Citation: Luigi Ambrosio, Giuseppe Savaré. Duality properties of metric Sobolev spaces and capacity[J]. Mathematics in Engineering, 2021, 3(1): 1-31. doi: 10.3934/mine.2021001
[1] | Ambrosio L, Di Marino S, Savaré G (2015) On the duality between p-modulus and probability measures. J Eur Math Soc 17: 1817-1853. |
[2] | Ambrosio L, Erbar M, Savaré G (2016) Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces. Nonlinear Anal 137: 77-134. |
[3] | Ambrosio L, Ghezzi R (2016) Sobolev and bounded variation functions on metric measure spaces. In: Geometry, analysis and dynamics on sub-Riemannian manifolds. Vol. Ⅱ, Zürich: Eur. Math. Soc., 211-273. |
[4] | Ambrosio L, Gigli N, Savaré G (2008) Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2 Eds., Basel: Birkhäuser Verlag. |
[5] | Ambrosio L, Gigli N, Savaré G (2013) Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev Mat Iberoam 29: 969-996. |
[6] | Ambrosio L, Gigli N, Savaré G (2014) Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent Math 195: 289-391. |
[7] | Ambrosio L, Stra F, Trevisan D (2017) Weak and strong convergence of derivations and stability of flows with respect to MGH convergence. J Funct Anal 272: 1182-1229. |
[8] | Björn A, Björn J (2011) Nonlinear Potential Theory on Metric Spaces, Zürich: European Mathematical Society. |
[9] | Brezis H (2011) Functional Analysis, Sobolev Spaces and Partial Differential Equations, New York: Springer. |
[10] | Cheeger J (1999) Differentiability of Lipschitz functions on metric measure spaces. Geom Funct Anal 9: 428-517. |
[11] | Dellacherie C, Meyer PA (1978) Probabilities and Potential, Amsterdam: North-Holland Publishing Co. |
[12] | Di Marino S (2014) Sobolev and BV spaces on metric measure spaces via derivations and integration by parts. arXiv: 1409.5620. |
[13] | Ekeland I, Temam R (1974) Analyse Convexe et Problèmes Variationnels, Paris: Dunod, GauthierVillars. |
[14] | Engelking R (1989) General Topology, 2 Eds., Berlin: Heldermann Verlag. |
[15] | Fuglede B (1957) Extremal length and functional completion. Acta Math. 98: 171-219. |
[16] | Gagliardo E (1961) A unified structure in various families of function spaces. Compactness and closure theorems, In: Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem: Jerusalem Academic Press, 237-241. |
[17] | Heinonen J, Koskela P, Shanmugalingam N, et al. (2015) Sobolev Spaces on Metric Measure Apaces. An Approach Based on Upper Gradients, Cambridge: Cambridge University Press. |
[18] | Koskela P, MacManus P (1998) Quasiconformal mappings and Sobolev spaces. Studia Math 131: 1-17. |
[19] | Munkres JR (2000) Topology, NJ, Upper Saddle River: Prentice Hall Inc. |
[20] | Rockafellar RT (1966) Characterization of the subdifferentials of convex functions. Pacific J Math 17: 497-510. |
[21] | Savaré G (2019) Sobolev spaces in extended metric-measure spaces. arXiv: 1911.04321. |
[22] | Schwartz L (1973) Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Tata Institute of Fundamental Research, London: Oxford University Press. |
[23] | Shanmugalingam N (2000) Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev Mat Iberoam 16: 243-279. |
[24] | Villani C (2003) Topics in Optimal Transportation, RI, Providence: American Mathematical Society. |