Research article Special Issues

Gradient estimates for the solutions of higher order curvature equations with prescribed contact angle

  • Received: 11 January 2023 Revised: 13 May 2023 Accepted: 01 June 2023 Published: 12 June 2023
  • In this paper, we use the maximum principle and moving frame technique to prove the global gradient estimates for the higher-order curvature equations with prescribed contact angle problems.

    Citation: Bin Deng, Xinan Ma. Gradient estimates for the solutions of higher order curvature equations with prescribed contact angle[J]. Mathematics in Engineering, 2023, 5(6): 1-13. doi: 10.3934/mine.2023093

    Related Papers:

  • In this paper, we use the maximum principle and moving frame technique to prove the global gradient estimates for the higher-order curvature equations with prescribed contact angle problems.



    加载中


    [1] E. Bombieri, E. De Giorgi, M. Miranda, Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche, Arch. Rational Mech. Anal., 32 (1969), 255–267. https://doi.org/10.1007/BF00281503 doi: 10.1007/BF00281503
    [2] R. Finn, On equations of minimal surface type, Ann. Math., 60 (1954), 397–416. https://doi.org/10.2307/1969841 doi: 10.2307/1969841
    [3] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Berlin: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0
    [4] Q. Jin, A. B. Li, Y. Y. Li, Estimates and existence results for a fully nonlinear Yamabe problem on manifolds with boundary, Calc. Var., 28 (2007), 509–543. https://doi.org/10.1007/s00526-006-0057-6 doi: 10.1007/s00526-006-0057-6
    [5] N. J. Korevaar, An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation, In: Nonlinear functional analysis and its applications, Part 2, American Mathematical Society, 1986, 81–89.
    [6] N. J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 405–421. https://doi.org/10.1016/S0294-1449(16)30357-2 doi: 10.1016/S0294-1449(16)30357-2
    [7] G. M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, a second look, Commun. Part. Diff. Eq., 45 (2020), 1306–1318. https://doi.org/10.1080/03605302.2020.1774893 doi: 10.1080/03605302.2020.1774893
    [8] G. M. Lieberman, Hölder estimates for first and second derivatives, In: Oblique derivative problems for elliptic equations, Singapore: World Scientific Publishing, 2013,117–170. https://doi.org/10.1142/9789814452335_0004
    [9] G. M. Lieberman, Global and local gradient bounds, In: Second order parabolic differential equations, Singapore: World Scientific Publishing, 1996,259–299. https://doi.org/10.1142/9789812819796_0011
    [10] O. A. Ladyzhenskaya, N. Ural'tseva, Local estimates for gradients of non-uniformly elliptic and parabolic equations, Commun. Pure Appl. Math., 23 (1970), 677–703. https://doi.org/10.1002/cpa.3160230409 doi: 10.1002/cpa.3160230409
    [11] X. Ma, J. Xu, Gradient estimates of mean curvature equations with Neumann boundary value problems, Adv. Math., 290 (2016), 1010–1039. https://doi.org/10.1016/j.aim.2015.10.031 doi: 10.1016/j.aim.2015.10.031
    [12] X. Ma, P. Wang, Boundary gradient estimate of the solution to mean curvature equations with Neumann boundary or prescribed contact angle boundary, (Chinese), Scientia Sinica Mathematica, 48 (2018), 213–226. https://doi.org/10.1360/N012017-00071 doi: 10.1360/N012017-00071
    [13] L. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J., 25 (1976), 821–855.
    [14] J. Spruck, On the existence of a capillary surface with prescribed contact angle, Commun. Pure Appl. Math., 28 (1975), 189–200. https://doi.org/10.1002/cpa.3160280202 doi: 10.1002/cpa.3160280202
    [15] L. Simon, J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19–34. https://doi.org/10.1007/BF00251860 doi: 10.1007/BF00251860
    [16] W. Sheng, N. Trudinger, X. Wang, Prescribed Weingarten curvature equations, In: ANU research publications, Somerville: Int. Press, 2012,359–386.
    [17] N. Trudinger, Gradient estimates and mean curvature, Math. Z., 131 (1973), 165–175. https://doi.org/10.1007/BF01187224 doi: 10.1007/BF01187224
    [18] N. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal., 111 (1990), 153–179. https://doi.org/10.1007/BF00375406 doi: 10.1007/BF00375406
    [19] X. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73–81. https://doi.org/10.1007/PL00004604 doi: 10.1007/PL00004604
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1962) PDF downloads(387) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog