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Abstract: The mixed finite element method can reduce the requirement for the smoothness of the finite element space and simplify
the interpolation space for finite elements, and hence is especially effective in solving high order differential equations. In this work,
we establish a mixed finite element scheme for the initial boundary conditions of damped plate vibrations and prove the existence and
uniqueness of the solution of the semi-discrete and backward Euler fully discrete schemes. We use linear element approximation for the
introduced intermediate variables, conduct the error analysis, and obtain the optimal order error estimate. We verify the efficiency and
the accuracy of the mixed finite element scheme via numerical case studies and quantify the influence of the damping coefficient on the
frequency and amplitude of the vibration.
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1. Introduction

As a basic structural unit, plates are widely used in many
places, such as spacecrafts and aircrafts, ships, buildings,
containers, etc. The vibration of plates caused by external
forces can lead to serious damage to the entire structure of
the machinery or building. One way to reduce the damage
caused by vibration is by applying the viscous damping
strategy. The vibration of damped plates is described
by fourth-order differential equations, whose analytical
solutions are often excessively difficult to obtain. Thus,
the theoretical analysis and numerical calculation of the
vibration of damped plates are of great research interest.

So far, a great number of studies have been conducted
on the vibration problems of damped plates. Leissa et
al. studied the free vibration of rectangular plates [1] and
the vibrations of cantilevered shallow cylindrical shells of
rectangular platforms [2]. Nair et al. discussed the quasi-
degeneracies in plate vibration problems [3]. Wang et al.

studied the vibration problems of flexible circular plates with
initial deflection [4]. Hui Li et al. studied the vibration
of foam core [5, 6], considered the nonlinear vibration
analysis of fiber metal laminated plates with multiple
viscoelastic layers [7] and considered the vibration damping
of multifunctional grille composite sandwich plates [8, 9].

The numerical methods studied for the plate vibration
problems include the integration method, finite difference
method, finite element method, mixed finite element
method, etc. For example, Rock et al. used the finite element
method in the study of the free vibration and dynamic
response of thick and thin plates [10]. Bezine proposed
a mixed boundary integral as a finite element approach to
plate vibration problems [11]. Qian et al. studied the
vibration characteristics of cracked plates [12]. Xu et al.
analyzed the vibration problems of thin plates using the
integral equation method [13]. Duran et al. conducted
the finite element analysis of the vibration problem of a
plate coupled with a fluid [14]. Xiong et al. conducted

http://www.aimspress.com/journal/mmc
http://dx.doi.org/10.3934/mmc.2023002


8

an analysis of free vibration problems for a thin plate by
the local Petrov-Galerkin method [15]. Dawe discussed
a finite element approach to plate vibration problems
[16]. Wu et al. utilized the mesh-free least-squares-based
finite difference method for large-amplitude free vibration
analysis of arbitrarily shaped thin plates [17]. Mora et
al. analyzed the buckling and the vibration problems of
thin plates using a piecewise linear finite element method
[18]. Werfalli et al. analyzed the vibration of rectangular
plates using Galerkin-based finite element method [19].
Yang et al. discussed a differential quadrature hierarchical
finite element method and its application to thin plate free
vibration [20]. The mixed finite element method is effective
in solving differential equations. The general theory of this
method was established by Brezzi and Babuska in 1970s to
solve second order elliptic problems [21, 22].

Later, Brezzi et al. used the mixed finite element method
to solve second order elliptic problems in three variables
[23]. Diegel et al. discussed the stability and convergence
of a second order mixed finite element method for the
Cahn-Hilliard equation [24]. Singh et al. performed the
compositional flow modeling using a multi-point flux mixed
finite element method [25]. Burger et al. studied a mixed
finite element method for nonlinear diffusion equations [26].

The mixed finite element method is also effective in
simulating fourth-order differential equations, including
both biharmonic equations and vibration equations. For
biharmonic equations, Monk et al. utilized a stabilized
mixed finite element method for the biharmonic equation
based on biorthogonal systems [27]. Stein et al. proposed a
mixed finite element method with piecewise linear elements
for the biharmonic equation on surfaces [28]. Meng et al.
studied the optimal order convergence for the lowest order
mixed finite element method of the biharmonic eigenvalue
problem [29]. For vibration equations, Meng et al. studied
a mixed virtual element method for the vibration problem of
clamped Kirchhoff plate [30].

As far as we know, the current literature lacks studies that
utilize the mixed finite element method to solve vibration
equations for viscously damped plates. Therefore, this
work seeks to establish the mixed finite element scheme for
the initial boundary conditions of damped plate vibration
problems and to verify the existence and uniqueness of the

approximate solution for the semi-discrete and backward
Euler fully discrete schemes. An error analysis is conducted,
and numerical case studies are conducted to validate the
effectiveness and precision of the mixed finite element
scheme, as well as to quantify the influence of the damping
coefficient on plate vibrations.

According to the theory of elasticity, there is a vibration
equation of thin plate in [31],

D(
∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4 ) + m

∂2w
∂t2 = f (x, y, t).

In this article, we add the damped term and consider the
damped plate vibration problem:

(a) D( ∂
4w
∂x4 + 2 ∂4w

∂x2∂y2 + ∂4w
∂y4 ) + m ∂2w

∂t2 + λ ∂w
∂t = f (x, y, t),

(x, y, t) ∈ Ω × (0,T ],

(b) w(x, y, 0) = Φ(x, y), wt(x, y, 0) = Ψ(x, y), (x, y) ∈ Ω,

(c) w|∂Ω = 0, ∆w|∂Ω = 0, t ∈ (0,T ].
(1.1)

Where D is the flexural rigidity, m = ρh is the mass per
unit area, ρ is the mass density of the plate, and h is the
thickness of the plate. λ is the damping factor, f is the
smooth function, w(x, y, t) is the flexible surface function,
Ω is the piecewise smooth bounded polygon region, (0,T ] is
the time interval, Ψ(x, y),Φ(x, y) are known functions.

In this paper, the damping plate vibration equation is
analyzed by the mixed finite element method. The advantage
of the mixed finite element method lies in its ability to
reduce the order of the high order differential equations
by introducing intermediate variables, which often have
physical meaning by themselves. Consequently, it can
reduce the requirement for smoothness of the finite element
space and hence simplify the interpolation space of the finite
elements. Moreover, by using the mixed finite element
method, both the unknown variables and the intermediate
variables with realistic meaning can be obtained, hence
increasing the precision of the discrete solutions. Compared
to other methods, the mixed finite element method is easier
to apply and more likely to yield meaningful solutions.

This article is divided into five sections. The first
section introduces the research background of the plate
vibration problems. The second section provides the
variational formulation for the initial boundary conditions
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of damped plate vibration problems. The third and the
fourth sections discuss the construction of the semi-discrete
and fully discrete mixed finite element schemes for the
initial boundary conditions of the damped plate vibration
problems, respectively, followed by the verification of the
existence and uniqueness of such schemes and the error
analyses. Finally, the fifth section presents the numerical
case studies aimed at validating the theoretical discussions
in the previous sections.

2. Variational format

Introducing auxiliary variables ∆w = −u, v = wt, where
∆ = ∂

∂x2 + ∂
∂y2 , we first rewrite Eq.(1.1) into the following

coupled system:

(a) − D∆u + mvt + λv = f (x, y, t), (x, y, t) ∈ Ω × (0,T ],

(b) ut + ∆v = 0, (x, y, t) ∈ Ω × (0,T ],

(c) u(x, y, 0) = −∆Φ(x, y), v(x, y, 0) = Ψ(x, y), (x, y) ∈ Ω,

(d) u|∂Ω = 0, v|∂Ω = 0, t ∈ (0,T ].
(2.1)

Multiplying both sides of (2.1)(a) by ϕ ∈ H1
0(Ω) and using

Green’s formula, we have

D(∇u,∇ϕ) + m(vt, ϕ) + λ(v, ϕ) = ( f , ϕ), ϕ ∈ H1
0(Ω).

Multiplying both sides of (2.1)(b) by ψ ∈ H1
0(Ω) and using

Green’s formula, we obtain

(ut, ψ) − (∇v,∇ψ) = 0, ψ ∈ H1
0(Ω).

Therefore, we have the following mixed weak formulation
of (2.1) : find {u, v} : [0,T ]→ H1

0(Ω) × H1
0(Ω), such that

(a) D(∇u,∇ϕ) + m(vt, ϕ) + λ(v, ϕ) = ( f , ϕ), ϕ ∈ H1
0(Ω),

(b) (ut, ψ) − (∇v,∇ψ) = 0, ψ ∈ H1
0(Ω),

(c) u(x, y, 0) = −∆Φ(x, y), v(x, y, 0) = Ψ(x, y), (x, y) ∈ Ω,

(d) u|∂Ω = 0, v|∂Ω = 0, t ∈ (0,T ].
(2.2)

3. Semi-discrete finite element scheme

First, we define the finite element space. Let Ω be a
rectangular region whose boundaries are parallel to the two

axes. The region Ω is divided into regular triangulation. h

is a triangulation family whose region satisfies the regular
hypothesis, K represents the triangulation unit, and h is the
maximum diameter of the subdivision unit. Ω =

⋃
Kε h

K, S h =

{vh | vh |K∈ Pk(K),∀Kε h} ⊂ H1(Ω) is the finite element
space composed of piecewise linear degree polynomials
on h.Then, the corresponding semi-discrete finite element
scheme of (2.2) is to find {uh, vh} : [0,T ] → S 0

h × S 0
h,

S 0
h = S h ∩ H1

0(Ω), such that

(a) D(∇uh,∇ϕh) + m(vht, ϕh) + λ(vh, ϕh) = ( f , ϕh),

ϕh ∈ S 0
h(Ω),

(b) (uht, ψh) − (∇vh,∇ψh) = 0, ψh ∈ S 0
h(Ω),

(c) uh(x, y, 0) = Rhu(x, y, 0), vh(x, y, 0) = Rhv(x, y, 0),

(x, y) ∈ Ω,

(d) uh|∂Ω = 0, vh|∂Ω = 0, t ∈ (0,T ].
(3.1)

Rh is an elliptic projection operator , which will be given
below. The existence and uniqueness of semi-discrete finite
element approximation scheme solutions and error analysis
are given below.

Theorem 3.1. Existence and uniqueness of the solution of

the semi-discrete finite element approximation scheme (3.1).

Proof. {φi}
M
i=1 be a set of bases of S 0

h. Then

uh=
M∑
j=1

u jφ j,vh=
M∑
j=1

v jφ j. According to (3.1)(a) and (3.1)(b) ,

we have the following equalities

DAU(t) + mB
dV(t)

dt
+ λBV(t) = F, (3.2)

B
dU(t)

dt
− AV(t) = 0. (3.3)

Where U(t) = (u1(t), u2(t), · · · , uN(t))T ,

V(t) = (v1(t), v2(t), · · · , vN(t))T , A = (∇φ j,∇φi),
B = (φ j, φi), F = ( f , φi).

According to (3.3), we deduce that

V(t) = A−1B
dU(t)

dt
. (3.4)

Substituting (3.4) into (3.2) , we arrive at

mBA−1B
d2U(t)

dt
+ λBA−1B

dU(t)
dt

+ DAU(t) = F(t). (3.5)
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U(0) can be determined by uh(x, y, 0), and (3.5) is an
ordinary differential equation about vector U(t). A, BA−1B

are symmetric positive definite matrices. According to
the theory of ordinary differential equations, it is easy to
know that the solution of the semi-discrete finite element
approximation scheme is existent and unique. �

In the following discussion, we will derive the proof of
the error estimates for semi-discrete schemes. For carrying
out an analysis, we need to introduce a useful lemma. First,
to give the error analysis, for ∀0 ≤ t ≤ T , we consider
the elliptic projection operator Rh : H1

0 → S 0
h such that

(∇(u − Rhu),∇vh) = 0, ∀vh ∈ S 0
h, which leads to the

following estimate inequality.

Lemma 3.1. [32] ∀u ∈ Hk+1
0 , such that

‖ u − Rhu ‖ +h ‖ u − Rhu ‖1≤ Chk+1 ‖ u ‖k+1 . (3.6)

Corollary 3.1. ∀u ∈ Hk+1
0 , such that

‖ ut − Rhut ‖≤ Chk+1 ‖ ut ‖k+1 . (3.7)

Lemma 3.2. [33] The family S h is based on a family of

quasiuniform triangulations h and S h consists of piecewise

polynomials of degree at most k − 1, and then one may show

the inverse inequality:

‖ ∇uh ‖≤ Ch−1 ‖ uh ‖, ∀uεS h. (3.8)

In the next analysis, we will discuss the proof of semi-
discrete error estimates based on the elliptic projection in
detail.

Theorem 3.2. Let {u, v} and {uh, vh} be the solutions of

(2.2)(a) and (2.2)(b) and (3.1)(a) and (3.1)(b), respectively,

we have L2-mode and H1-mode error estimations of variable

{u, v}:

‖ u − uh ‖
2≤ Ch2k+2

(
∫ t

0 (‖ vt ‖
2
k+1 + ‖ v ‖2k+1 + ‖ ut ‖

2
k+1)ds+ ‖ u ‖2k+1), (3.9)

‖ v − vh ‖
2≤ Ch2k+2

(
∫ t

0 (‖ vt ‖
2
k+1 + ‖ v ‖2k+1 + ‖ ut ‖

2
k+1)ds+ ‖ v ‖2k+1),(3.10)

‖ ∇(u − uh) ‖≤ Chk

(‖ u ‖k+1 +
∫ t

0 (‖ vt ‖k+1 + ‖ v ‖k+1 + ‖ ut ‖k+1)ds),(3.11)

‖ ∇(v − vh) ‖≤ Chk

(‖ v ‖k+1 +
∫ t

0 (‖ vt ‖k+1 + ‖ v ‖k+1 + ‖ ut ‖k+1)ds).(3.12)

Proof. To simplify, we now rewrite the errors as u−uh = (u−
Rhu)+(Rhu−uh) = ρ+θ, v−vh = (v−Rhv)+(Rhv−vh) = η+ξ.
∀ϕh, ψh ∈ S 0

h , subtracting (2.2)(a) from (3.1)(a),
subtracting (2.2)(b) from (3.1)(b), and applying the elliptic
projection operator, we have the error equation:

(∇θ,∇ϕh) + m(ηt, ϕh) + m(ξt, ϕh) + λ(η, ϕh) + λ(ξ, ϕh) = 0,
(3.13)

(ρt, ψh) + (θt, ψh) − (∇ξ,∇ψh) = 0. (3.14)

Choosing ϕh = ξ, ψh = θ, add (3.13) and D × (3.14), we
have

m
2

d
dt ‖ ξ ‖

2 + D
2

d
dt ‖ θ ‖

2 +λ ‖ ξ ‖2

= −(m(ηt, ξ) + λ(η, ξ) + D(ρt, θ)). (3.15)

The Young inequality with ε and corollary 3.1 being
applied to (3.15), we easily obtain

m
2

d
dt ‖ ξ ‖

2 + D
2

d
dt ‖ θ ‖

2≤ Ch2k+2( 1
2λm2 ‖ vt ‖

2
k+1 + λ

2 ‖ v ‖2k+1

+ D
2 ‖ ut ‖

2
k+1) + D

2 ‖ θ ‖
2 . (3.16)

Integrating from 0 to t on both sides of (3.16), because
ξ(0) = θ(0) = 0, we have

m ‖ ξ ‖2 +D ‖ θ ‖2≤ Ch2k+2 + D
∫ t

0 ‖ θ ‖
2ds∫ t

0
1
λ
m2 ‖ vt ‖

2
k+1 +λ ‖ v ‖2k+1 +D ‖ ut ‖

2
k+1ds.

We use Gronwall inequality to get

m ‖ ξ ‖2 +D ‖ θ ‖2≤ Ch2k+2∫ t
0

1
λ
m2 ‖ vt ‖

2
k+1 +λ ‖ v ‖2k+1 +D ‖ ut ‖

2
k+1ds. (3.17)

Thus, we have L2-mode error estimation of variable {u, v}:

‖ Rhu − uh ‖
2 + ‖ Rhv − vh ‖

2

≤ Ch2k+2
∫ t

0
‖ vt ‖

2
k+1 + ‖ v ‖2k+1 + ‖ ut ‖

2
k+1ds. (3.18)

Using lemma 3.1 and triangle inequality, we finish the
proof of (3.9)and(3.10).

Theorem 3.3. Let {u, v} and {uh, vh} be the solutions of (2.1)
and (2.2), respectively. When {u, v} is smooth enough, we

have the error estimation of variable {ut, vt}:

‖ Rhut − uht ‖
2 + ‖ Rhvt − vht ‖

2≤ Ch2k+2∫ t
0 ‖ vtt ‖

2
k+1 + ‖ utt ‖

2
k+1 + ‖ vt ‖

2
k+1ds. (3.19)
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Similar to Theorem 3.2, we give a simple proof.

Proof. First, taking the derivative of the variable t of the
error equation (3.13) − (3.14), we obtain

D(∇θt,∇ϕh) + m(∂tηt, ϕh) + m(∂tξt, ϕh) + λ(ηt, ϕh)

+λ(ξt, ϕh) = m(Rvt , ϕh), (3.20)

(∂tρt, ψh) + (∂tθt, ψh) − (∇ξt,∇ψh) = (Rut , ψh). (3.21)

Choosing ϕh = ξt in (3.20), ψh = θt in (3.21), we have

D(∇θt,∇ξt) + m(∂tηt, ξt) + m(∂tξt, ξt) + λ(ηt, ξt)

+λ(ξt, ξt) = m(Rvt , ξt),

(∂tρt, θt) + (∂tθt, θt) − (∇ξt, θ
i
t) = (Rut , θt).

With the same method as theorem 3.2, we easily obtain

‖ Rhut − uht ‖
2 + ‖ Rhvt − vht ‖

2≤ Ch2k+2∫ t

0
‖ vtt ‖

2
k+1 + ‖ utt ‖

2
k+1 + ‖ vt ‖

2
k+1ds. (3.22)

�

Using lemma 3.1 and inverse inequality, we have H1-
mode error estimation of variable u:

‖ ∇(u − uh) ‖≤‖ ∇ρ ‖ + ‖ ∇θ ‖≤ Chk ‖ u ‖k+1 +Ch−1 ‖ θ ‖

≤ Chk ‖ u ‖k+1 +Chk(
∫ t

0 ‖ vt ‖
2
k+1 + ‖ v ‖2k+1 + ‖ ut ‖

2
k+1ds)

≤ Chk(‖ u ‖k+1 +
∫ t

0 ‖ vt ‖k+1 + ‖ v ‖k+1 + ‖ ut ‖k+1ds).

In the same way, we have H1-mode error estimation of
variable v:

‖ ∇(v − vh) ‖≤ Chk

(‖ v ‖k+1 +
∫ t

0 ‖ vt ‖k+1 + ‖ v ‖k+1 + ‖ ut ‖k+1ds). (3.23)

�

Hence, we finish the proof of theorem 3.2.

4. Full discrete finite element scheme

Let 0 = t0 < t1 < · · · < tN = T be the subdivision of step
τ = T

N in time interval [0,T ], tn = nτ, n = 0, 1 · · · ,N, Un ∈

S 0
h stand for the approximation of u(tn), when t = tn = nτ.

For any function φ on [0,T ], define:

φn = φ(tn), ∂tφ
n = (φn − φn−1)/τ,

Choosing t = tn, we have a format equivalent to (2.1):

(a) D(∇un,∇ϕ) + m(∂tvn, ϕ) + λ(vn, ϕ) = ( f n, ϕ) + m(Rn
v , ϕ),

ϕ ∈ H1
0(Ω),

(b) (∂tun, ψ) − (∇vn,∇ψ) = (Rn
u, ψ), ψ ∈ H1

0(Ω),

(c) u(x, y, 0) = −∆Φ(x, y), v(x, y, 0) = Ψ(x, y), (x, y) ∈ Ω,

(d) u|∂Ω = 0, v|∂Ω = 0, t ∈ (0,T ].
(4.1)

Where Rn
u = ∂tun − un

t = 1
τ

∫ tn
tn−1

(tn−1 − s)utt(s)ds,Rn
v =

∂tvn − vn
t = 1

τ

∫ tn
tn−1

(tn−1 − s)vtt(s)ds.
Then, the fully discrete finite element approximation

scheme is described as: find {Un,Vn}: [0,T ] → S 0
h × S 0

h,
S 0

h = S h ∩ H1
0(Ω), such that

(a) D(∇Un,∇ϕh) + m(∂tVn, ϕh) + λ(Vn, ϕh) = ( f n, ϕh),

ϕh ∈ S 0
h(Ω),

(b) (∂tUn, ψh) − (∇Vn,∇ψh) = 0, ψh ∈ S 0
h(Ω),

(c) U0(x, y) = Rhu(x, y, 0), V0(x, y) = Rhv(x, y, 0),

(x, y) ∈ Ω,

(d) U |∂Ω = 0, V |∂Ω = 0, t ∈ (0,T ].
(4.2)

Similarly, we give proof of the existence and uniqueness
of the fully discrete finite element scheme solution and error
analysis.

Theorem 4.1. Existence and uniqueness of the solution of

the fully discrete finite element approximation scheme (4.2).

Proof. Let {φi}
M
i=1 be a set of bases of S 0

h. We have Un =
M∑

i=1
un

i φi,Vn =
M∑

i=1
vn

i φi. According to (4.2)(a) and (4.2)(b),

we have

τDA ~Un + (mB + τλB)~Vn − mB~Vn−1 = τFn, (4.3)

B ~Un − τA~Vn − B ~Un−1 = 0, (4.4)

where

~Un = (un
1, u

n
2, · · · , u

n
N)T , ~Vn = (vn

1, v
n
2, · · · , v

n
N)T ,

A = (∇φ j,∇φi), B = (φ j, φi), F = ( f n, φi).

According to (4.4), we easily arrive at

~Vn =
1
τ

A−1B( ~Un − ~Un−1). (4.5)
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Substitute (4.5) into (4.3) to obtain

(τDA +
1
τ

mBA−1B + λBA−1B) ~Un

=τFn −
1
τ

mBA−1B ~Un−2 + (
1
τ

mBA−1B + λBA−1B) ~Un−1.

(4.6)

U0 can be determined by Rhu(x, y, 0). A, BA−1B are
symmetric positive definite matrices, so the solution of (4.6)
is existent and unique, and the solution of (4.5) is existent
and unique. The existence and uniqueness of the solution
are equivalent to problem (4.2)(a) and (4.2)(b) . �

Theorem 4.2. Let {un, vn} and {Un,Vn} be the solutions

of (4.1) and (4.2), respectively, we have L2-mode error

estimation of variable {un, vn}:

‖ un − Un ‖2 + ‖ vn − Vn ‖2≤ Ch2k+2

(
∫ t

0 ‖ vt ‖
2
k+1 + ‖ ut ‖

2
k+1 + ‖ v ‖2k+1ds+ ‖ u ‖2k+1 + ‖ v ‖2k+1)

+Cτ2
∫ t

0 ‖ vtt ‖
2 + ‖ utt ‖

2ds, (4.7)

Proof. To simplify, we now rewrite the errors as ui − U i =

(ui − Rhui) + (Rhui − U i) = ρi + θi, vi − V i = (vi − Rhvi) +

(Rhvi − V i) = ηi + ξi.

∀ϕh, ψh ∈ S 0
h , subtracting (4.1)(a) from (4.2)(a),

subtracting (4.1)(b) from (4.2)(b), and applying elliptic
projection operator, we have the error equation:

D(∇θi,∇ϕh) + m(∂tη
i, ϕh) + m(∂tξ

i, ϕh) + λ(ηi, ϕh)

+λ(ξi, ϕh) = m(Ri
v, ϕh), (4.8)

(∂tρ
i, ψh) + (∂tθ

i, ψh) − (∇ξi,∇ψh) = (Ri
u, ψh). (4.9)

Let ϕh = ξi, ψh = θi. Adding (4.8) and D × (4.9), we have

m(∂tξ
i, ξi) + λ(ξi, ξi) + D(∂tθ

i, θi)

= − (m(∂tη
i, ξi) + λ(ηi, ξi) + D(∂tρ

i, θi))

+ m(Ri
v, ξ

i) + D(Ri
u, θ

i)

=

5∑
i=1

Mi. (4.10)

Where

m(∂tξ
i, ξi) = m

2τ (‖ ξi ‖2 − ‖ ξi−1 ‖2 + ‖ ξi − ξi−1 ‖2),

D(∂tθ
i, θi) = D

2τ (‖ θi ‖2 − ‖ θi−1 ‖2 + ‖ θi − θi−1 ‖2),

λ(ξi, ξi) =‖ ξi ‖2 .

Let’s estimate
∑

Mi in turn:
Using the Young inequality with ε, lemma 3.1 and

corollary 3.1, we obtain

M1 ≤
3m2

4λτ2 ‖

∫ ti

ti−1

ηtds ‖2 +
λ

3
‖ ξi ‖2

≤
3m2

4λτ

∫ ti

ti−1

‖ ηt ‖
2 ds +

λ

3
‖ ξi ‖2

≤ C
3m2

4λτ
h2k+2

∫ ti

ti−1

‖ vt ‖
2
k+1 ds +

λ

3
‖ ξi ‖2,

M2 ≤
3λ
4
‖ ηi ‖2 +

λ

3
‖ ξi ‖2≤ C

3λ
4

h2k+2 ‖ v ‖2k+1 +
λ

3
‖ ξi ‖2,

M3 ≤
D
τ2 ‖

∫ ti

ti−1

ρtds ‖2 +
D
4
‖ θi ‖2

≤ C
D
τ

h2k+2
∫ ti

ti−1

‖ ut ‖
2
k+1 ds +

D
4
‖ θi ‖2 .

Using Cauchy-Schwarz inequality and Young inequality
with ε, we have

M4 ≤
3m2

4λ
‖ Ri

v ‖
2 +

λ

3
‖ ξi ‖2

≤
3m2

4λ
‖ τ−1

∫ ti

ti−1

(ti−1 − s)vttds ‖2 +
λ

3
‖ ξi ‖2

≤
3m2

4λ
‖ τ−1[

∫ ti

ti−1

(ti−1 − s)2ds]
1
2 [
∫ ti

ti−1

v2
ttds]

1
2 ‖2 +

λ

3
‖ ξi ‖2

≤
3m2

4λ
τ

∫ ti

ti−1

‖ vtt ‖
2 ds +

λ

3
‖ ξi ‖2,

M5 ≤ D ‖ Ri
u ‖

2 +
D
4
‖ θi ‖2≤ Dτ

∫ ti

ti−1

u2
ttds +

D
4
‖ θi ‖2 .

Substituting them into (4.10), we have

m(‖ ξi ‖2 − ‖ ξi−1 ‖2 +D(‖ θi ‖2 − ‖ θi−1 ‖2)

≤Ch2k+2(
∫ ti

ti−1

‖ vt ‖
2
k+1 + ‖ ut ‖

2
k+1ds) + Dτ ‖ θi ‖2

+ Cτ2(
∫ ti

ti−1

‖ vtt ‖
2 + ‖ utt ‖

2ds) + Cτh2k+2 ‖ v ‖2k+1 .

Sum the above formula about i from 1 to n. Noticing that
ξ(0) = θ(0) = 0, we have

m ‖ ξn ‖2 +(D − Dτ) ‖ θn ‖2

≤Ch2k+2(
∫ t

0
‖ vt ‖

2
k+1 + ‖ ut ‖

2
k+1ds) + Dτ

n∑
i=1

‖ θi−1 ‖2 +

Ch2k+2 ‖ v ‖2k+1 +Cτ2
∫ t

0
‖ vtt ‖

2 + ‖ utt ‖
2ds.
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Using Gronwall Lemma, we have τ sufficiently small

m ‖ ξn ‖2 +(D − Dτ) ‖ θn ‖2

≤Ch2k+2(
∫ t

0
‖ vt ‖

2
k+1 + ‖ ut ‖

2
k+1ds+ ‖ v ‖2k+1)

+ Cτ2(
∫ t

0
‖ vtt ‖

2 + ‖ utt ‖
2ds). (4.11)

Thus, we have L2-mode error estimation of variable
{un, vn}:

‖ ξn ‖2 + ‖ θn ‖2

≤Cτ2(
∫ t

0
‖ vtt ‖

2 + ‖ utt ‖
2ds)

+ Ch2k+2(
∫ t

0
‖ vt ‖

2
k+1 + ‖ ut ‖

2
k+1ds+ ‖ v ‖2k+1). (4.12)

�

Using lemma 3.1 and the triangle inequality, we finish the
proof of theorem 4.2.

Next, we give the H1-mode error estimate of {un, vn}.

Theorem 4.3. Letting {un, vn} and {Un,Vn} be the solutions

of (4.1) and (4.2), respectively, we have H1-mode error

estimation of variable {un, vn}:

‖ ∇ui − ∇U i ‖≤ Chk + Chk+1 + Cτ, (4.13)

‖ ∇vi − ∇V i ‖≤ Chk + Chk+1 + Cτ. (4.14)

Proof. Choosing ϕh = θi in (4.8), we have

D(∇θi,∇θi) + m(∂tη
i, θi) + m(∂tξ

i, θi) + λ(ηi, θi) + λ(ξi, θi)

=m(Ri
v, θ

i).

Which leads to

D ‖ ∇θi ‖2

= − m(∂tη
i, θi) − m(∂tξ

i, θi) − λ(ηi, θi) − λ(ξi, θi) + m(Ri
v, θ

i)

=

5∑
j=1

M j. (4.15)

The estimate of M j is as follows:
using Cauchy-Schwarz inequality, Young inequality with

ε and corollary 3.1, we obtain

M1 ≤
5m2

4τ2 ‖

∫ ti

ti−1

ηtds ‖2 +
1
5
‖ θi ‖2

≤
5m2

4τ

∫ ti

ti−1

‖ ηt ‖
2 ds +

1
5
‖ θi ‖2

≤ C
5m2

4τ
h2k+2

∫ ti

ti−1

‖ vt ‖
2
k+1 ds +

1
5
‖ θi ‖2

≤ C
5m2

4
h2k+2 ‖ vt ‖

2
k+1 +

1
5
‖ θi ‖2 . (4.16)

Using Cauchy-Schwarz inequality, Young inequality with
ε and Theorem 3.3, we get

M2 ≤
5m2

4τ2 ‖

∫ ti

ti−1

ξtds ‖2 +
1
5
‖ θi ‖2

≤
5m2

4τ

∫ ti

ti−1

‖ ξt ‖
2 ds +

1
5
‖ θi ‖2

≤
1
5
‖ θi ‖2 +C

5m2

4
h2k+2

∫ t

0
‖ vtt ‖

2
k+1 + ‖ utt ‖

2
k+1 + ‖ vt ‖

2
k+1ds.

(4.17)

Using Young inequality with ε and Lemma 3.1, we have

M3 ≤
5λ2

4
‖ ηi ‖2 +

1
5
‖ θi ‖2

≤ C
5λ2

4
h2k+2 ‖ v ‖2k+1 +

1
5
‖ θi ‖2 . (4.18)

Using Young inequality with ε, we deduce that

M4 ≤
5λ2

4
‖ ξi ‖2 +

1
5
‖ θi ‖2 . (4.19)

Using Cauchy-Schwarz inequality and Young inequality
with ε, we get

M5 ≤
5m2

4
‖ Ri

v ‖
2 +

1
5
‖ θi ‖2

≤
5m2

4
‖ τ−1

∫ ti

ti−1

(ti−1 − s)vttds ‖2 +
1
5
‖ θi ‖2

≤
5m2

4
‖ τ−1[

∫ ti

ti−1

(ti−1 − s)2ds]
1
2 [
∫ ti

ti−1

v2
ttds]

1
2 ‖2 +

1
5
‖ θi ‖2

≤
5m2

4
τ

∫ ti

ti−1

‖ vtt ‖
2 ds +

1
5
‖ θi ‖2

≤
5m2

4
τ2 ‖ vtt ‖

2 +
1
5
‖ θi ‖2 . (4.20)

Combining (4.16) − (4.20) and using Theorem 4.2, we
have

‖ ∇θi ‖2≤ Ch2k+2(‖ vt ‖
2
k+1 +

∫ t

0
‖ vtt ‖

2
k+1 + ‖ utt ‖

2
k+1 + ‖ vt ‖

2
k+1ds

‖ v ‖2k+1 +

∫ t

0
‖ vt ‖

2
k+1 + ‖ ut ‖

2
k+1ds) + Cτ2 ‖ vtt ‖

2 (4.21)
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Using lemma 3.1 and (4.21), we get

‖ ∇ui − ∇U i ‖≤‖ ∇ρ ‖ + ‖ ∇θ ‖≤ Chk + Chk+1 + Cτ. (4.22)

Choosing ψh = ξi in (4.9), we obtain

(∂tρ
i, ξi) + (∂tθ

i, ξi) − (∇ξi,∇ξi) = (Ri
u, ξ

i).

Which leads to

‖ ∇ξi ‖2= (∂tρ
i, ξi) + (∂tθ

i, ξi) − (Ri
u, ξ

i). (4.23)

We estimate the terms on the right-hand side of (4.23) one
by one. Using Cauchy-Schwarz inequality, Young inequality
with ε and corollary 3.1, we obtain

(∂tρ
i, ξi) ≤

3
4τ2 ‖

∫ ti

ti−1

ρtds ‖2 +
1
3
‖ ξi ‖2

≤
3
4τ

∫ ti

ti−1

‖ ρt ‖
2 ds +

1
3
‖ ξi ‖2

≤
3
4τ

Ch2k+2
∫ ti

ti−1

‖ ut ‖
2
k+1 ds +

1
3
‖ ξi ‖2

≤
3
4

Ch2k+2 ‖ ut ‖
2
k+1 +

1
3
‖ ξi ‖2 . (4.24)

Using Cauchy-Schwarz inequality, Young inequality with
ε and Theorem 3.3, we obtain

(∂tθ
i, ξi)

≤
3

4τ2 ‖

∫ ti

ti−1

θtds ‖2 +
1
3
‖ ξi ‖2

≤
1
3
‖ ξi ‖2 +

3
4τ

∫ ti

ti−1

‖ θt ‖
2 ds

≤
1
3
‖ ξi ‖2

+
3
4τ

Ch2k+2
∫ ti

ti−1

∫ t

0
‖ vtt ‖

2
k+1 + ‖ utt ‖

2
k+1 + ‖ vt ‖

2
k+1dsdt

≤
3
4

Ch2k+2
∫ t

0
‖ vtt ‖

2
k+1 + ‖ utt ‖

2
k+1 + ‖ vt ‖

2
k+1ds +

1
3
‖ ξi ‖2 .

(4.25)

− (Ri
u, ξ

i)

≤
3
4
‖ Ri

u ‖
2 +

1
3
‖ ξi ‖2

≤
3
4
‖ τ−1

∫ ti

ti−1

(ti−1 − s)uttds ‖2 +
1
3
‖ ξi ‖2

≤
3
4
‖ τ−1[

∫ ti

ti−1

(ti−1 − s)2ds]
1
2 [
∫ ti

ti−1

u2
ttds]

1
2 ‖2 +

1
3
‖ ξi ‖2

≤
3
4
τ

∫ ti

ti−1

‖ utt ‖
2 ds +

1
3
‖ ξi ‖2≤

3
4
τ2 ‖ utt ‖

2 +
1
3
‖ ξi ‖2 .

(4.26)

Combining (4.24)−(4.26) and using Theorem 4.2, it holds
that

‖ ∇ξi ‖2 ≤
3
4

Ch2k+2
∫ t

0
‖ vtt ‖

2
k+1 + ‖ utt ‖

2
k+1 + ‖ vt ‖

2
k+1ds

+
3
4

Ch2k+2 ‖ ut ‖
2
k+1 +

3
4
τ2 ‖ utt ‖

2

+ Ch2k+2
∫ t

0
‖ vt ‖

2
k+1 + ‖ ut ‖

2
k+1 + ‖ v ‖2k+1ds

≤ Ch2k+2 + Cτ2. (4.27)

Using corollary 3.2 and (4.27), we have

‖ ∇vi − ∇V i ‖≤‖ ∇ηi ‖ + ‖ ∇ξi ‖≤ Chk + Chk+1 + Cτ.(4.28)

�

5. Numerical experiment

In this section, we provide numerical examples to validate
the backward Euler full discretization mixed finite element
scheme (4.2) for the vibration problems of damped plates
(2.1). We not only validate the convergence order of the
error estimate, but also simulate the vibration of damped
plates to quantify the influence of damping coefficient on
the frequency and amplitude of vibration.

Example 1
For the numerical calculation, let the space domain be

Ω = [0, 4]× [0, 4] and let the time domain be [0,T ] = [0, 1].
Let D = 1,m = 1, λ = 1. The exact solution to the vibration
problem of the damped plate (2.1) is w=costsin( π4 x)sin( π4 y).
The source term f (x, y, t) can be obtained by inserting the
given exact solution into the vibration equation (2.1). The
mixed finite element space is a double linear first-order
polynomial. Keep the time step size τ = 1

100000 constant
while varying the space step size hx = hy = 1

2 ,
1
4 ,

1
8 ,

1
16 .

Tables 1 and 2 show the space errors and convergence
orders, respectively, of the L2 − norm and H1 − norm

of the solutions to the backward Euler full discretization
mixed finite element scheme (4.2). Keep the space step
size hx = hy = 1

1024 constant while varying the time step
size τ = 1

4 ,
1
8 ,

1
16 ,

1
32 . Tables 3 and 4 show the time errors
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and convergence orders, respectively, of the L2 − norm

and H1 − norm of the solutions to the backward Euler
full discretization mixed finite element scheme (4.2). The
second and third columns in Tables 1 and 2 show the space
errors of the L2 − norm and H1 − norm for the solutions to
the backward Euler full discretization mixed finite element
scheme (4.2), respectively. The fourth and fifth columns
show their corresponding space convergence orders. The
second and third columns in Tables 3 and 4 show the time
errors of the L2 − norm and H1 − norm for the solutions to
the backward Euler full discretization mixed finite element
scheme (4.2), respectively. The fourth and fifth columns
show their corresponding time convergence orders.

The tables illustrate that the space convergence orders are
2 or 1, while the time convergence orders are uniformly
1, for the L2 − norm and H1 − norm of the solutions to
the backward Euler full discretization mixed finite element
scheme (4.2) for the vibration problems of damped plates
(2.1). This is consistent with the theoretical results, and
hence the conclusions of the theorem are validated.

Table 1. H1-mode and L2-mode errors of u.

h−1 L2 −

norm

H1 −

norm

convergence
order of L2

convergence
order of H1

2 1.1563e-
01

2.9644e-
01

4 2.9373e-
02

1.4610e-
01

1.9770 1.0208

8 7.3786e-
03

7.2778e-
02

1.9931 1.0054

16 1.8518e-
03

3.6355e-
02

1.9944 1.0013

Table 2. H1-mode and L2-mode errors of v.

h−1 L2 −

norm

H1 −

norm

convergence
order of L2

convergence
order of H1

2 3.9781e-
02

3.6893e-
01

4 1.0492e-
02

1.8383e-
01

1.9228 1.0050

8 2.6594e-
03

9.1799e-
02

1.9801 1.0018

16 6.6963e-
04

4.5884e-
02

1.9897 1.0005

When spatial step h= 1
1024 , w=costsin( π4 x)sin( π4 y), we have

Table 3. H1-mode and L2-mode errors of u.

τ−1 L2 −

norm

H1 −

norm

convergence
order of L2

convergence
order of H1

4 1.3495e-
01

1.4990e-
01

8 7.5280e-
02

8.3643e-
02

0.84209 0.84168

16 3.9851e-
02

4.4319e-
02

0.91765 0.91632

32 2.0514e-
02

2.2895e-
02

0.95801 0.95289

Table 4. H1-mode and L2-mode errors of v.

τ−1 L2 −

norm

H1 −

norm

convergence
order of L2

convergence
order of H1

4 1.6961e-
01

1.8840e-
01

8 8.9051e-
02

9.8948e-
02

0.92918 0.92906

16 4.5534e-
02

5.0652e-
02

0.96769 0.96605

32 2.3006e-
02

2.5710e-
02

0.98493 0.97829

Example 2

In this numerical example, we not only simulate the
vibration of damped plates, but also validate the influence
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of damping coefficient on the frequency and amplitude of
the vibration.

First, let D = 100,m = 5, λ = 40, and the external
force f = 0. Let the non-zero initial displacement of
plate vibration be w=sin( π4 x)sin( π4 y). Vibrations at different
moments are simulated. The vibration patterns at t =

0.05, t = 0.2, t = 0.3, t = 1, t = 3 and t = 5 are shown in
Figure 1, respectively.

By comparing Figure 1, it is noticed that the amplitude of
vibration decreases over time. From t = 3, the amplitude
changes increasingly slowly until it stabilizes at a fixed
value.

Then, let D = 10,m = 20, λ = 40, the initial vibration
displacement w = 0, and the duration of external force=0.1,
i.e.  f = 10 0 ≤ t ≤ 0.1,

f = 0 0.1 < t ≤ 5.
(5.1)

The change in vibration amplitude over time is studied.
The vibration patterns at t = 0.05, t = 0.1, t = 0.2, t =

0.5, t = 2 and t = 2.5 are shown in Figure 2, respectively.

By comparing Figure 2, it is observed that the amplitude
increases from t = 0.05 to t = 0.5, and then starts to decrease
and eventually stabilizes.

Finally, let D = 10,m = 20, the initial vibration
displacement w = 0, and the duration of external force=0.1,
i.e.  f = 10 0 ≤ t ≤ 0.1,

f = 0 0.1 < t ≤ 5.
(5.2)

The influence on vibration amplitude by changing the
damping coefficient is studied. The damping coefficient is
set at 10, 20, 160 and 640. When t = 0.15, the vibration
patterns when the damping coefficient is 10, 20, 160 and
640 are shown in Figure 3, respectively. The influence of
changing the damping coefficient on the vibration frequency
is also studied. When the damping coefficient is 10, 20,
40 and 80, the changes of a certain point on the plate as a
function of time are shown in Figure 4, respectively.

By comparing Figure 3, it is observed that when the
external force is constant, a greater damping coefficient
leads to a smaller vibration amplitude. The comparison
between Figure 4 suggests that when the external force is

constant, a greater damping coefficient leads to a lower
frequency.

6. Conclusions

In this article, we propose the semi-discrete and fully
discrete finite element approximation schemes for the
vibration equations of damped plates. The existence and
the uniqueness of the solution are verified, and the order
of convergence of errors is deduced. Moreover, the
theoretical analysis is validated by numerical case studies,
the pattern of plate vibration is simulated, and the influence
of the damping coefficient on the frequency and amplitude
of the plate vibration is elucidated. In the future, we
attempt to discretize the time using the C-N scheme and
approximate the space using elements of higher orders
to obtain numerical solutions of higher precision while
reducing the calculation load, in order to further improve
the simulation of vibration problems of damped plates.
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(a) vibration pattern at t = 0.05 (b) vibration pattern at t = 0.2
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(e) vibration pattern at t = 3 (f) vibration pattern at t = 5

Figure 1. Simulation at different time under free vibration.
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(c) vibration pattern at t = 0.2 (d) vibration pattern at t = 0.5

(e) vibration pattern at t = 2 (f) vibration pattern at t = 2.5

Figure 2. Vibration simulation at different time when external force is applied.
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(c) vibration pattern when λ = 160 (d) vibration pattern when λ = 640

Figure 3. Simulation of plate vibration under different damping coefficients.
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(a) vibration pattern when λ = 10 (b) vibration pattern when λ = 20

(c) vibration pattern when λ = 40 (d) vibration pattern when λ = 80

Figure 4. Simulation of plate center vibration under different damping coefficients.
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