.1007/BF00123113
    [14] R. G. Dur$\acute{a}$n, L. Hervella-Nieto, E. Liberman, R. Rodriguez, J. Solomin, Finite element analysis of the vibration problem of a plate coupled with a fluid, Numer. Math., 86 (2000), 591–616. https://doi.org/10.1007/PL00005411 doi: 10.1007/PL00005411
    [15] Y. B. Xiong, S. Y. Long, An analysis of free vibration problem for a thin plate by local Petrov-Galerkin method, Chinese Quarterly of Mechanics, 25 (2004), 577–582.
    [16] D. J. Dawe, A finite element approach to plate vibration problems, Journal of Mechanical Engineering Science, 7 (1965), 28–32. https://doi.org/10.1243/jmes_jour_1965_007_007_02 doi: 10.1243/jmes_jour_1965_007_007_02
    [17] W. Wu, C. Shu, C. Wang, Mesh-free least-squares-based finite difference method for large-amplitude free vibration analysis of arbitrarily shaped thin plates, J. Sound Vib., 317 (2008), 955–974. https://doi.org/10.1016/j.jsv.2008.03.050 doi: 10.1016/j.jsv.2008.03.050
    [18] D. Mora, R. Rodriguez, A piecewise linear finite element method for the buckling and the vibration problems of thin plates, Math. comput., 78 (2009), 1891–1917. https://doi.org/10.1090/S0025-5718-09-02228-5 doi: 10.1090/S0025-5718-09-02228-5
    [19] N. M. Werfalli, A. K. Abobaker, Free vibration analysis of rectangular plates using Galerkin-based finite element method, International Journal of Mechanical Engineering, 2 (2012), 59–67.
    [20] W. Yang, X. Feng, A differential quadrature hierarchical finite element method and its application to thin plate free vibration, Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 31 (2018), 343–351. https://doi.org/10.16385/j.cnki.issn.1004-4523.2018.02.019 doi: 10.16385/j.cnki.issn.1004-4523.2018.02.019
    [21] F. Brezzi, J. Douglas, L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217–235. https://doi.org/10.1007/BF01389710 doi: 10.1007/BF01389710
    [22] F. Brezzi, J. Douglas, R. Dur$\acute{a}$n, M. Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51 (1987), 237–250. https://doi.org/10.1007/BF01396752 doi: 10.1007/BF01396752
    [23] F. Brezzi, J. J. Douglas, M. Fortin, L. D. Marini, Efficient rectangular mixed finite elements in two and three space variables, Mathematical Modelling and Numerical Analysis, 21 (1987), 581–604. https://doi.org/10.1051/m2an/1987210405811 doi: 10.1051/m2an/1987210405811
    [24] A. E. Diegel, C. Wang, S. M. Wise, Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation, lma Journal of Numerical Analysis, 36 (2016), 1867–1897. https://doi.org/10.1093/imanum/drv065 doi: 10.1093/imanum/drv065
    [25] G. Singh, M. F. Wheeler, Compositional flow modeling using a multi-point flux mixed finite element method, Comput. Geosci., 20 (2016), 421–435. https://doi.org/10.1007/s10596-015-9535-2 doi: 10.1007/s10596-015-9535-2
    [26] M. Burger, J. A. Carrillo, M. T. Wolfram, A mixed finite element method for nonlinear diffusion equations, Kinet. Relat. Mod., 3 (2010), 59–83. https://doi.org/10.3934/krm.2010.3.59 doi: 10.3934/krm.2010.3.59
    [27] B. P. Lamichhane, A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems, J. Comput. Appl. Math., 235 (2011), 5188–5197. https://doi.org/10.1016/j.cam.2011.05.005 doi: 10.1016/j.cam.2011.05.005
    [28] O. Stein, E. Grinspun, A. Jacobson, M. Wardetzky, A mixed finite element method with piecewise linear elements for the biharmonic equation on surfaces, Cornell University, (2019), 1–32. https://doi.org/10.48550/arXiv.1911.08029 doi: 10.48550/arXiv.1911.08029
    [29] J. Meng, L. Mei, The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem, J. Comput. Appl. Math., 402 (2022), 113783. https://doi.org/10.1016/j.cam.2021.113783 doi: 10.1016/j.cam.2021.113783
    [30] J. Meng, L. Mei, A mixed virtual element method for the vibration problem of clamped Kirchhoff plate, Adv. Comput. Math., 46 (2020), 1–18. https://doi.org/10.1007/s10444-020-09810-1 doi: 10.1007/s10444-020-09810-1
    [31] Z. Cao, Vibration theory of plates and shells, China Railway Publishing House, 1989.
    [32] C. Che, Finite element analysis of a kind of fourth-order nonlinear partial differential equations with variable coefficients, Jilin University, 2015.
    [33] V. Thomee, Galerkin finite element methods for parabolic problems, Springer-Verlag, 1986.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1479) PDF downloads(103) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog