Foodborne infections continue to plague Europe. Food safety monitoring is in crisis as the existing techniques for detecting pathogens do not keep up with the global rising of food production and consumption. Thus, the development of innovative techniques for detecting and identifying pathogenic bacteria has become critical. The aim of the present study was firstly to develop an innovative simple and low cost method of extracting bacterial DNA from contaminated food and water samples with Salmonella enteric(a) subsp. enteric(a) serovar Typhimurium and Listeria monocytogenes and its comparison with two commercial DNA extraction kits (Qiagen, Macherey-Nagel). Finally, pathogens' detection using two molecular techniques (PCR-electrophoresis, LAMP), in order to evaluate the best combination of DNA extraction and identification based on their sensitivity, cost, rapidity and simplicity. Considering the above criteria, among them, best was proved an in-house bacterial DNA extraction method, based on the chloroform-isoamyl alcohol protocol, with certain modifications. This technique showed statistically similar results in terms of sensitivity, compared to the commercial kits, while at the same time maintained high rapidity and much lower cost. Lastly, between the molecular techniques, LAMP was found more promising considering its simplicity, high rapidity and sensitivity. Conclusively, the in-house DNA extraction method along with the LAMP technique, was proven to be the best among the presented combinations.
Citation: Spyridon Andreas Papatheodorou, Panagiotis Halvatsiotis, Dimitra Houhoula. A comparison of different DNA extraction methods and molecular techniques for the detection and identification of foodborne pathogens[J]. AIMS Microbiology, 2021, 7(3): 304-319. doi: 10.3934/microbiol.2021019
[1] | Giuseppe Maria Coclite, Lorenzo di Ruvo . A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Networks and Heterogeneous Media, 2016, 11(2): 281-300. doi: 10.3934/nhm.2016.11.281 |
[2] | Hyeontae Jo, Hwijae Son, Hyung Ju Hwang, Eun Heui Kim . Deep neural network approach to forward-inverse problems. Networks and Heterogeneous Media, 2020, 15(2): 247-259. doi: 10.3934/nhm.2020011 |
[3] | Anya Désilles, Hélène Frankowska . Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8(3): 727-744. doi: 10.3934/nhm.2013.8.727 |
[4] | Tong Yan . The numerical solutions for the nonhomogeneous Burgers' equation with the generalized Hopf-Cole transformation. Networks and Heterogeneous Media, 2023, 18(1): 359-379. doi: 10.3934/nhm.2023014 |
[5] | Jinyi Sun, Weining Wang, Dandan Zhao . Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core. Networks and Heterogeneous Media, 2025, 20(1): 35-51. doi: 10.3934/nhm.2025003 |
[6] | Guillermo Reyes, Juan-Luis Vázquez . The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1(2): 337-351. doi: 10.3934/nhm.2006.1.337 |
[7] | Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005 |
[8] | Bendong Lou . Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857 |
[9] | Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016 |
[10] | Elisabeth Logak, Isabelle Passat . An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11(4): 693-719. doi: 10.3934/nhm.2016014 |
Foodborne infections continue to plague Europe. Food safety monitoring is in crisis as the existing techniques for detecting pathogens do not keep up with the global rising of food production and consumption. Thus, the development of innovative techniques for detecting and identifying pathogenic bacteria has become critical. The aim of the present study was firstly to develop an innovative simple and low cost method of extracting bacterial DNA from contaminated food and water samples with Salmonella enteric(a) subsp. enteric(a) serovar Typhimurium and Listeria monocytogenes and its comparison with two commercial DNA extraction kits (Qiagen, Macherey-Nagel). Finally, pathogens' detection using two molecular techniques (PCR-electrophoresis, LAMP), in order to evaluate the best combination of DNA extraction and identification based on their sensitivity, cost, rapidity and simplicity. Considering the above criteria, among them, best was proved an in-house bacterial DNA extraction method, based on the chloroform-isoamyl alcohol protocol, with certain modifications. This technique showed statistically similar results in terms of sensitivity, compared to the commercial kits, while at the same time maintained high rapidity and much lower cost. Lastly, between the molecular techniques, LAMP was found more promising considering its simplicity, high rapidity and sensitivity. Conclusively, the in-house DNA extraction method along with the LAMP technique, was proven to be the best among the presented combinations.
The equation:
{∂tu+∂xf(u)−β2∂2xu+δ∂3xu+κu+γ2|u|u=0,0<t<T,x∈R,u(0,x)=u0(x),x∈R, | (1.1) |
was originally derived in [14,17] with f(u)=au2 focusing on microbubbles coated by viscoelastic shells. These structures are crucial in ultrasound diagnosis using contrast agents, and the dynamics of individual coated bubbles are explored, taking into account nonlinear competition and dissipation factors such as dispersion, thermal effects, and drag force.
The coefficients β2, δ, κ, and γ2 are related to the dissipation, the dispersion, the thermal conduction dissipation, and to the drag force, repsctively.
If κ=γ=0, we obtain the Kudryashov-Sinelshchikov [18] Korteweg-de Vries-Burgers [3,20] equation
∂tu+a∂xu2−β2∂2xu+δ∂3xu=0, | (1.2) |
that models pressure waves in liquids with gas bubbles, taking into account heat transfer and viscosity. The mathematical results on Eq (1.2) are the following:
● analysis of exact solutions in [13],
● existence of the traveling waves in [2],
● well-posedness and asymptotic behavior in [7,11].
If β=0, we derive the Korteweg-de Vries equation:
∂tu+a∂xu2+δ∂3xu=0, | (1.3) |
which describes surface waves of small amplitude and long wavelength in shallow water. Here, u(t,x) represents the wave height above a flat bottom, x corresponds to the distance in the propagation direction, and t denotes the elapsed time. In [4,6,10,12,15,16], the completele integrability of Eq (1.3) and the existence of solitary wave solutions are proved.
Through the manuscript, we will assume
● on the coefficients
β,δ,κ,γ∈R,β,δ,γ≠0; | (1.4) |
● on the flux f, one of the following conditions:
f(u)=au2+bu3, | (1.5) |
f∈C1(R),|f′(u)|≤C0(1+|u|),u∈R, | (1.6) |
for some positive constant C0;
● on the initial value
u0∈H1(R). | (1.7) |
The main result of this paper is the following theorem.
Theorem 1.1. Assume Eqs (1.5)–(1.7). For fixed T>0, there exists a unique distributional solution u of Eq (1.1), such that
u∈L∞(0,T;H1(R))∩L4(0,T;W1,4(R))∩L6(0,T;W1,6(R))∂2xu∈L2((0,T)×R). | (1.8) |
Moreover, if u1 and u2 are solutions to Eq (1.1) corresponding to the initial conditions u1,0 and u2,0, respectively, it holds that:
‖u1(t,⋅)−u2(t,⋅)‖L2(R)≤eC(T)t‖u1,0−u2,0‖L2(R), | (1.9) |
for some suitable C(T)>0, and every, 0≤t≤T.
Observe that Theorem 1.1 gives the well-posedness of (1.1), without conditions on the constants. Moreover, the proof of Theorem 1.1 is based on the Aubin-Lions Lemma [5,21]. The analysis of Eq (1.1) is more delicate than the one of Eq (1.2) due to the presence of the nonlinear sources and the very general assumptions on the coefficients.
The structure of the paper is outlined as follows. Section 2 is dedicated to establishing several a priori estimates for a vanishing viscosity approximation of Eq (1.1). These estimates are crucial for proving our main result, which is presented in Section 3.
To establish existence, we utilize a vanishing viscosity approximation of equation (1.1), as discussed in [19]. Let 0<ε<1 be a small parameter, and denote by uε∈C∞([0,T)×R) the unique classical solution to the following problem [1,9]:
{∂tuε+∂xf(uε)−β2∂2xuε+δ∂3xuε+κu+γ2|u|u=−ε∂4xuε,0<t<T,x∈R,uε(0,x)=uε,0(x),x∈R, | (2.1) |
where uε,0 is a C∞ approximation of u0, such that
‖uε,0‖H1(R)≤‖u0‖H1(R). | (2.2) |
Let us prove some a priori estimates on uε, denoting with C0 constants which depend only on the initial data, and with C(T) the constants which depend also on T.
We begin by proving the following lemma:
Lemma 2.1. Let T>0 be fixed. There exists a constant C(T)>0, which does not depend on ε, such that
‖uε(t,⋅)‖2L2(R)+2γ2e|κ|t∫t0∫Re−|κ|su2ε|uε|dsdx+2β2e|κ|t∫t0e−|κ|s‖∂xuε(s,⋅)‖2L2(R)ds+2εe|κ|t∫t0e−|κ|s‖∂2xuε(s,⋅)‖2L2(R)≤C(T), | (2.3) |
for every 0≤t≤T.
Proof. For 0≤t≤T. Multiplying equations (2.1) by 2uε, and integrating over R yields
ddt‖uε(t,⋅)‖2L2(R)=2∫Ruε∂tuεdx=−2∫Ruεf′(uε)∂xuεdx⏟=0+2β2∫Ruε∂2xuεdx−2δ∫Ruε∂3xuεdx−κ‖uε(t,⋅)‖2L2(R)−2γ2∫R|uε|u2εdx−2ε∫Ruε∂4xuεdx=−2β2‖∂xuε(t,⋅)‖2L2(R)+2δ∫R∂xuε∂2xuεdx−κ‖uε(t,⋅)‖2L2(R)−2γ2∫R|uε|u2εdx+2ε∫R∂xuε∂3xuεdx=−2β2‖∂xuε(t,⋅)‖2L2(R)−κ‖uε(t,⋅)‖2L2(R)−2γ2∫R|uε|u2εdx−2ε‖∂2xuε(t,⋅)‖2L2(R). |
Thus, it follows that
ddt‖uε(t,⋅)‖2L2(R)+2β2‖∂xuε(t,⋅)‖2L2(R)+2γ2∫R|uε|u2εdx+2ε‖∂2xuε(t,⋅)‖2L2(R)=κ‖uε(t,⋅)‖2L2(R)≤|κ|‖uε(t,⋅)‖2L2(R). |
Therefore, applying the Gronwall's lemma and using Eq (2.2), we obtain
‖uε(t,⋅)‖2L2(R)+2β2e|κ|t∫t0e−|κ|s‖∂xuε(s,⋅)‖2L2(R)ds+2γ2e|κ|t∫t0∫Re−|κ|t|uε|u2εdsdx+2ε‖∂2xuε(t,⋅)‖2L2(R)+2εe|κ|t∫t0e−|κ|s‖∂2xuε(s,⋅)‖2L2(R)ds≤C0e|κ|t≤C(T), |
which gives Eq (2.3).
Lemma 2.2. Fix T>0 and assume (1.5). There exists a constant C(T)>0, independent of ε, such that
‖uε‖L∞((0,T)×R)≤C(T), | (2.4) |
‖∂xuε(t,⋅)‖2L2(R)+β2∫t0‖∂2xuε(s,⋅)‖2L2(R)ds | (2.5) |
+2ε∫t0‖∂3xuε(s,⋅)‖2L2(R)ds≤C(T),∫t0‖∂xuε(s,⋅)‖4L4(R)ds≤C(T), | (2.6) |
holds for every 0≤t≤T.
Proof. Let 0≤t≤T. Consider A,B as two real constants, which will be specified later. Thanks to Eq (1.5), multiplying Eq (2.1) by
−2∂2xuε+Au2ε+Bu3ε, |
we have that
(−2∂2xuε+Au2ε+Bu3ε)∂tuε+2a(−2∂2xuε+Au2ε+Bu3ε)uε∂xuε+3b(−2∂2xuε+Au2ε+Bu3ε)u2ε∂xuε−β2(−2∂2xuε+Au2ε+Bu3ε)∂2xuε+δ(−2∂2xuε+Au2ε+Bu3ε)∂3xuε+κ(−2∂2xuε+Au2ε+Bu3ε)uε+γ2(−2∂2xuε+Au2ε+Bu3ε)|uε|uε=−ε(−2∂2xuε+Au2ε+Bu3ε)∂4xuε. | (2.7) |
Observe that
∫R(−2∂2xuε+Au2ε+Bu3ε)∂tuεdx=ddt(‖∂xuε(t,⋅)‖2L2(R)+A3∫Ru3εdx+B4∫Ru4εdx),2a∫R(−2∂2xuε+Au2ε+Bu3ε)uε∂xuεdx=−4a∫Ruε∂xuε∂2xuεdx,3b∫R(−2∂2xuε+Au2ε+Bu3ε)u2ε∂xuεdx=−6b∫Ru2ε∂xuε∂2xuεdx,−β2∫R(−2∂2xuε+Au2ε+Bu3ε)∂2xuεdx=2β2‖∂2xuε(t,⋅)‖2L2(R)+2Aβ2∫Ruε(∂xuε)2dx+3Bβ2∫Ru2ε(∂xuε)2dx,δ∫R(−2∂2xuε+Au2ε+Bu3ε)∂3xuεdx=−2Aδ∫Ruε∂xuε∂2xuεdx−3Bδ∫Ru2ε∂xuε∂2xuεdx,κ∫R(−2∂2xuε+Au2ε+Bu3ε)uεdx=2κ‖∂xuε(t,⋅)‖2L2(R)+Aκ∫Ru3εdx+Bκ∫Ru4εdx,γ2∫R(−2∂2xuε+Au2ε+Bu3ε)|uε|uεdx=−2γ2∫R|uε|uε∂2xuεdx+Aγ2∫R|u|u3εdx+Bγ2∫R|uε|u4dx,−ε∫R(−2∂2xuε+Au2ε+Bu3ε)∂4xuεdx=−2ε‖∂3xuε(t,⋅)‖2L2(R)+2Aε∫Ruε∂xuε∂3xuεdx+3Bε∫Ru2ε∂xuε∂3xuεdx=−2ε‖∂3xuε(t,⋅)‖2L2(R)−Aε∫R(∂xuε)3dx−6Bε∫Ruε(∂xuε)2∂2xuεdx−3Bε‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R)=−2ε‖∂3xuε(t,⋅)‖2L2(R)−Aε∫R(∂xuε)3dx+2Bε∫R(∂xuε)4dx−3Bε‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R). |
Therefore, an integration on R gives
ddt(‖∂xuε(t,⋅)‖2L2(R)+A3∫Ru3εdx+B4∫Ru4εdx)+β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)=−(4a+Aδ)∫Ruε∂xuε∂2xuεdx−3(2b+Bδ)∫Ru2ε∂xuε∂2xuεdx−2Aβ2∫Ruε(∂xuε)2dx−3Bβ2∫Ru2ε(∂xuε)2dx−κ‖∂xuε(t,⋅)‖2L2(R)−Aκ3∫Ru3εdx−Bκ4∫Ru4εdx+2γ2∫R|uε|uε∂2xuεdx−Aγ2∫R|uε|u3εdx−Bγ2∫R|uε|u4εdx−Aε∫R(∂xuε)3dx+2Bε∫R(∂xuε)4dx−3Bε‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R). |
Taking
(A,B)=(−4aδ,−2bδ), |
we get
ddt(‖∂xuε(t,⋅)‖2L2(R)−4a3δ∫Ru3εdx−bδ∫Ru4εdx)+2β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)=8aβ2δ∫Ruε(∂xuε)2dx+6bβ2δ∫Ru2ε(∂xuε)2dx−κ‖∂xuε(t,⋅)‖2L2(R)+4aκ3δ∫Ru3εdx+bκ2∫Ru4εdx+2γ2∫R|uε|uε∂2xuεdx+4aγ2δ∫R|uε|u3εdx+2bγ2δ∫R|uε|u4εdx+4aεδ∫R(∂xuε)3dx−4bεδ∫R(∂xuε)4dx+6bεδ‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R). | (2.8) |
Since 0<ε<1, due to the Young inequality and (2.3),
8aβ2δ∫R|uε|(∂xuε)2dx≤4∫Ru2ε(∂xuε)2dx+4a2β4δ2‖∂xuε(t,⋅)‖2L2(R)≤4‖uε‖2L∞((0,T)×R)‖∂xuε(t,⋅)‖2L2(R)+4a2β4δ2‖∂xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R),|6bβ2δ|∫Ru2ε(∂xuε)2dx≤|6bβ2δ|‖uε‖2L∞((0,T)×R)‖∂xuε(t,⋅)‖2L2(R),|4aκ3δ|∫R|uε|3dx≤|4aκ3δ|‖uε‖L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)‖uε‖L∞((0,T)×R),|bκ2|∫Ru4εdx≤|bκ2|‖uε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)‖uε‖2L∞((0,T)×R),2γ2∫R|uε|uε∂2xuεdx≤2∫R|γ2|uε|uεβ||β∂2xuε|dx≤γ4β2∫Ruε4dx+β2‖∂2xuε(t,⋅)‖2L2(R)≤γ4β2‖uε‖2L∞((0.T)×R)‖uε(t,⋅)‖2L2(R)+β2‖∂2xuε(t,⋅)‖2L2(R)≤C(T)‖uε‖2L∞((0,T)×R)+β2‖∂2xuε(t,⋅)‖2L2(R),|4aγ2δ|∫R|uε||uε|3dx=|4aγ2δ|∫Ru4εdx≤|4aγ2δ|‖uε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)‖uε‖2L∞((0,T)×R),|2bγ2δ|∫R|uε|uε4dx≤|2bγ2δ|‖uε‖3L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)‖uε‖3L∞((0,T)×R),|4aεδ|∫R|∂xuε|3dx≤|4aεδ|‖∂xuε(t,⋅)‖2L2(R)+|4aεδ|∫R(∂xuε)4dx≤|4aδ|‖∂xuε(t,⋅)‖2L2(R)+|4aεδ|∫R(∂xuε)4dx. |
It follows from Eq (2.8) that
ddt(‖∂xuε(t,⋅)‖2L2(R)−4a3δ∫Ru3εdx−bδ∫Ru4εdx)+β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R)+C(T)‖uε‖L∞((0,T)×R)+C(T)‖uε‖2L∞((0,T)×R)+C(T)‖uε‖3L∞((0,T)×R)+C0ε∫R(∂xuε)4dx+C0ε‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R)+C0‖∂xuε(t,⋅)‖2L2(R). | (2.9) |
[8, Lemma 2.3] says that
∫R(∂xuε)4dx≤9∫Ru2ε(∂2xuε)2dx≤9‖uε‖2L∞((0,T)×R)‖∂2xuε(t,⋅)‖2L2(R). | (2.10) |
Moreover, we have that
‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R)=∫Ru2ε(∂2xuε)2dx≤‖uε‖2L∞((0,T)×R)‖∂2xuε(t,⋅)‖2L2(R). | (2.11) |
Consequentially, by Eqs (2.9)–(2.11), we have that
ddt(‖∂xuε(t,⋅)‖2L2(R)−4a3δ∫Ru3εdx−bδ∫Ru4εdx)+β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R)+C(T)‖uε‖L∞((0,T)×R)+C(T)‖uε‖2L∞((0,T)×R)+C(T)‖uε‖3L∞((0,T)×R)+C0ε‖uε‖2L∞((0,T)×R)‖∂2xuε(t,⋅)‖2L2(R)+C0‖∂xuε(t,⋅)‖2L2(R). |
An integration on (0,t) and Eqs (2.2) and (2.3) give
‖∂xuε(t,⋅)‖2L2(R)−4a3δ∫Ru3εdx−bδ∫Ru4εdx+β2∫t0‖∂2xuε(s,⋅)‖2L2(R)ds+2ε∫t0‖∂3xuε(s,⋅)‖2L2(R)ds≤C0(1+‖uε‖2L∞((0,T)×R))∫t0‖∂xuε(s,⋅)‖2L2(R)ds+C(T)‖uε‖L∞((0,T)×R)t+C(T)‖uε‖2L∞((0,T)×R)t+C(T)‖uε‖3L∞((0,T)×R)t+C0ε‖uε‖2L∞((0,T)×R)∫t0‖∂2xuε(s,⋅)‖2L2(R)ds+C0∫t0‖∂xuε(s,⋅)‖2L2(R)ds≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R)). |
Therefore, by Eq (2.3),
‖∂xuε(t,⋅)‖2L2(R)+β2∫t0‖∂2xuε(s,⋅)‖2L2(R)ds+2ε∫t0‖∂3xuε(s,⋅)‖2L2(R)ds≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R))+4a3δ∫Ru3εdx+bδ∫Ru4εdx≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R))+|4a3δ|∫R|uε|3dx+|bδ|∫Ru4εdx≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R))+|4a3δ|‖uε‖L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)+|bδ|‖uε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R)). | (2.12) |
We prove Eq (2.4). Thanks to the Hölder inequality,
u2ε(t,x)=2∫x−∞uε∂xuεdx≤2∫R|uε||∂xuε|dx≤2‖uε(t,⋅)‖L2(R)‖∂xuε(t,⋅)‖L2(R). |
Hence, we have that
‖uε(t,⋅)‖4L∞(R)≤4‖uε(t,⋅)‖2L2(R)‖∂xuε(t,⋅)‖2L2(R). | (2.13) |
Thanks to Eqs (2.3) and (2.12), we have that
‖uε‖4L∞((0,T)×R)≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R)). | (2.14) |
Due to the Young inequality,
C(T)‖uε‖3L∞((0,T)×R)≤12‖uε‖4L∞((0,T)×R)+C(T)‖uε‖2L∞((0,T)×R),C(T)‖uε‖L∞((0,T)×R)≤C(T)‖uε‖2L∞((0,T)×R)+C(T). |
By Eq (2.14), we have that
12‖uε‖4L∞((0,T)×R)−C(T)‖uε‖2L∞((0,T)×R)−C(T)≤0, |
which gives Eq (2.4).
Equation (2.5) follows from Eqs (2.4) and (2.12).
Finally, we prove Eq (2.6). We begin by observing that, from Eqs (2.4) and (2.10), we have
‖∂xuε(t,⋅)‖4L4(R)≤C(T)‖∂2xuε(t,⋅)‖2L2(R). |
An integration on (0,t) and Eqs (2.5) give Eq (2.6).
Lemma 2.3. Fix T>0 and assume (1.6). There exists a constant C(T)>0, independent of ε, such that Eq (2.4) holds. Moreover, we have Eqs (2.5) and (2.6).
Proof. Let 0≤t≤T. Multiplying Eq (2.1) by −2∂2xuε, an integration on R gives
ddt‖∂xuε(t,⋅)‖2L2(R)=−2∫R∂2xuε∂tuεdx=−2∫Rf′(uε)∂xuε∂2xuεdx−2β2‖∂2xuε(t,⋅)‖2L2(R)−2δ∫R∂2xuε∂3xuεdx−2κ∫Ruε∂2xuεdx−2γ2∫R|uε|uε∂2xuεdx+2ε∫R∂2xuε∂4xuεdx=−2∫Rf′(uε)∂xuε∂2xuεdx−2β2‖∂2xuε(t,⋅)‖2L2(R)+2κ‖∂xuε(t,⋅)‖2L2(R)+2γ2∫R|uε|uε∂2xuεdx−2ε‖∂3xuε(t,⋅)‖2L2(R). |
Therefore, we have that
ddt‖∂xuε(t,⋅)‖2L2(R)+2β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)=−2∫Rf′(uε)∂xuε∂2xuεdx+2κ‖∂xuε(t,⋅)‖2L2(R)+2γ2∫R|uε|uε∂2xuεdx. | (2.15) |
Due Eqs (1.6) and (2.3) and the Young inequality,
2∫R|f′(uε)||∂xuε||∂2xuε|dx≤C0∫R|∂xuε∂2xuε|dx+C0∫R|uε∂xuε||∂2xuε|dx=2∫R|C0√3∂xuε2β||β∂2xuε√3|dx+2∫R|C0√3uε∂xuε2β||√3β∂2xuε|dx≤C0‖∂xuε(t,⋅)‖2L2(R)+C0∫Ru2ε(∂xuε)2dx+2β23‖∂2xuε(t,⋅)‖2L2(R)≤C0‖∂xuε(t,⋅)‖2L2(R)+C0‖uε‖2L∞((0,T)×R)‖∂xuε(t,⋅)‖2L2(R)+2β23‖∂2xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R)+2β23‖∂2xuε(t,⋅)‖2L2(R),2γ2∫R|uε|uε∂2xuεdx≤2γ2∫Ru2ε|∂2xuε|dx=2∫R|√3γ2u2εβ||β∂2xuε√3|dx≤3γ4β2∫Ru4εdx+β23‖∂2xuε(t,⋅)‖2L2(R)≤3γ4β2‖uε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)+β23‖∂2xuε(t,⋅)‖2L2(R)≤C(T)‖uε‖2L∞((0,T)×R)+β23‖∂2xuε(t,⋅)‖2L2(R). |
It follows from Eq (2.15) that
ddt‖∂xuε(t,⋅)‖2L2(R)+β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R)+C(T)‖uε‖2L∞((0,T)×R). |
Integrating on (0,t), by Eq (2.3), we have that
‖∂xuε(t,⋅)‖2L2(R)+β2∫t0‖∂2xuε(s,⋅)‖2L2(R)ds+2ε∫t0‖∂3xuε(s,⋅)‖2L2(R)≤C0+C0(1+‖uε‖2L∞((0,T)×R))∫t0‖∂xuε(s,⋅)‖2L2(R)ds+C(T)‖uε‖2L∞((0,T)×R)t≤C(T)(1+‖uε‖2L∞((0,T)×R)). | (2.16) |
Thanks to Eqs (2.3), (2.13), and (2.16), we have that
‖uε‖4L∞((0,T)×R)≤C(T)(1+‖uε‖2L∞((0,T)×R)). |
Therefore,
‖uε‖4L∞((0,T)×R)−C(T)‖uε‖2L∞((0,T)×R)−C(T)≤0, |
which gives (2.4).
Equation (2.5) follows from (2.4) and (2.16), while, arguing as in Lemma 2.2, we have Eq (2.6).
Lemma 2.4. Fix T>0. There exists a constant C(T)>0, independent of ε, such that
∫t0‖∂xuε(s,⋅)‖6L6(R)ds≤C(T), | (2.17) |
for every 0≤t≤T.
Proof. Let 0≤t≤T. We begin by observing that,
∫R(∂xuε)6dx≤‖∂xuε(t,⋅)‖4L∞(R)‖∂xuε(t,⋅)‖2L2(R). | (2.18) |
Thanks to the Hölder inequality,
(∂xuε(t,x))2=2∫x−∞∂xuε∂2xuεdy≤2∫R|∂xuε||∂2xuε|dx≤2‖∂xuε(t,⋅)‖L2(R)‖∂2xuε(t,⋅)‖2L2(R). |
Hence,
‖u(t,⋅)‖4L∞(R)≤4‖∂xuε(t,⋅)‖2L2(R)‖∂2xuε(t,⋅)‖2L2(R). |
It follows from Eq (2.18) that
∫R(∂xuε)6dx≤4‖∂xuε(t,⋅)‖4L2(R)‖∂2xuε(t,⋅)‖2L2(R). |
Therefore, by Eq (2.5),
∫R(∂xuε)6dx≤C(T)‖∂2xuε(t,⋅)‖2L2(R). |
An integration on (0,t) and Eq (2.5) gives (2.17).
This section is devoted to the proof of Theorem 1.1.
We begin by proving the following result.
Lemma 3.1. Fix T>0. Then,
the family {uε}ε>0 is compact in L2loc((0,T)×R). | (3.1) |
Consequently, there exist a subsequence {uεk}k∈N and u∈L2loc((0,T)×R) such that
uεk→u in L2loc((0,T)×R) and a.e. in (0,T)×R. | (3.2) |
Moreover, u is a solution of Eq (1.1), satisfying Eq (1.8).
Proof. We begin by proving Eq (3.1). To prove Eq (3.1), we rely on the Aubin-Lions Lemma (see [5,21]). We recall that
H1loc(R)↪↪L2loc(R)↪H−1loc(R), |
where the first inclusion is compact and the second one is continuous. Owing to the Aubin-Lions Lemma [21], to prove Eq (3.1), it suffices to show that
{uε}ε>0 is uniformly bounded in L2(0,T;H1loc(R)), | (3.3) |
{∂tuε}ε>0 is uniformly bounded in L2(0,T;H−1loc(R)). | (3.4) |
We prove Eq (3.3). Thanks to Lemmas 2.1–2.3,
‖uε(t,⋅)‖2H1(R)=‖uε(t,⋅)‖2L2(R)+‖∂xuε(t,⋅)‖2L2(R)≤C(T). |
Therefore,
{uε}ε>0 is uniformly bounded in L∞(0,T;H1(R)), |
which gives Eq (3.3).
We prove Eq (3.4). Observe that, by Eq (2.1),
∂tuε=−∂x(G(uε))−f′(uε)∂xuε−κuε−γ2|uε|uε, |
where
G(uε)=β2∂xuε−δ∂2xuε−ε∂3xuε. | (3.5) |
Since 0<ε<1, thanks to Eq (2.5), we have that
β2‖∂xuε‖2L2((0,T)×R),δ2‖∂2xuε‖2L2((0,T)×R)≤C(T),ε2‖∂3xuε‖2L2((0,T)×R)≤C(T). | (3.6) |
Therefore, by Eqs (3.5) and (3.6), we have that
{∂x(G(uε))}ε>0 is bounded in L2(0,T;H−1(R)). | (3.7) |
We claim that
∫T0∫R(f′(uε))2(∂xuε)2dtdx≤C(T). | (3.8) |
Thanks to Eqs (2.4) and (2.5),
∫T0∫R(f′(uε))2(∂xuε)2dtdx≤‖f′‖2L∞(−C(T),C(T))∫T0‖∂xuε(t,⋅)‖2L2(R)dt≤C(T). |
Moreover, thanks to Eq (2.3),
|κ|∫T0∫R(uε)2dx≤C(T). | (3.9) |
We have that
γ2∫T0∫R(|uε|uε)2dsdx≤C(T). | (3.10) |
In fact, thanks to Eqs (2.3) and (2.4),
γ2∫T0∫R(|uε|uε)2dsdx≤γ2‖uε‖2L∞((0,T)×R)∫T0∫R(uε)2dsdx≤C(T)∫T0∫R(uε)2dsdx≤C(T). |
Therefore, Eq (3.4) follows from Eqs (3.7)–(3.10).
Thanks to the Aubin-Lions Lemma, Eqs (3.1) and (3.2) hold.
Consequently, arguing as in [5, Theorem 1.1], u is solution of Eq (1.1) and, thanks to Lemmas 2.1–2.3 and Eqs (2.4), (1.8) holds.
Proof of Theorem 1.1. Lemma 3.1 gives the existence of a solution of Eq (1.1).
We prove Eq (1.9). Let u1 and u2 be two solutions of Eq (1.1), which verify Eq (1.8), that is,
{∂tui+∂xf(ui)−β2∂2xui+δ∂3xui+κui+γ2|ui|ui=0,0<t<T,x∈R,ui(0,x)=ui,0(x),x∈R,i=1,2. |
Then, the function
ω(t,x)=u1(t,x)−u2(t,x), | (3.11) |
is the solution of the following Cauchy problem:
{∂tω+∂x(f(u1)−f(u2))−β2∂2xω+δ∂2xω+κω+γ2(|u1|u1−|u2|u2)=0,0<t<T,x∈R,ω(0,x)=u1,0(x)−u2,0(x),x∈R. | (3.12) |
Fixed T>0, since u1,u2∈H1(R), for every 0≤t≤T, we have that
‖u1‖L∞((0,T)×R),‖u2‖L∞((0,T)×R)≤C(T). | (3.13) |
We define
g=f(u1)−f(u2)ω | (3.14) |
and observe that, by Eq (3.13), we have that
|g|≤‖f′‖L∞(−C(T),C(T))≤C(T). | (3.15) |
Moreover, by Eq (3.11) we have that
||u1|−|u2||≤|u1−u2|=|ω|. | (3.16) |
Observe that thanks to Eq (3.11),
|u1|u1−|u2|u2=|u1|u1−|u1|u2+|u1|u2−|u2|u2=|u1|ω+u2(|u1|−|u2|). | (3.17) |
Thanks to Eqs (3.14) and (3.17), Equation (3.12) is equivalent to the following one:
∂tω+∂x(gω)−β2∂2xω+δ∂3xω+κω+γ2|u1|ω+γ2u2(|u1|−|u2|)=0. | (3.18) |
Multiplying Eq (3.18) by 2ω, an integration on R gives
dtdt‖ω(t,⋅)‖2L2(R)=2∫Rω∂tω=−2∫Rω∂x(gω)dx+2β2∫Rω∂2xωdx−2δ∫Rω∂3xωdx−2κ‖ω(t,⋅)‖2L2(R)−2γ2∫R|u1|ω2dx−2γ2∫Ru2(|u1|−|u2|)ωdx=2∫Rgω∂xωdx−2β2‖∂xω(t,⋅)‖2L2(R)+2δ∫R∂xω∂2xωdx−2κ‖ω(t,⋅)‖2L2(R)−2γ2∫R|u1|ω2dx−2γ2∫Ru2(|u1|−|u2|)ωdx=2∫Rgω∂xωdx−2β2‖∂xω(t,⋅)‖2L2(R)−2κ‖ω(t,⋅)‖2L2(R)−2γ2∫R|u1|ω2dx−2γ2∫Ru2(|u1|−|u2|)ωdx. |
Therefore, we have that
‖ω(t,⋅)‖2L2(R)+2β2‖∂xω(t,⋅)‖2L2(R)+2γ2∫R|u1|ω2dx=2∫Rgω∂xωdx−κ‖ω(t,⋅)‖2L2(R)−2γ2∫Ru2(|u1|−|u2|)ωdx. | (3.19) |
Due to Eqs (3.13), (3.15) and (3.16) and the Young inequality,
2∫R|g||ω||∂xω|dx≤2C(T)∫R|ω||∂xω|dx=2∫R|C(T)ωβ||β∂xω|dx≤C(T)‖ω(t,⋅)‖2L2(R)+β2‖∂xω(t,⋅)‖2L2(R),2γ2∫R|u2||(|u1|−|u2|)||ω|dx≤2γ2‖u2‖L∞((0,T)×R)∫R|(|u1|−|u2|)||ω|dx≤C(T)‖ω(t,⋅)‖2L2(R). |
It follows from Eq (3.19) that
‖ω(t,⋅)‖2L2(R)+β2‖∂xω(t,⋅)‖2L2(R)+2γ2∫R|u1|ω2dx≤C(T)‖ω(t,⋅)‖2L2(R). |
The Gronwall Lemma and Eq (3.12) give
‖ω(t,⋅)‖2L2(R)+β2eC(T)t∫t0e−C(T)s‖∂xω(s,⋅)‖2L2(R)ds+2γ2eC(T)t∫t0∫Re−C(T)s|u1|ω2dsdx≤eC(T)t‖ω0‖2L2(R). | (3.20) |
Equation (1.9) follows from Eqs (3.11) and (3.20).
Giuseppe Maria Coclite and Lorenzo Di Ruvo equally contributed to the methodologies, typesetting, and the development of the paper.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Giuseppe Maria Coclite is an editorial boardmember for [Networks and Heterogeneous Media] and was not involved inthe editorial review or the decision to publish this article.
GMC is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). GMC has been partially supported by the Project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 -Call for tender No. 3138 of 16/12/2021 of Italian Ministry of University and Research funded by the European Union -NextGenerationEUoAward Number: CN000023, Concession Decree No. 1033 of 17/06/2022 adopted by the Italian Ministry of University and Research, CUP: D93C22000410001, Centro Nazionale per la Mobilità Sostenibile, the Italian Ministry of Education, University and Research under the Programme Department of Excellence Legge 232/2016 (Grant No. CUP - D93C23000100001), and the Research Project of National Relevance "Evolution problems involving interacting scales" granted by the Italian Ministry of Education, University and Research (MIUR Prin 2022, project code 2022M9BKBC, Grant No. CUP D53D23005880006). GMC expresses its gratitude to the HIAS - Hamburg Institute for Advanced Study for their warm hospitality.
The authors declare there is no conflict of interest.
[1] | WHO The Burden of Foodborne Diseases in the WHO European Region (2017) . |
[2] | Baraketi A, Salmieri S, Lacroix M (2018) Foodborne pathogens detection: persevering worldwide challenge amina. Biosensing Technologies for the Detection of Pathogens-A Prospective Way For Rapid Analysis Croatia: InTech publishing, 53-72. |
[3] |
Sayad A, Ibrahim F, Uddin MS, et al. (2018) A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform. Biosens Bioel 100: 96-104. doi: 10.1016/j.bios.2017.08.060
![]() |
[4] | EFSA and ECDC (2016) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA Journal 14: 4634. |
[5] | Marquis H, Drevets DA, Bronze M S, et al. (2016) Pathogenesis of Listeria monocytogenes in Humans. Human Emerging and Re-emerging Infections: Viral and Parasitic Infections USA: Willey-Blackwell, 749-772. |
[6] |
Radoshevich L, Cossart P (2017) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16: 32-46. doi: 10.1038/nrmicro.2017.126
![]() |
[7] |
Santos RL, Tsolis RM, Adams LG, et al. (2003) Pathogenesis of Salmonella-induced enteritis. Braz J Med Biol Res 36: 3-12. doi: 10.1590/S0100-879X2003000100002
![]() |
[8] |
Zhang S, Kingsley RA, Santos RL, et al. (2003) Molecular pathogenesis of Salmonella enterica serotype typhimurium-induced diarrhea. Inf Immun 71: 1-12. doi: 10.1128/IAI.71.1.1-12.2003
![]() |
[9] |
Rajapaksha P, Elbourne A (2018) A review of methods for the detection of pathogenic microorganisms. Analyst 144: 396-411. doi: 10.1039/C8AN01488D
![]() |
[10] |
Liu Y, Cao Y, Wang T, et al. (2019) Detection of 12 common food-borne bacterial pathogens by TaqMan Real-Time PCR using a single set of reaction conditions. Front Microbiol 10: 1-9. doi: 10.3389/fmicb.2019.00001
![]() |
[11] |
Schirone M, Visciano P, Tofalo R, et al. (2019) Editorial: foodborne pathogens: hygiene and safety. Front Microbiol 10: 1-4. doi: 10.3389/fmicb.2019.01974
![]() |
[12] |
Charlermroj R, Makornwattana M, Phuengwas S, et al. (2019) DNA-based bead array technology for simultaneous identification of eleven foodborne pathogens in chicken meat. Food Cont 101: 81-88. doi: 10.1016/j.foodcont.2019.02.014
![]() |
[13] |
Rodrigues C, Desai N, Fernandes H (2016) Clinical Diagnosis in Resource-Limited Settings. Clinl Microbiol News 38: 51-56. doi: 10.1016/j.clinmicnews.2016.03.004
![]() |
[14] | Klančnik A, Kovač M (2012) PCR in Food Analysis. Polymerase Chain Reaction China: Tech Publishing, 195-220. |
[15] |
Kaneko H, Kawana T, Fukushima E, et al. (2007) Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Meth 70: 499-501. doi: 10.1016/j.jbbm.2006.08.008
![]() |
[16] |
Lee JE, Kang LH, Kim JO, et al. (2019) Rapid detection of carbapenemase-producing Enterobacteriaceae (CPE) using a simple DNA extraction method and Loop-mediated isothermal amplification (LAMP). J Microbiol Meth 167: 105746. doi: 10.1016/j.mimet.2019.105746
![]() |
[17] | Law JW, Mutalib NA, Chan K, et al. (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5: 1-20. |
[18] |
Mateus-Barros E, Meneghine AK, Bagatini IL, et al. (2019) Comparison of two DNA extraction methods widely used in aquatic microbial ecology. J Microbiol Meth 159: 12-17. doi: 10.1016/j.mimet.2019.02.005
![]() |
[19] |
Tanner NA, Zhang Y, Evans TC (2015) Visual detection of isothermal nucleic acidamplification using pH-sensitive dyes. Biotechn 58: 59-68. doi: 10.2144/000114253
![]() |
[20] | Anju P, Latha C, Sunil B, et al. (2014) Detection of Salmonella and Yersinia spp . in uncooked retail chicken meat in Kerala by multiplex PCR. Int J Cur Microbiol Ap Sci 3: 1028-1034. |
[21] |
Khalil ZK (2017) A study of isolation and identification of Campylobacter species, Listeria monocytogenes, E. coli O157:H7 and Salmonella species from raw chicken carcasses and beef meat by multiplex polymer chain reaction in Baghdad city. Inte J Adv Res 5: 900-907. doi: 10.21474/IJAR01/5134
![]() |
[22] |
Srisawat M, Panbangred W (2015) Efficient and specific detection of Salmonella in food samples using a stn-Based Loop-Mediated isothermal amplification method. BioMed Res Int 176: 1-7. doi: 10.1155/2015/356401
![]() |
[23] |
Tang MJ, Zhou S, Zhang XY, et al. (2011) Rapid and sensitive detection of Listeria monocytogenes by Loop-Mediated isothermal amplification. Cur Microbiol 63: 511-516. doi: 10.1007/s00284-011-0013-3
![]() |
[24] |
Psi A, Dovas CI, Banos G (2010) A comparison of six methods for genomic DNA extraction suitable for PCR-based genotyping applications using bovine milk samples. Mol Cel Prob 24: 93-98. doi: 10.1016/j.mcp.2009.11.001
![]() |
[25] |
Khan M, Wang R, Li B, et al. (2018) Comparative Evaluation of the LAMP assay and PCR-Based assays for the rpid dtection of Alternaria solani. Front Microbiol 9: 2089. doi: 10.3389/fmicb.2018.02089
![]() |
[26] |
Wang X, Seo DJ, Lee MH, et al. (2014) Comparison of cnventional PCR, mltiplex PCR, and Loop-Mediated iothermal aplification asays for rpid dtection of Arcobacter secies. J Clin Microbiol 52: 557. doi: 10.1128/JCM.02883-13
![]() |