Citation: Adel Razek. Augmented therapeutic tutoring in diligent image-assisted robotic interventions[J]. AIMS Medical Science, 2024, 11(2): 210-219. doi: 10.3934/medsci.2024016
[1] | World Health Organization, One Health—One Health Technical Advisory Group First meeting 31 Oct-1 Nov 2022, Concept note. World Health Organization, 2023. Available from: https://www.who.int/europe/initiatives/one-health. Accessed March 14, 2024. |
[2] | Centers for Disease Control and Prevention, One Health. Atlanta Centers for Disease Control and Prevention, 2023. Available from: https://www.cdc.gov/onehealth/index.html. Accessed March 14, 2024. |
[3] | Pitt SJ, Gunn A (2024) The one health concept. Br J Biomed Sci 81: 12366. https://doi.org/10.3389/bjbs.2024.12366 |
[4] | Huang S, Lou C, Zhou Y, et al. (2023) MRI-guided robot intervention—current state-of-the-art and new challenges. Med-X 1: 4. https://doi.org/10.1007/s44258-023-00003-1 |
[5] | Faoro G, Maglio S, Pane S, et al. (2023) An artificial intelligence-aided robotic platform for ultrasound-guided transcarotid revascularization. In: Ozyar, E., Onal, C., Hackett, S.L., Editors,. IEEE Robot Autom Lett 8: 2349-2356. https://doi.org/10.1109/LRA.2023.3251844 |
[6] | Morris ED, O'Connell DP, Gao Y, et al. (2023) MR safety considerations for MRI-guided radiotherapy, In: Ozyar, E., Onal, C., Hackett, S.L., Editors,. Advances in Magnetic Resonance Technology and Applications. Cambridge: Academic Press, 8: 81-100. https://doi.org/10.1016/B978-0-323-91689-9.00005-4 |
[7] | Su H, Kwok KW, Cleary K, et al. (2022) State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions. Proc IEEE 110: 968-992. https://doi.org/10.1109/jproc.2022.3169146 |
[8] | Farooq MU, Ko SY (2023) A decade of MRI compatible robots: systematic review. IEEE T Robot 39: 862-884. https://doi.org/10.1109/TRO.2022.3212626 |
[9] | Farooq MU, Ko SY, Seung S, et al. (2023) An MRI-compatible endonasal surgical robotic system: Kinematic analysis and performance evaluation. Mechatronics 94: 103029. https://doi.org/10.1016/j.mechatronics.2023.103029 |
[10] | Manjila S, Rosa B, Price K, et al. (2023) Robotic instruments inside the MRI bore: key concepts and evolving paradigms in imaging-enhanced cranial neurosurgery. World Neurosurg 176: 127-139. https://doi.org/10.1016/j.wneu.2023.01.025 |
[11] | Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41: 2251-2269. https://doi.org/10.1088/0031-9155/41/11/002 |
[12] | Barchanski A, Steiner T, De Gersem H, et al. (2006) Local Grid refinement for low-frequency current computations in 3-D Human anatomy models. IEEE Trans Magn 42: 1371-1374. https://doi.org/10.1109/TMAG.2006.871449 |
[13] | Hasgall P, Di Gennaro F, Baumgartner C, et al. (2022) IT'IS database for thermal and electromagnetic parameters of biological tissues. Available from: https://itis.swiss/virtual-population/tissue-properties/overview/. Accessed November 1, 2023. |
[14] | Makarov SN, Noetscher GM, Yanamadala J, et al. (2017) Virtual human models for electromagnetic studies and their applications. IEEE Rev Biomed Eng 10: 95-121. https://doi.org/10.1109/RBME.2017.2722420 |
[15] | Noetscher GM (2020) The CAD-compatible VHP-male computational phantom, In: Makarov, S.N., Noetscher, G.M., Nummenmaa, A., Editors,. Brain and Human Body Modeling 2020. Cham: Springer, 309-323. https://doi.org/10.1007/978-3-030-45623-8_19 |
[16] | Humphrey JD (2008) Biological Soft Tissues, In: Sharpe, W., Editor,. Springer Handbook of Experimental Solid Mechanics. Boston: Springer. https://doi.org/10.1007/978-0-387-30877-7_7 |
[17] | Kallin S (2019) Deformation of human soft tissues: experimental and numerical aspects. Jönköping University, Licentiate thesis. Available from: https://hj.diva-portal.org/smash/get/diva2:1344790/FULLTEXT01.pdf. Accessed March 17, 2024. |
[18] | Al-Dirini RMA, Reed MP, Hu JW, et al. (2016) Development and validation of a high anatomical fidelity FE model for the buttock and thigh of a seated individual. Ann Biomed Eng 44: 2805-2816. https://doi.org/10.1007/s10439-016-1560-3 |
[19] | Fung YC (1993) Biomechanics: Mechanical Properties of Living Tissues. 2 Eds., New York: Springer. https://doi.org/10.1007/978-1-4757-2257-4 |
[20] | Henninger HB, Reese SP, Anderson AE, et al. (2010) Validation of computational models in biomechanics. Proc Inst Mech Eng H 224: 801-812. https://doi.org/10.1243/09544119JEIM649 |
[21] | Razek A (2024) Matching of an observed event and its virtual model in relation to smart theories, coupled models and supervision of complex procedures—a review. Comptes Rendus Physique 25: 1-16. https://doi.org/10.5802/crphys.184 |
[22] | Monteiro J, Pedro A, Silva AJ (2022) A Gray Code model for the encoding of grid cells in the Entorhinal Cortex. Neural Comput Applic 34: 2287-2306. https://doi.org/10.1007/s00521-021-06482-w |
[23] | Wang F, Tian D (2022) On deep learning-based bias correction and downscaling of multiple climate models simulations. Clim Dyn 59: 3451-3468. https://doi.org/10.1007/s00382-022-06277-2 |
[24] | Pendergraft JG, Carter DR, Tseng S, et al. (2019) Learning from the past to advance the future: the adaptation and resilience of NASA's spaceflight multiteam systems across four eras of spaceflight. Front Psychol 10: 1633. https://doi.org/10.3389/fpsyg.2019.01633 |
[25] | Mittal V, Bhushan B (2020) Accelerated computer vision inference with AI on the edge. 2020 IEEE 9th Int Conference on Communication Systems and Network Technologies (CSNT), Gwalior, India, 2020: 55-60. https://doi.org/10.1109/CSNT48778.2020.9115770 |
[26] | Amanatidis G, Aziz H, Birmpas G, et al. (2023) Fair division of indivisible goods: recent progress and open questions. Artif Intell 322: 103965. https://doi.org/10.1016/j.artint.2023.103965 |
[27] | Harris K, Anagnostides I, Farina G, et al. (2022) Meta-learning in games. arXiv preprint arXiv: 2209.14110 . https://doi.org/10.48550/arXiv.2209.14110 |
[28] | Esposito G, Terlizzi A (2023) Governing wickedness in megaprojects: discursive and institutional perspectives. Policy Soc 42: 131-147. https://doi.org/10.1093/polsoc/puad002 |
[29] | Zonneveld KAF, Harper K, Klügel A, et al. (2024) Climate change, society, and pandemic disease in Roman Italy between 200 BCE and 600 CE. Sci Adv 10: eadk1033. https://doi.org/10.1126/sciadv.adk1033 |
[30] | Harper K (2019) Comment l'empire romain s'est effondré. Le climat, les maladies et la chute de Rome (How the Roman Empire Collapsed. Climate, disease and the fall of Rome). Available from: https://www.editionsladecouverte.fr/comment_l_empire_romain_s_est_effondre-9782348037146 |
[31] | Razek A (2023) Strategies for managing models regarding environmental confidence and complexity involved in intelligent control of energy systems—a review. Adv Environ Energies 2. https://doi.org/10.58396/aee020104 |
[32] | Grieves M, Vickers J (2017) Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems, In: Kahlen, J., Flumerfelt, S., Alves, A., Editors,. Transdisciplinary Perspectives on Complex Systems. Cham: Springer, 85-113. https://doi.org/10.1007/978-3-319-38756-7_4 |
[33] | Tao F, Sui F, Liu A, et al. (2019) Digital twin-driven product design framework. Int J Prod Res 57: 3935-3953. https://doi.org/10.1080/00207543.2018.1443229 |
[34] | He B, Bai KJ (2021) Digital twin-based sustainable intelligent manufacturing: a review. Adv Manuf 9: 1-21. https://doi.org/10.1007/s40436-020-00302-5 |
[35] | Rassõlkin A, Rjabtšikov V, Kuts V, et al. (2022) Interface development for digital twin of an electric motor based on empirical performance model. IEEE Access 10: 15635-15643. https://doi.org/10.1109/ACCESS.2022.3148708 |
[36] | Guo Z, Yan S, Xu X, et al. (2022) Twin-model based on model order reduction for rotating motors. IEEE Trans Magn 58: 1-4. https://doi.org/10.1109/TMAG.2022.3187620 |
[37] | Kudela J, Matousek R (2022) Recent advances and applications of surrogate models for finite element method computations: a review. Soft Comput 26: 13709-13733. https://doi.org/10.1007/s00500-022-07362-8 |
[38] | Sun T, He X, Li Z (2023) Digital twin in healthcare: recent updates and challenges. Digit Health 9: 20552076221149651. https://doi.org/10.1177/20552076221149651 |
[39] | Sun T, He X, Song X, et al. (2022) The digital twin in medicine: a key to the future of healthcare. Front Med 9: 907066. https://doi.org/10.3389/fmed.2022.907066 |
[40] | De Benedictis A, Mazzocca N, Somma A, et al. (2022) Digital twins in healthcare: an architectural proposal and its application in a social distancing case study. IEEE J Biomed Health Inform 27: 5143-5154. https://doi.org/10.1109/JBHI.2022.3205506 |
[41] | Haleem A, Javaid M, Singh RP, et al. (2023) Exploring the revolution in healthcare systems through the applications of digital twin technology. Biomed Technol 4: 28-38. https://doi.org/10.1016/j.bmt.2023.02.001 |
[42] | Ricci A, Croatti A, Montagna S (2022) Pervasive and connected digital twins—a vision for digital health. IEEE Internet Comput 26: 26-32. https://doi.org/10.1109/MIC.2021.3052039 |
[43] | Das C, Mumu AA, Ali MF, et al. (2022) Toward IoRT collaborative digital twin technology enabled future surgical sector: technical innovations, opportunities and challenges. IEEE Access 10: 129079-129104. https://doi.org/10.1109/ACCESS.2022.3227644 |
[44] | Strobel G, Möller F, van der Valk H (2022) Healthcare in the era of digital twins: towards a domain-specific taxonomy. Proceedings of the 30th European Conference on Information Systems, Timişoara, Romania, 2022. Available from: https://www.researchgate.net/publication/360086393_HEALTHCARE_IN_THE_ERA_OF_DIGITAL_TWINS_TOWARDS_A_DOMAIN-SPECIFIC_TAXONOMY. Accessed November 1, 2023. |
[45] | Razek A (2023) Image-guided surgical and pharmacotherapeutic routines as part of diligent medical treatment. Appl Sci 13: 13039. https://doi.org/10.3390/app132413039 |
[46] | Song Y (2023) Human digital twin, the development and impact on design. J Comput Inf Sci Eng 23: 060819. https://doi.org/10.1115/1.4063132 |
[47] | Hagmann K, Hellings-Kuß A, Klodmann J, et al. (2021) A digital twin approach for contextual assistance for surgeons during surgical robotics training. Front Robot AI 8: 735566. https://doi.org/10.3389/frobt.2021.735566 |
[48] | Okegbile SD, Cai J (2022) Edge-assisted human-to-virtual twin connectivity scheme for human digital twin frameworks. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 2022: 1-6. https://doi.org/10.1109/VTC2022-Spring54318.2022.9860619 |
[49] | Moodley D, Seebregts C (2023) Re-imagining health and well-being in low resource African settings using an augmented AI system and a 3D digital twin. arXiv preprint arXiv:2306.01772 . https://doi.org/10.48550/arXiv.2306.01772 |
[50] | Shimron E, Perlman O (2023) AI in MRI: computational frameworks for a faster, optimized, and automated imaging workflow. Bioengineering 10: 492. https://doi.org/10.3390/bioengineering10040492 |
[51] | Kukushkin K, Ryabov Y, Borovkov A (2022) Digital twins: a systematic literature review based on data analysis and topic modeling. Data 7: 173. https://doi.org/10.3390/data7120173 |
[52] | Armeni P, Polat I, De Rossi LM, et al. (2022) Digital twins in healthcare: is it the beginning of a new era of evidence-based medicine? A critical review. J Pers Med 12: 1255. https://doi.org/10.3390/jpm12081255 |
[53] | Sears VA, Morris JM (2022) Establishing a point-of-care virtual planning and 3D printing program. Semin Plast Surg 36: 133-148. https://doi.org/10.1055/s-0042-1754351 |
[54] | Elkefi S, Asan O (2022) Digital twins for managing health care systems: rapid literature review. J Med Internet Res 24: e37641. https://doi.org/10.2196/37641 |
[55] | Björnsson B, Borrebaeck C, Elander N, et al. (2020) Digital twins to personalize medicine. Genome Med 12: 4. https://doi.org/10.1186/s13073-019-0701-3 |
[56] | Cellina M, Cè M, Alì M, et al. (2023) Digital twins: the new frontier for personalized medicine?. Appl Sci 13: 7940. https://doi.org/10.3390/app13137940 |