Citation: Giovanni S. Alberti, Yves Capdeboscq, Yannick Privat. On the randomised stability constant for inverse problems[J]. Mathematics in Engineering, 2020, 2(2): 264-286. doi: 10.3934/mine.2020013
[1] | Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access 6: 14410-14430. doi: 10.1109/ACCESS.2018.2807385 |
[2] | Alberti GS, Capdeboscq Y (2018) Lectures on Elliptic Methods for Hybrid Inverse Problems, Paris: Société Mathématique de France. |
[3] | Ammari H (2008) An Introduction to Mathematics of Emerging Biomedical Imaging, Berlin: Springer. |
[4] | Ammari H, Garnier J, Kang H, et al. (2017) Multi-Wave Medical Imaging: Mathematical Modelling & Imaging Reconstruction, World Scientific. |
[5] | Antholzer S, Haltmeier M, Schwab J (2018) Deep learning for photoacoustic tomography from sparse data. Inverse Probl Sci Eng 27: 987-1005. |
[6] | Antun V, Renna F, Poon C, et al. (2019) On instabilities of deep learning in image reconstruction-Does AI come at a cost?. arXiv preprint arXiv:1902.05300. |
[7] | Arridge S, Hauptmann A (2019) Networks for nonlinear diffusion problems in imaging. J Math Imaging Vis DOI: https://xs.scihub.ltd/https://doi.org/10.1007/s10851-019-00901-3. |
[8] | Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Control Optim 30: 1024-1065. doi: 10.1137/0330055 |
[9] | Berg J, Nyström K (2017) Neural network augmented inverse problems for PDEs. arXiv preprint arXiv:1712.09685. |
[10] | Bubba TA, Kutyniok G, Lassas M, et al. (2019) Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed tomography. Inverse Probl 35: 064002. doi: 10.1088/1361-6420/ab10ca |
[11] | Burq N (2010) Random data Cauchy theory for dispersive partial differential equations. In: Proceedings of the International Congress of Mathematicians, New Delhi: Hindustan Book Agency, 3: 1862-1883. |
[12] | Burq N, Tzvetkov N (2008) Random data Cauchy theory for supercritical wave equations II: A global existence result. Invent Math 173: 477-496. doi: 10.1007/s00222-008-0123-0 |
[13] | Burq N, Tzvetkov N (2014) Probabilistic well-posedness for the cubic wave equation. J Eur Math Soc 16: 1-30. doi: 10.4171/JEMS/426 |
[14] | Candès EJ, Romberg J (2007) Sparsity and incoherence in compressive sampling. Inverse Probl 23: 969-985. doi: 10.1088/0266-5611/23/3/008 |
[15] | Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52: 489-509. doi: 10.1109/TIT.2005.862083 |
[16] | Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52: 1289-1306. doi: 10.1109/TIT.2006.871582 |
[17] | Engl HW, Hanke M, Neubauer A (1996) Regularization of Inverse Problems, Dordrecht: Kluwer Academic Publishers Group. |
[18] | Feng J, Sun Q, Li Z, et al. (2018) Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography. J Biomed Opt 24: 051407. |
[19] | Foucart S, Rauhut H (2013) A Mathematical Introduction to Compressive Sensing, New York: Birkhäuser/Springer. |
[20] | Garnier J, Papanicolaou G (2016) Passive Imaging with Ambient Noise, Cambridge: Cambridge University Press. |
[21] | Goodfellow I, Bengio Y, Courville A (2016) Deep Learning, MIT Press. |
[22] | Haltmeier M, Antholzer S, Schwab J (2019) Deep Learning for Image Reconstruction, World Scientific. |
[23] | Hamilton SJ, Hauptmann A (2018) Deep d-bar: Real-time electrical impedance tomography imaging with deep neural networks. IEEE Trans Med Imaging 37: 2367-2377. doi: 10.1109/TMI.2018.2828303 |
[24] | Hasanoğlu AH, Romanov VG (2017) Introduction to Inverse Problems for Differential Equations, Cham: Springer. |
[25] | Hauptmann A, Lucka F, Betcke M, et al. (2018) Model-based learning for accelerated, limitedview 3-d photoacoustic tomography. IEEE Trans Med Imaging 37: 1382-1393. doi: 10.1109/TMI.2018.2820382 |
[26] | Humbert E, Privat Y, Trélat E (2019) Observability properties of the homogeneous wave equation on a closed manifold. Commun Part Diff Eq, 44: 749-772. doi: 10.1080/03605302.2019.1581799 |
[27] | Isakov V (2006) Inverse Problems for Partial Differential Equations, New York: Springer. |
[28] | Jin KH, McCann MT, Froustey E, et al. (2017) Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 26: 4509-4522. doi: 10.1109/TIP.2017.2713099 |
[29] | Kaltenbacher B, Neubauer A, Scherzer O (2008) Iterative Regularization Methods for Nonlinear ill-posed Problems, Berlin: Walter de Gruyter. |
[30] | Kirsch A (2011) An Introduction to the Mathematical Theory of Inverse Problems, New York: Springer. |
[31] | Laurent C, Léautaud M (2019) Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves. J Eur Math Soc 21: 957-1069. |
[32] | Maass P (2019) Deep learning for trivial inverse problems. In: Compressed Sensing and Its Applications, Cham: Springer International Publishing, 195-209. |
[33] | Martin S, Choi CTM (2017) A post-processing method for three-dimensional electrical impedance tomography. Sci Rep 7: 7212. doi: 10.1038/s41598-017-07727-2 |
[34] | Modin K, Nachman A, Rondi L (2019) A multiscale theory for image registration and nonlinear inverse problems. Adv Math 346: 1009-1066. doi: 10.1016/j.aim.2019.02.014 |
[35] | Paley R (1930) On some series of functions. Math Proc Cambridge 26: 458-474. doi: 10.1017/S0305004100016212 |
[36] | Paley R, Zygmund A (1930) On some series of functions, (1). Math Proc Cambridge, 26: 337-357. doi: 10.1017/S0305004100016078 |
[37] | Paley R, Zygmund A (1932) On some series of functions, (3). Math Proc Cambridge, 28: 190-205. doi: 10.1017/S0305004100010860 |
[38] | Privat Y, Trélat E, Zuazua E (2013) Optimal observation of the one-dimensional wave equation. J Fourier Anal Appl 19: 514-544. doi: 10.1007/s00041-013-9267-4 |
[39] | Privat Y, Trélat E, Zuazua E (2015) Optimal shape and location of sensors for parabolic equations with random initial data. Arch Ration Mech An 216: 921-981. doi: 10.1007/s00205-014-0823-0 |
[40] | Privat Y, Trélat E, Zuazua E (2016) Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains. J Eur Math Soc 18: 1043-1111. doi: 10.4171/JEMS/608 |
[41] | Privat Y, Trélat E, Zuazua E (2016) Randomised observation, control and stabilization of waves [Based on the plenary lecture presented at the 86th Annual GAMM Conference, Lecce, Italy, March 24, 2015]. ZAMM Z Angew Math Mech 96: 538-549. doi: 10.1002/zamm.201500181 |
[42] | Privat Y, Trélat E, Zuazua E (2019) Spectral shape optimization for the neumann traces of the dirichlet-laplacian eigenfunctions. Calc Var Partial Dif 58: 64. doi: 10.1007/s00526-019-1522-3 |
[43] | Rellich F (1940) Darstellung der eigenwerte von δu+λu= 0 durch ein randintegral. Math Z 46: 635-636. doi: 10.1007/BF01181459 |
[44] | Otmar Scherzer (2015) Handbook of Mathematical Methods in Imaging. Vol. 1, 2, 3. New York: Springer. |
[45] | Szegedy C, Zaremba W, Sutskever I, et al. (2013) Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199. |
[46] | Tadmor E, Nezzar S, Vese L (2004) A multiscale image representation using hierarchical (BV, L2) decompositions. Multiscale Model Simul 2: 554-579. doi: 10.1137/030600448 |
[47] | Tarantola A (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia: Society for Industrial and Applied Mathematics. |
[48] | Wei Z, Liu D, Chen X (2019) Dominant-current deep learning scheme for electrical impedance tomography. IEEE Trans Biomedical Eng 66: 2546-2555. doi: 10.1109/TBME.2019.2891676 |
[49] | Yang G, Yu S, Dong H, et al. (2018) Dagan: Deep de-aliasing generative adversarial networks for fast compressed sensing mri reconstruction. IEEE Trans Med Imaging 37: 1310-1321. doi: 10.1109/TMI.2017.2785879 |
[50] | Zhu B, Liu JZ, Cauley SF, et al. (2018) Image reconstruction by domain-transform manifold learning. Nature 555: 487-492. doi: 10.1038/nature25988 |