Research article Special Issues

Time almost-periodic solutions of the incompressible Euler equations

  • Received: 11 January 2024 Revised: 13 May 2024 Accepted: 13 May 2024 Published: 23 May 2024
  • We construct time almost-periodic solutions (global in time) with finite regularity to the incompressible Euler equations on the torus $ \mathbb{T}^d $, with $ d = 3 $ and $ d\in\mathbb{N} $ even.

    Citation: Luca Franzoi, Riccardo Montalto. Time almost-periodic solutions of the incompressible Euler equations[J]. Mathematics in Engineering, 2024, 6(3): 394-406. doi: 10.3934/mine.2024016

    Related Papers:

  • We construct time almost-periodic solutions (global in time) with finite regularity to the incompressible Euler equations on the torus $ \mathbb{T}^d $, with $ d = 3 $ and $ d\in\mathbb{N} $ even.



    加载中


    [1] P. Baldi, Nearly toroidal, periodic and quasi-periodic motions of fluid particles driven by the Gavrilov solutions of the Euler equations, J. Math. Fluid Mech., 26 (2024), 1. https://doi.org/10.1007/s00021-023-00836-1 doi: 10.1007/s00021-023-00836-1
    [2] P. Baldi, M. Berti, E. Haus, R. Montalto, Time quasi-periodic gravity water waves in finite depth, Invent. Math., 214 (2018), 739–911. https://doi.org/10.1007/s00222-018-0812-2 doi: 10.1007/s00222-018-0812-2
    [3] P. Baldi, R. Montalto, Quasi-periodic incompressible Euler flows in 3D, Adv. Math., 384 (2021), 107730. https://doi.org/10.1016/j.aim.2021.107730 doi: 10.1016/j.aim.2021.107730
    [4] M. Berti, L. Franzoi, A. Maspero, Traveling quasi-periodic water waves with constant vorticity, Arch. Ration. Mech. Anal., 240 (2021), 99–202. https://doi.org/10.1007/s00205-021-01607-w doi: 10.1007/s00205-021-01607-w
    [5] M. Berti, L. Franzoi, A. Maspero, Pure gravity traveling quasi-periodic water waves with constant vorticity, Commun. Pure Appl. Math., 77 (2024), 990–1064. https://doi.org/10.1002/cpa.22143 doi: 10.1002/cpa.22143
    [6] M. Berti, Z. Hassainia, N. Masmoudi, Time quasi-periodic vortex patches of Euler equation in the plane, Invent. Math., 233 (2023), 1279–1391. https://doi.org/10.1007/s00222-023-01195-4 doi: 10.1007/s00222-023-01195-4
    [7] M. Berti, R. Montalto, Quasi-periodic standing wave solutions of gravity-capillary water waves, Memoirs of the American Mathematical Society, Vol. 263, 2020. https://doi.org/10.1090/memo/1273
    [8] L. Biasco, J. E. Massetti, M. Procesi, Small amplitude weak almost periodic solutions for the 1d NLS, Duke Math. J., 172 (2023), 2643–2714. https://doi.org/10.1215/00127094-2022-0089 doi: 10.1215/00127094-2022-0089
    [9] J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229 (2004), 62–94. https://doi.org/10.1016/j.jfa.2004.10.019 doi: 10.1016/j.jfa.2004.10.019
    [10] Á. Castro, D. Lear, Traveling waves near Couette flow for the 2D Euler equation, Commun. Math. Phys., 400 (2023), 2005–2079. https://doi.org/10.1007/s00220-023-04636-6 doi: 10.1007/s00220-023-04636-6
    [11] Á. Castro, D. Lear, Time periodic solutions for the 2D Euler equation near Taylor-Couette flow, arXiv, 2023. https://doi.org/10.48550/arXiv.2311.06885
    [12] P. Constantin, J. La, V. Vicol, Remarks on a paper by Gravilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications, Geom. Funct. Anal., 29 (2019), 1773–1793. https://doi.org/10.1007/s00039-019-00516-1 doi: 10.1007/s00039-019-00516-1
    [13] L. Corsi, G. Gentile, M. Procesi, Almost-periodic solutions to the NLS equation with smooth convolution potentials, arXiv, 2023. https://doi.org/10.48550/arXiv.2309.14276
    [14] L. Corsi, R. Montalto, M. Procesi, Almost-periodic response solutions for a forced quasi-linear Airy equation, J. Dyn. Diff. Equat., 33 (2021), 1231–1267. https://doi.org/10.1007/s10884-020-09906-8 doi: 10.1007/s10884-020-09906-8
    [15] M. Coti Zelati, T. M. Elgindi, K. Widmayer, Stationary structures near the Kolmogorov and Poiseuille flows in the 2d Euler equations Arch. Ration. Mech. Anal., 247 (2023), 12. https://doi.org/10.1007/s00205-023-01842-3 doi: 10.1007/s00205-023-01842-3
    [16] N. Crouseilles, E. Faou, Quasi-periodic solutions of the 2D Euler equation, Asymptotic Anal., 81 (2013), 31–34. https://doi.org/10.3233/ASY-2012-1117 doi: 10.3233/ASY-2012-1117
    [17] A. Enciso, D. Peralta-Salas, F. T. de Lizaur, Quasi-periodic solutions to the incompressible Euler equations in dimensions two and higher, J. Differ. Eqations, 354 (2023), 170–182. https://doi.org/10.1016/j.jde.2023.01.013 doi: 10.1016/j.jde.2023.01.013
    [18] R. Feola, F. Giuliani, Quasi-periodic traveling waves on an infinitely deep fluid under gravity, Memoirs of the American Mathematical Society, Vol. 295, 2024. https://doi.org/10.1090/memo/1471
    [19] L. Franzoi, R. Montalto, A KAM approach to the inviscid limit for the 2D Navier-Stokes equations, Ann. Henri Poincaré, 2024. https://doi.org/10.1007/s00023-023-01408-9
    [20] L. Franzoi, N. Masmoudi, R. Montalto, Space quasi-periodic steady Euler flows close to the inviscid Couette flow, arXiv, 2023. https://doi.org/10.48550/arXiv.2303.03302
    [21] A. V. Gravilov, A steady Euler flow with compact support, Geom. Funct. Anal., 29 (2019), 190–197. https://doi.org/10.1007/s00039-019-00476-6 doi: 10.1007/s00039-019-00476-6
    [22] J. Gómes-Serrano, A. D. Ionescu, J. Park, Quasiperiodic solutions of the generalized SQG equation, arXiv, 2023. https://doi.org/10.48550/arXiv.2303.03992
    [23] Z. Hassainia, T. Hmidi, N. Masmoudi, KAM theory for active scalar equations, arXiv, 2021. https://doi.org/10.48550/arXiv.2110.08615
    [24] Z. Hassainia, T. Hmidi, E. Roulley, Invariant KAM tori around annular vortex patches for 2D Euler equations, arXiv, 2023. https://doi.org/10.48550/arXiv.2302.01311
    [25] Z. Hassainia, E. Roulley, Boundary effects on the emergence of quasi-periodic solutions for Euler equations, arXiv, 2023. https://doi.org/10.48550/arXiv.2202.10053
    [26] T. Hmidi, E. Roulley, Time quasi-periodic vortex patches for quasi-geostrophic shallow water equations, arXiv, 2021. https://doi.org/10.48550/arXiv.2110.13751
    [27] Z. Lin, C. Zeng, Inviscid dynamical structures near Couette flow, Arch. Ration. Mech. Anal., 200 (2011), 1075–1097. https://doi.org/10.1007/s00205-010-0384-9 doi: 10.1007/s00205-010-0384-9
    [28] J. E. Massetti, M. Procesi, L. Biasco, Almost periodic invariant tori for the NLS on the circle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 711–758. https://doi.org/10.1016/j.anihpc.2020.09.003 doi: 10.1016/j.anihpc.2020.09.003
    [29] R. Montalto, M. Procesi, Linear Schrödinger equation with an almost periodic potential, SIAM J. Math. Anal., 53 (2021), 386–434. https://doi.org/10.1137/20M1320742 doi: 10.1137/20M1320742
    [30] J. Pöschel, On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergod. Th. Dynam. Syst., 22 (2002), 1537–1549. https://doi.org/10.1017/S0143385702001086 doi: 10.1017/S0143385702001086
    [31] E. Roulley, Periodic and quasi-periodic Euler-$\alpha$ flows close to Rankine vortices, Dyn. Part. Differ. Eq., 20 (2023), 311–366. https://doi.org/10.4310/DPDE.2023.v20.n4.a3 doi: 10.4310/DPDE.2023.v20.n4.a3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(731) PDF downloads(181) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog