We define rigorously a solution to the fourth-order total variation flow equation in $ \mathbb{R}^n $. If $ n\geq3 $, it can be understood as a gradient flow of the total variation energy in $ D^{-1} $, the dual space of $ D^1_0 $, which is the completion of the space of compactly supported smooth functions in the Dirichlet norm. However, in the low dimensional case $ n\leq2 $, the space $ D^{-1} $ does not contain characteristic functions of sets of positive measure, so we extend the notion of solution to a larger space. We characterize the solution in terms of what is called the Cahn-Hoffman vector field, based on a duality argument. This argument relies on an approximation lemma which itself is interesting. We introduce a notion of calibrability of a set in our fourth-order setting. This notion is related to whether a characteristic function preserves its form throughout the evolution. It turns out that all balls are calibrable. However, unlike in the second-order total variation flow, the outside of a ball is calibrable if and only if $ n\neq2 $. If $ n\neq2 $, all annuli are calibrable, while in the case $ n = 2 $, if an annulus is too thick, it is not calibrable. We compute explicitly the solution emanating from the characteristic function of a ball. We also provide a description of the solution emanating from any piecewise constant, radially symmetric datum in terms of a system of ODEs.
Citation: Yoshikazu Giga, Hirotoshi Kuroda, Michał Łasica. The fourth-order total variation flow in $ \mathbb{R}^n $[J]. Mathematics in Engineering, 2023, 5(6): 1-45. doi: 10.3934/mine.2023091
We define rigorously a solution to the fourth-order total variation flow equation in $ \mathbb{R}^n $. If $ n\geq3 $, it can be understood as a gradient flow of the total variation energy in $ D^{-1} $, the dual space of $ D^1_0 $, which is the completion of the space of compactly supported smooth functions in the Dirichlet norm. However, in the low dimensional case $ n\leq2 $, the space $ D^{-1} $ does not contain characteristic functions of sets of positive measure, so we extend the notion of solution to a larger space. We characterize the solution in terms of what is called the Cahn-Hoffman vector field, based on a duality argument. This argument relies on an approximation lemma which itself is interesting. We introduce a notion of calibrability of a set in our fourth-order setting. This notion is related to whether a characteristic function preserves its form throughout the evolution. It turns out that all balls are calibrable. However, unlike in the second-order total variation flow, the outside of a ball is calibrable if and only if $ n\neq2 $. If $ n\neq2 $, all annuli are calibrable, while in the case $ n = 2 $, if an annulus is too thick, it is not calibrable. We compute explicitly the solution emanating from the characteristic function of a ball. We also provide a description of the solution emanating from any piecewise constant, radially symmetric datum in terms of a system of ODEs.
[1] | F. Alter, V. Caselles, A. Chambolle, A characterization of convex calibrable sets in $\mathbb{R}^N$, Math. Ann., 332 (2005), 329–366. http://doi.org/10.1007/s00208-004-0628-9 doi: 10.1007/s00208-004-0628-9 |
[2] | L. Ambrosio, N. Gigli, G. Savaré, Gradient flows: in metric spaces and in the space of probability measures, 2 Eds., Basel: Birkhäuser, 2008. https://doi.org/10.1007/978-3-7643-8722-8 |
[3] | F. Andreu-Vaillo, V. Caselles, J. M. Mazón, Parabolic quasilinear equations minimizing linear growth functionals, Basel: Birkhäuser, 2004. http://doi.org/10.1007/978-3-0348-7928-6 |
[4] | G. Bellettini, V. Caselles, M. Novaga, The total variation flow in $\mathbb{R}^N$, J. Differ. Equations, 184 (2002), 475–525. http://doi.org/10.1006/jdeq.2001.4150 doi: 10.1006/jdeq.2001.4150 |
[5] | G. Bellettini, M. Novaga, M. Paolini, Characterization of facet breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound., 3 (2001), 415–446. http://doi.org/10.4171/IFB/47 doi: 10.4171/IFB/47 |
[6] | H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, New York: American Elsevier Publishing Co., Inc., 1973. |
[7] | W. C. Carter, A. R. Roosen, J. W. Cahn, J. E. Taylor, Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces, Acta Metallurgica et Materialia, 43 (1995), 4309–4323. http://doi.org/10.1016/0956-7151(95)00134-H doi: 10.1016/0956-7151(95)00134-H |
[8] | C. M. Elliott, S. A. Smitheman, Analysis of the TV regularization and $H^{-1}$ fidelity model for decomposing an image into cartoon plus texture, Commun. Pure Appl. Anal., 6 (2007), 917–936. http://doi.org/10.3934/cpaa.2007.6.917 doi: 10.3934/cpaa.2007.6.917 |
[9] | L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, New York: CRC Press, 2015. https://doi.org/10.1201/b18333 |
[10] | W. Fulton, Algebraic topology. A first course, New York, NY: Springer, 1995. https://doi.org/10.1007/978-1-4612-4180-5 |
[11] | G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, 2 Eds., New York, NY: Springer, 2011. https://doi.org/10.1007/978-0-387-09620-9 |
[12] | M.-H. Giga, Y. Giga, Very singular diffusion equations: second and fourth order problems, Japan J. Indust. Appl. Math., 27 (2010), 323–345. http://doi.org/10.1007/s13160-010-0020-y doi: 10.1007/s13160-010-0020-y |
[13] | M.-H. Giga, Y. Giga, Crystalline surface diffusion flow for graph-like curves, Discrete Cont. Dyn. Syst., 43 (2023), 1436–1468. http://doi.org/10.3934/dcds.2022160 doi: 10.3934/dcds.2022160 |
[14] | Y. Giga, R. V. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations, Discrete Cont. Dyn. Syst., 30 (2011), 509–535. http://doi.org/10.3934/dcds.2011.30.509 doi: 10.3934/dcds.2011.30.509 |
[15] | Y. Giga, H. Kuroda, H. Matsuoka, Fourth-order total variation flow with Dirichlet condition: Characterization of evolution and extinction time estimates, Adv. Math. Sci. Appl., 24 (2014), 499–534. |
[16] | Y. Giga, M. Muszkieta, P. Rybka, A duality based approach to the minimizing total variation flow in the space $H^{-s}$, Japan J. Indust. Appl. Math., 36 (2019), 261–286. http://doi.org/10.1007/s13160-018-00340-4 doi: 10.1007/s13160-018-00340-4 |
[17] | Y. Giga, N. Požár, Motion by crystalline-like mean curvature: a survey, Bull. Math. Sci., 12 (2022), 2230004. http://doi.org/10.1142/S1664360722300043 doi: 10.1142/S1664360722300043 |
[18] | Y. Giga, Y. Ueda, Numerical computations of split Bregman method for fourth order total variation flow, J. Comput. Phys., 405 (2020), 109114. http://doi.org/10.1016/j.jcp.2019.109114 doi: 10.1016/j.jcp.2019.109114 |
[19] | D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, 2 Eds., Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0 |
[20] | Y. Kashima, A subdifferential formulation of fourth order singular diffusion equations, Adv. Math. Sci. Appl., 14 (2004), 49–74. |
[21] | Y. Kashima, Characterization of subdifferentials of a singular convex functional in Sobolev spaces of order minus one, J. Funct. Anal., 262 (2012), 2833–2860. http://doi.org/10.1016/j.jfa.2012.01.005 doi: 10.1016/j.jfa.2012.01.005 |
[22] | R. V. Kohn, Surface relaxation below the roughening temperature: some recent progress and open questions, In: Nonlinear partial differential equations, Berlin, Heidelberg: Springer, 2012,207–221. http://doi.org/10.1007/978-3-642-25361-4_11 |
[23] | R. V. Kohn, H. M. Versieux, Numerical analysis of a steepest-descent PDE model for surface relaxation below the roughening temperature, SIAM J. Numer. Anal., 48 (2010), 1781–1800. http://doi.org/10.1137/090750378 doi: 10.1137/090750378 |
[24] | Y. K$\overline{\rm o}$mura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493–507. http://doi.org/10.2969/jmsj/01940493 doi: 10.2969/jmsj/01940493 |
[25] | M. Łasica, S. Moll, P. B. Mucha, Total variation denoising in $l^1$ anisotropy, SIAM J. Imaging Sci., 10 (2017), 1691–1723. http://doi.org/10.1137/16M1103610 doi: 10.1137/16M1103610 |
[26] | G. P. Leonardi, An overview on the Cheeger problem, In: New trends in shape optimization, Cham: Birkhäuser, 2015,117–139. http://doi.org/10.1007/978-3-319-17563-8_6 |
[27] | I. V. Odisharia, Simulation and analysis of the relaxation of a crystalline surface, Ph.D. thesis, New York University, New York, 2006. |
[28] | S. Osher, A. Solé, L. Vese, Image decomposition and restoration using total variation minimization and the $H^{-1}$ norm, Multiscale Model. Sim., 1 (2003), 349–370. http://doi.org/10.1137/S1540345902416247 doi: 10.1137/S1540345902416247 |
[29] | W. Rudin, Functional analysis, 2 Eds., New York: McGraw-Hill, Inc., 1991. |
[30] | L. Schwartz, Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, Paris, 1966. |
[31] | H. Spohn, Surface dynamics below the roughening transition, J. Phys. I France, 3 (1993), 69–81. http://doi.org/10.1051/jp1:1993117 doi: 10.1051/jp1:1993117 |