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Abstract: This paper concerns the aptitudes of medical staff to explore new therapies and training 
exercises for image-assisted robotic diligent interventions. This exploration can be carried out using 
physical, digital, or both copies of patients. Such physical and digital phantoms should approximate 
real living tissues through realistic biological properties. Such a realistic assessment could be achieved 
through strategies to reduce physical and numerical uncertainties. The concept of physical-virtual 
matched pairs is used in image-assisted robotic interventions to enable such reduction. The present 
commentary aimed to analyze and illustrate possibilities for increasing the capabilities of medical 
personnel to explore new therapies and training exercises for image-assisted robotic diligent 
interventions. In this context, the manuscript focused on the use of the physical-virtual digital twin 
(DT) concept to monitor image-assisted robotic interventions, thereby reducing the complexity and 
uncertainties involved in such a procedure. Extensions involve robotic operations assisted by human-
in-the-loop DT, artificial intelligence (AI), and augmented reality (AR). The various topics covered in 
this commentary are supported by a review of the literature. 
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1. Introduction 

Recently, medical interventions have moved from completely intrusive interventions, through the 
medical team’s tactile skills and direct visual observations, to adjusted, image-guided, closed-loop 
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robotic processes. These precise and minimally intrusive procedures primarily involve complex 
surgical procedures and drug delivery, which can be supervised by medical staff. In these two 
intervention categories, local position accuracy is crucial for strictly covering the affected area without 
affecting the surroundings. Thus, patient well-being (comfort and safety) and staff performance 
(accuracy and efficiency) shape a successful medical outcome. This advancement is not only beneficial 
for humans but follows the “One Health” concept regarding humans, animals, and ecosystems [1–3]. 
This concept was established to describe the awareness that human health is convolutedly associated 
with other animals and their environments. This is normally linked to vital threats but also        
to improvements. 

In the image-assisted robotic process mentioned above (replacing human fingers and vision), 
image assistance could be achieved using predetermined digitized images of the relevant body area. A 
more effective and instantly controlled method is to directly use an imaging scanner. This solution, 
even more expensive, avoids doubts and possible interruptions of the procedure. In this case, the 
robotic process is assisted by an instantaneous image. In theory, all types of scanners could be used in 
these image-guided robotic interventions; different categories of scanners are normally used, each 
tailored to a specific target. An important selection factor is the usage interval: For treatments at long 
intervals, it is preferable to avoid scanners reflecting ionizing radiation. Thus, the relatively long 
exposure interval of image-guided interventions suggests the use of non-ionizing scanners, namely 
magnetic resonance imaging (MRI) and ultrasound scanners (see e.g., [4–7]). The first is more complex 
and expensive but works with all tissues of the body and is more precise. Caution is advised when 
using MRI due to its sensitivity to electromagnetic noise. The ultrasound scanner is almost portable 
and adequate for easy daily use but does not work in bones or air cavities. In general, image-assisted 
robotic interventions are minimally invasive and non-ionizing. Different dedicated scanners have been 
built to allow the introduction of different body parts inside the imaging scaffold. In addition, in the 
case of MRI, the robot and medical tools are made from materials not sensitive to electromagnetic 
fields, called MRI-compatible. Several investigations and clinical applications could be found in the 
literature: see e.g., [8–10]. 

The closed-loop, quasi-autonomous image-guided robotic procedure, in addition to having a 
beneficial impact on patient well-being, can enable medical staff to perform useful tasks in the absence 
of the patient. These tasks are primarily related to the exploration of new therapies and treatments as 
well as training exercises and testing. This could be done using “copies” of the patient’s body: a 
physical phantom constructed from materials matching the biological properties of real body tissues. 
Regarding training, exercises performed by medical staff on physical phantoms help to reveal the most 
suitable treatment for the real patient. Another type of body copy is a digital replica matching real 
tissue properties; it would be a digital phantom. These physical and digital phantoms make it possible 
to investigate different scenarios without risk for the patient, but the construction of such physical and 
digital phantoms is not without problems. Physical phantoms have been used in conventional medical 
testing for a while and can be easily found on the market. Much research relating to digital constructs 
can be found in the literature (e.g., [11–15]). 

The purpose of this commentary is to analyze and illustrate the possibilities of increasing the 
capabilities of medical personnel to manage training exercises for image-assisted robotic diligent 
interventions. The contribution will focus on the use of the physical-virtual digital twin concept to 
supervise image-assisted robotic interventions, thus reducing the complexity and uncertainties 
involved in such a procedure. 
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Section 2 illustrates the image-assisted robotic intervention procedure and analyzes the 
characteristics of physical and digital tissue phantoms. The representation of the dynamic behavior of 
tissues will be highlighted via the concept of complexity. Section 3 presents the characters of the 
physical-virtual pairs and their roles in reducing the complexity issue. Section 4 concerns the use of 
the physical-virtual digital twin concept in healthcare, focusing on its use in image-assisted robotic 
interventions and its extension to human-in-the-loop DT. Section 5 concerns the therapeutic tutoring 
of medical staff; disease monitoring and diagnosis, general training, and personalized planning training 
are also analyzed. 

2. Image-assisted robotic interventions 

As mentioned previously, image-assisted robotic interventions enable minimally invasive and 
generally non-ionizing procedures, allowing for high-precision localization. Thus, these interventions 
are mainly used for complex surgical procedures and restricted drug delivery. Figure 1 illustrates an 
example of an autonomous, collaborative, autonomous, image-assisted restricted drug delivery system. 

 

Figure 1. Schematic of autonomous image-assisted robotic intervention of drug-restricted delivery. 

2.1. Physical and digital tissue phantoms 

A fully image-assisted robotic intervention can be performed with a physical phantom. 
Additionally, a digital phantom could be used in a digitally simulated intervention. The main difficulty 
of these two options lies in the representation of the tissues. Accounting for biological assets allows 
the construction of these phantom representations with static behavior. Such a static picture could be 
appropriate for specific living tissues and applications. However, as mentioned earlier, physical and 
digital phantoms should approach real living tissues through realistic biological properties. In general, 
the deformation and movement (mechanical behavior) of living soft tissues, irrigated by the fluids that 
enable their functioning, correspond to a complex dynamic behavior model [16–20]. This complex 
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behavior of living tissues requires real, estimated constitutive laws, adjusted computational methods, 
or both to solve this open research problem. We can only approach this type of model or representation 
in an approximate manner. 

2.2. Complexity 

The notion of complexity is implicated in many natural and artificial phenomena [21] as well as 
societal concerns. Thus, complexity could be found in various areas, e.g., neuroscience [22], global 
climate [23], space shuttles [24], computer image processing [25], fair division economics [26], 
strategic interactions in game theory [27], politics and governments [28], and history sciences [29,30]. 
These composite activities interact in complex ways, exhibiting nonlinear, codependent  
spatiotemporal behaviors. 

3. Physical-virtual matched pairs 

A suitable solution to the complexity of dynamic tissue behavior is the use of physical 
representation and digital replication in a tailored procedure. Such a coupling process is well suited to 
uncertain (approximate) physical and numerical aspects. Matching iterations allow each side of the 
physical-digital pair to correct the other, thereby reducing physical and digital uncertainties [31]. This 
matching twin corresponds to the concept of digital twin (DT) introduced by Grieves in 2001 [32]. 
DTs are used in many applications (e.g., [33–35]) in different fields such as industrial manufacturing 
and production, mobility, aeronautics, space, or health. This strategy makes it possible to supervise 
complex dynamic procedures in real-time, reducing uncertainties and controlling all unforeseen events 
and undesirable and dangerous behaviors. Another particularity of DT is that the virtual model is 
supposed to be precise and very close to the real procedure. For a complex procedure, its model would 
also be complex, therefore with a high calculation time leading to slow and degraded matching. For 
fast matching, we need to reduce the computation time by using strategies to preserve the accuracy of 
key attributes. Thus, reduced order or surrogate models can be used for this purpose; see e.g., [36,37]. 

4. DT and healthcare 

Many applications in the health field use virtual replicas of physical entities, which go further 
than a static image, integrating the dynamic behavior of a real living character [38–44]. 

4.1. Application of image-assisted robotic interventions 

In the present study, the concept of DT could be used to monitor the entire image-assisted robotic 
intervention system [45], including a physical phantom of the concerned part of human tissue; this 
represents the true physical side of the twin. A virtual model involving the digital phantom replica of 
the real side will represent the virtual side of the twin. Between the two sides is a link involving the 
matching and processing of information (Figure 2). 

 



214 

AIMS Medical Science  Volume 11, Issue 2, 210–219. 

 

Figure 2. Summarized illustration of a matched monitoring of an image-assisted robotic 
intervention with its virtual model. Physical and digital tissue phantoms reflect    
dynamic behaviors. 

4.2. Human-in-the-loop DT 

In principle, the concept of DT can be used with real patient tissues, which can enable precise 
supervision of the intervention. In such a case, we can use a modified DT by including a human-in-
the-loop. This corresponds to a human–robot interaction associated with DT, called HDT [46–48], 
which allows a predominantly human manipulation in the procedure, thus minimizing the risks for the 
patient. HDT requires access to numerous health data sources, including genetic and historical records, 
Internet of Things (IoT), and other appropriate providers. Data is processed through advanced analytics 
and artificial intelligence (AI) methods, including deep learning models that can improve the 
intelligence of HDT simulations, enabling predictive models and confirmation of decision-making. 
Indeed, the involvement of AI practices in image-assisted robotic intervention contributes to reducing 
the complexity of information gaining and post-processing in imaging through the practice of 
acceleration approach, with quicker analysis times and simpler image processing [49,50]. AI can also 
be used to perform planned repeated training jobs in image-assisted robotics. 

5. Therapeutic tutoring 

DT has the promise to transform patient care by delivering progressively tailored, data-driven 
medical treatment. Its application is a part of digital medicine and is generally used in personalized 
medical treatments, which can be the observation and diagnosis of diseases, tutoring, or interventions. 
DTs are often associated with AI and augmented reality (AR) tools, as well as virtual reality (VR) and 
chatbots. Increased interaction between the human and the robot increases the system’s performance 



215 

AIMS Medical Science  Volume 11, Issue 2, 210–219. 

through AR-assisted robotic operations. Also, VR training improves the ability to mimic real-world 
exercise scenarios with the skill to correctly quantify performance, while chatbots allow training via 
the intelligent creation of tutoring paths. Tutoring primarily involves planning a personalized case or 
the exploration of new therapies through general training. 

5.1. Disorders monitoring and diagnostics 

DTs allow medical staff to supervise the evolution of disorders and adjust care strategies, choosing 
the most appropriate therapy, thus enabling the development of personalized and early-diagnosis 
procedures and research of new medications or interventions [51,52]. 

5.2. General training 

The elementary DT training of younger staff is related to the creation of virtual anatomy and 
bodily processes models to allow practicing, enhance dexterity, and refine their understanding of the 
human body tissues. DT general staff training includes acting out healthcare scenarios, getting vital 
marks, dispensing drugs, and facing urgent situations. This can be related to patient concerns, e.g., 
cardiac arrests, or environmental conditions, e.g., fires. In addition, DT allows training on the 
functioning and safeguarding of medical tools and infection-handling routines [38,39]. 

5.3. Personalized planning training 

Personal DT patient planning allows medical staff to predict the disruptions that patients may 
experience during procedures. This could be related to tools, drugs, or implementations. Furthermore, 
DT allows staff, in a safe and patient-free situation, to practice procedures, make judgments, and 
understand possible errors of interpretation [45,53–56]. 

6. Conclusions 

This commentary focused on the analysis of image-assisted robotics, complex surgery, and 
restricted drug delivery, which require high-precision positioning for minimally invasive and safe 
procedures. The uncertainty in the representation of the dynamic behavior of living tissues is reduced 
by a matched physical-virtual pair applied to interventional procedures. These developments enable 
effective training of staff on tissue copies in the case of general information as well as planning 
personalized interventions. The various subjects concerned were supported by a review of the literature. 
It should be noted that, although matched pairs could reduce the uncertainty of the tissue dynamics 
model, this model is still difficult to determine and corresponds to an unresolved open challenge. 

Future prospects include improving robotic assistance by the scanner using AR and AI tools, 
achieving complete automation, ensuring patient safety, and utilizing DT in real-time. This allows for 
more precise, minimally intrusive restricted actions with the option of firm human control. One of the 
most challenging prospects involves the real-time virtual representation of tissues (dynamic model) 
within DT, as mentioned before. The main challenge is the nonlinear tissue behavior, which exhibits 
complex responses to deformation and displacement of elastic tissues. 
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