Citation: Jonathan A. D. Wattis. Asymptotic approximations to travelling waves in the diatomic Fermi-Pasta-Ulam lattice[J]. Mathematics in Engineering, 2019, 1(2): 327-342. doi: 10.3934/mine.2019.2.327
[1] | Betti M, Pelinovsky DE (2013) Periodic traveling waves in diatomic granular chains. J Nonlinear Sci 23: 689–730. doi: 10.1007/s00332-013-9165-6 |
[2] | Chirilus-Bruckner M, Chong C, Prill O, et al. (2012) Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations. Discrete Cont Dyn S 5: 879–901. doi: 10.3934/dcdss.2012.5.879 |
[3] | Collins MA (1981) A quasi-continuum approximation for solitons in an atomic chain Chem Phys Lett 77: 342–347. |
[4] | Collins MA, Rice SA (1982) Some properties of large amplitude motion in an anharmonic chain with nearest neighbour interactions. J Chem Phys 77: 2607–2622. doi: 10.1063/1.444135 |
[5] | Collins MA (1985) Solitons in the diatomic chain. Phys Re. A 31: 1754–1762. doi: 10.1103/PhysRevA.31.1754 |
[6] | Faver TE, Wright JD (2015) Exact diatomic Fermi-Pasta-Ulam-Tsingou solitary waves with optical band ripples at infinity. arXiv: 1511.00942 [math.AP]. |
[7] | Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems. Los Alamos report LA-1940, published later in Fermi E., Collected Papers (University of Chicago Press,Chicago), edited by Segre, E., (1965); also in Nonlinear Wave Motion, edited by Newell A. C., Lectures in Applied Mathematics, Vol. 15 (American Mathematical Society, Providence) (1974) p. 143. |
[8] | Friesecke G, Wattis JAD (1994) Existence theorem for solitary waves on lattices. Comm Math Phys 161: 391–418. doi: 10.1007/BF02099784 |
[9] | Gaison J, Moskow S, Wright JD, et al. (2014) Approximation of polyatomic FPU lattices by KdV equations. Multiscale Model Simul 12: 953–995. doi: 10.1137/130941638 |
[10] | Hoffman A, Wright JD (2017) Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio. Physica D 358: 33–59. doi: 10.1016/j.physd.2017.07.004 |
[11] | Huang G (1995) Soliton excitations in one-dimensional diatomic lattices. Phys Rev B 51: 12347– 12360. doi: 10.1103/PhysRevB.51.12347 |
[12] | Kevrekidis PG, Vainchtein A, Serra Garcia M et al. (2013) Interaction of traveling waves with mass-with-mass defects within a Hertzian chain. Phys Rev E 87: 042911. doi: 10.1103/PhysRevE.87.042911 |
[13] | Lustri CJ, Porter MA (2018) Nanoptera in a period-2 Toda chain. SIAM J Appl Dyn Syst 17: 1182–1212. doi: 10.1137/16M108639X |
[14] | Ockendon JR, Howison SD, Lacey AA, et al. (1999) Applied Partial Differential Equations. Oxford: Oxford University Press, 43–44. |
[15] | Pnevmatikos S, Flytzanis N, Remoissenet M (1986) Soliton dynamics of nonlinear diatomic lattices. Phys Rev B 33: 2308–2321. doi: 10.1103/PhysRevB.33.2308 |
[16] | Ponson L, Boechler N, Lai YM, et al. (2010) Nonlinear waves in disordered diatomic granular chains. Phys Rev E 82: 021301. doi: 10.1103/PhysRevE.82.021301 |
[17] | Porubov AV, Andrianov IV (2013) Nonlinear waves in diatomic crystals. Wave Motion 50: 1153– 1160. doi: 10.1016/j.wavemoti.2013.03.009 |
[18] | Qin WX (2015) Wave propagation in diatomic lattices. SIAM J Math Anal 47: 477–497. doi: 10.1137/130949609 |
[19] | Rosenau P (1986) Dynamics of nonlinear mass spring chains near the Continuum limit. Phys Lett A 118: 222–227. doi: 10.1016/0375-9601(86)90170-2 |
[20] | Rosenau P (1987) Dynamics of dense lattices. Phys Rev B 36: 5868–5876. doi: 10.1103/PhysRevB.36.5868 |
[21] | Segur H, Kruskal MD (1987) Nonexistence of small amplitude breather solutions in $\phi^4$ theory. Phys Rev Lett 58: 747–750. doi: 10.1103/PhysRevLett.58.747 |
[22] | Tew RB, Wattis JAD (2001) Quasi-continuum approximations for travelling kinks in diatomic lattices. J Phys A: Math Gen 34: 7163–7180. doi: 10.1088/0305-4470/34/36/304 |
[23] | Vainchtein A, Starosvetsky Y, Wright JD, et al. (2016) Solitary waves in diatomic chains. Phys Rev E 93: 042210. doi: 10.1103/PhysRevE.93.042210 |
[24] | Wattis JAD (1993) Approximations to solitary waves on lattices, II: quasi-continuum approximations for fast and slow waves. J Phys A: Math Gen 26: 1193–1209. doi: 10.1088/0305-4470/26/5/036 |
[25] | Wattis JAD (1996) Approximations to solitary waves on lattices, III: monatomic lattice with second neighbour interactions. J Phys A: Math Gen 29: 8139–8157. doi: 10.1088/0305-4470/29/24/035 |
[26] | Wattis JAD (2001) Solitary waves in a diatomic lattice: Analytic approximations for a wide range of speeds by quasi-continuum methods. Phys Lett A 284: 16–22. doi: 10.1016/S0375-9601(01)00277-8 |
[27] | Wattis JAD, James LM (2014) Discrete breathers in honeycomb Fermi–Pasta–Ulam lattices. J Phys A: Math Theor 47: 345101. doi: 10.1088/1751-8113/47/34/345101 |
[28] | Zabusky NJ, Kruskal MD (1965) Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243. |