Research article

Investigating the relationship between ultrasound measured optic nerve sheath diameter and preeclampsia

  • Background: Increased intracranial pressure (ICP) is one of the main consequences of preeclampsia, which could be manifested by a change in the optic nerve sheath diameter as a radiologic and clinical sign. However, the effect of preeclampsia on the ultrasound measured optic nerve sheath diameter (ONSD) and its possible applications are rarely investigated. The aim of this study was to determine the relationship between ultrasound measured optic nerve sheath diameter and the risk of preeclampsia. Methods: This case-control study was performed on 38 pregnant women with normal blood pressure and 38 pregnant women with preeclampsia in Alzahra hospital in Rasht during 2018. A checklist was used to record demographic and clinical data. Measurements were made using a high resolution transducer, by placing the focal point and a cursor line at 3 mm behind the globe, perpendicular to the optic nerve axis (measuring the mean of two eyes). Data were analyzed by SPSS software version 21. Results: The mean age of patients with preeclampsia and normal pregnant women were 31.42 ± 6.2 years and 29.76 ± 3.46 years, respectively. Differences in gravidity (P = 0.854) and the history of hypertension (P = 0.946) in both groups were not statistically significant (P < 0.05). The mean optic nerve sheath diameter in women with preeclampsia was significantly higher than pregnant women with normal blood pressure (P = 0.001). The area under the ROC curve for the ONSD was 0.82 and the cut-off point for this index was calculated as 4.55 mm, which at this point, sensitivity and specificity were 78.9% and 73.7%, respectively. Conclusion: There was a relationship between the risk of preeclampsia and ONSD, in the way that the ONSD in preeclampsia patients was higher than that of normal subjects. However, the mean ONSD in two groups of mild and severe preeclampsia were not significantly different.

    Citation: Sima Fallah Arzpeyma, Pooya Bahari Khorram, Maryam Asgharnia, Zahra Mohtasham-Amiri. Investigating the relationship between ultrasound measured optic nerve sheath diameter and preeclampsia[J]. AIMS Medical Science, 2019, 6(3): 250-259. doi: 10.3934/medsci.2019.3.250

    Related Papers:

    [1] Chunyan An, Wei Bai, Donglei Zhang . Meet-in-the-middle differential fault analysis on Midori. Electronic Research Archive, 2023, 31(11): 6820-6832. doi: 10.3934/era.2023344
    [2] Meng Xu, Xiangyang Luo, Jinwei Wang, Hao Wang . Color image steganalysis based on quaternion discrete cosine transform. Electronic Research Archive, 2023, 31(7): 4102-4118. doi: 10.3934/era.2023209
    [3] Xing Zhang, Xiaoyu Jiang, Zhaolin Jiang, Heejung Byun . Algorithms for solving a class of real quasi-symmetric Toeplitz linear systems and its applications. Electronic Research Archive, 2023, 31(4): 1966-1981. doi: 10.3934/era.2023101
    [4] Shuang Yao, Dawei Zhang . A blockchain-based privacy-preserving transaction scheme with public verification and reliable audit. Electronic Research Archive, 2023, 31(2): 729-753. doi: 10.3934/era.2023036
    [5] Han-Cheng Dan, Yongcheng Long, Hui Yao, Songlin Li, Yanhao Liu, Quanfeng Zhou . Investigation on the fractal characteristic of asphalt pavement texture roughness incorporating 3D reconstruction technology. Electronic Research Archive, 2023, 31(4): 2337-2357. doi: 10.3934/era.2023119
    [6] Xiaoyan Xu, Xiaohua Xu, Jin Chen, Shixun Lin . On forbidden subgraphs of main supergraphs of groups. Electronic Research Archive, 2024, 32(8): 4845-4857. doi: 10.3934/era.2024222
    [7] Wenya Shi, Xinpeng Yan, Zhan Huan . Faster free pseudoinverse greedy block Kaczmarz method for image recovery. Electronic Research Archive, 2024, 32(6): 3973-3988. doi: 10.3934/era.2024178
    [8] Sida Lin, Dongyao Yang, Jinlong Yuan, Changzhi Wu, Tao Zhou, An Li, Chuanye Gu, Jun Xie, Kuikui Gao . A new computational method for sparse optimal control of cyber-physical systems with varying delay. Electronic Research Archive, 2024, 32(12): 6553-6577. doi: 10.3934/era.2024306
    [9] Zengyu Cai, Liusen Xu, Jianwei Zhang, Yuan Feng, Liang Zhu, Fangmei Liu . ViT-DualAtt: An efficient pornographic image classification method based on Vision Transformer with dual attention. Electronic Research Archive, 2024, 32(12): 6698-6716. doi: 10.3934/era.2024313
    [10] Xiangquan Liu, Xiaoming Huang . Weakly supervised salient object detection via bounding-box annotation and SAM model. Electronic Research Archive, 2024, 32(3): 1624-1645. doi: 10.3934/era.2024074
  • Background: Increased intracranial pressure (ICP) is one of the main consequences of preeclampsia, which could be manifested by a change in the optic nerve sheath diameter as a radiologic and clinical sign. However, the effect of preeclampsia on the ultrasound measured optic nerve sheath diameter (ONSD) and its possible applications are rarely investigated. The aim of this study was to determine the relationship between ultrasound measured optic nerve sheath diameter and the risk of preeclampsia. Methods: This case-control study was performed on 38 pregnant women with normal blood pressure and 38 pregnant women with preeclampsia in Alzahra hospital in Rasht during 2018. A checklist was used to record demographic and clinical data. Measurements were made using a high resolution transducer, by placing the focal point and a cursor line at 3 mm behind the globe, perpendicular to the optic nerve axis (measuring the mean of two eyes). Data were analyzed by SPSS software version 21. Results: The mean age of patients with preeclampsia and normal pregnant women were 31.42 ± 6.2 years and 29.76 ± 3.46 years, respectively. Differences in gravidity (P = 0.854) and the history of hypertension (P = 0.946) in both groups were not statistically significant (P < 0.05). The mean optic nerve sheath diameter in women with preeclampsia was significantly higher than pregnant women with normal blood pressure (P = 0.001). The area under the ROC curve for the ONSD was 0.82 and the cut-off point for this index was calculated as 4.55 mm, which at this point, sensitivity and specificity were 78.9% and 73.7%, respectively. Conclusion: There was a relationship between the risk of preeclampsia and ONSD, in the way that the ONSD in preeclampsia patients was higher than that of normal subjects. However, the mean ONSD in two groups of mild and severe preeclampsia were not significantly different.


    Over the last few decades, the number of organizations and individuals working on the web has increased remarkably. Because of the widespread availability of data and information in every field, which is accessible to everyone, serious issues such as unauthorized access to confidential information have cropped up. As a result of this massive quantity of work and traffic, the risks of valuable data theft have significantly increased, and preventing these situations is a challenging task. Various researchers in their respective fields have worked to secure data by employing various cryptographic, watermarking, and stenographic schemes. Cryptography is a technique that restricts access to original information to the sender and recipient only [1]. It contains algorithms to block potential unauthorized access. Cryptographic algorithms are mathematical tools that helps in protection of data. The cryptography has two main types, symmetric and asymmetric cryptography. A symmetric cryptography [2] involves the procedures requires sole key to encrypt and decrypt the related content, while the algorithm in asymmetric cryptography contains two different keys for the process of encryption and decryption [3]. The symmetric cipher is further classified into two types: stream cipher and block cipher. The stream cipher modifies the original information bit-by-bit or byte-by-byte while the block cipher does so in blocks involving several bits or bytes simultaneously [4]. Data Encryption Standard (DES), GOST, Advanced Encryption Standard (AES), BLOWFISH, etc., are the well-known block ciphers. The substitution box (S-box) is a pertinent non-linear ingredient in block cipher that plays a very decisive role in encrypting the plaintext [5]. An $ n\times n $ S-box is a Boolean function $ f:{\mathbb{Z}}_{2}^{n}⟶{\mathbb{Z}}_{2}^{n} $ which maps an input of $ n $ bits to an $ n $ bits output. It generates perplexity and responsible for the complex relationship between actual and encrypted contents [6]. Therefore, it is not an overstatement to state that the security level of a block cipher can be determined by analyzing the performance of S-box.

    Considering the importance of the S-box in the security of cryptosystems, designing complex mathematical techniques to construct robust S-boxes has become a goal of cryptographers. The scientists working in this field are primarily interested in improving the performance of block ciphers. For this purpose, thousands of studies have been conducted and published in leading journals in recent years. A novel approach of S-box creation is introduced in [7]. The authors developed their proposed S-box using a chaotic system and fitness function. Javeed et al. [8] developed an effective framework for generating strong S-boxes relying on chaotic maps and symmetric groups. The authors designed an initial S-box with the help of chaotic dynamical system. Then the final proposed S-box is obtained by applying a permutation of $ {S}_{256} $. In [9] a specific type of graphs based the concepts of group theory were employed to develop a new S-box. Multiple performance evaluation metrics validate the resilience of the suggested S-box.

    In [10] Si et al. proposes a method to create a secure S-Box for symmetric cryptography using a 2D enhanced quadratic map, and an algorithm is designed to eliminate vulnerabilities. Experimental results confirm the method's effectiveness. Lambic [11] used usual multiplication and circular shift to generate an innovative discrete-space chaotic map which further employed in the construction of S-box having good security properties. Anees and Ahmed [12] designed a potent S-box by investigating the behavior of van der pol oscillator. Firstly, the author used a numerical technique to obtain the iterative solution of chaotic map. Then the ceiling function is employed to those solution to achieve the task. Liu et al. [13] proposes a strong S-Box construction method using a non-degenerate 3D improved quadratic map. The proposed algorithm satisfies six criteria and eliminates fixed points, reverse fixed points, and short cycles. Results show effectiveness in encrypting color images and verified security. A systematic scheme to evolve a S-box with high non-linearity value is given in [14]. The chaotic map iteration yields a $ 16\times 16 $ matrix on which the genetic technique is applied to obtain the suggested S-box. We recommend to read [15,16,17,18,19,20] for further information on S-box generation methodologies. In [21], a secure image encryption method was introduced. It used a new framework to create chaotic signals with finite computer precision, and includes circular diffusion and local/global scrambling. In [22] the authors introduced a new encryption algorithm for color images using DNA dynamic encoding, self-adapting permutation, and a new 4D hyperchaotic system. Zhou et al. [23] proposes a secure color image cryptosystem using deep learning to train hyper-chaotic signals, which are then applied to increase the system's security. Liu et al. [24] developed a secure color image encryption algorithm using a conservative chaotic system without attractors. They employed techniques such as plane element rearrangement, dynamic selection row-column cross scrambling, and cross-plane diffusion to enhance the encryption's security and mixing. The study [25] proposed a 2D hyperchaotic map to generate S-boxes and combine them to create a secure image encryption algorithm that passed NIST and TestU01 tests and resists common attacks. In [26], a new n-dimensional conservative chaos was designed to address security issues with encryption algorithms based on dissipative chaos. A new image encryption system using true random numbers and chaotic systems has been proposed in [27]. The method is found to be more secure and resistant to classical attacks compared to existing models.

    The study presents a novel method for constructing robust S-boxes for use in block ciphers. The following factors were considered during the creation of the S-box:

    i. The generated S-box must be cryptographically robust and comply with the mandatory information security standards.

    ii. The S-box must exhibit a sufficient level of confusion and complexity, while the method used to construct it remains simple and computationally efficient.

    iii. The S-box should demonstrate good performance when evaluated using modern cryptographic performance assessment parameters.

    iv. The S-box must meet the requirements for suitability in multimedia image encryption, as determined through a thorough evaluation of its cryptographic properties and performance under relevant metrics.

    The following paragraph summarizes the main contributions and proposed scheme of this article.

    By utilizing the action of the modular group on a Galois field of order 1024, $ GF\left({2}^{10}\right) = \left\{{0, \kappa }^{1}, {\kappa }^{2}, {\kappa }^{4}, \dots , {\kappa }^{1023}\right\} $ a coset graph is constructed. The vertices of the coset graph are utilized in a specific manner to generate a random sequence of the elements in $ {GF\left({2}^{10}\right)}^{*} = \left\{{\kappa }^{1}, {\kappa }^{5}, {\kappa }^{9}, \dots , {\kappa }^{1021}\right\} $, which is presented in a $ 16\times 16 $ matrix. Then, a bijective mapping from the group $ {GF\left({2}^{10}\right)}^{*} $ to $ GF\left({2}^{8}\right) $ yields an initial S-box that exhibits reasonable security. A new notion named "matrix transformer" which transforms a matrix into another matrix has been introduced. By applying a specific matrix transformer to the initial S-box, we obtain a proposed S-box with almost optimal features. Furthermore, a series of well-established analyses are carried out to establish the potential effectiveness of the proposed S-boxes for image encryption in the context of multimedia encryption.

    The arrangement of the remaining content of this paper is as follows: The purpose of Section 2 is to discuss the newly developed matrix transformer and modular group-based coset graphs over finite fields. Using the concepts described in Section 2 as a foundation, we propose our S-box design scheme in Section 3. Assessing the algebraic robustness of the constructed S-box is the focus of Section 4. This section also includes a comparison with some recently developed S-boxes. Sections 5–7 are devoted to examining the suitability of constructed S-box for image protection. We reveal the concluding remark in Section 8.

    In this section, we will discuss some fundamental concepts that are required to comprehend the proposed S-box construction scheme.

    The modular group $ \mathcal{M} $ is an infinite non-cyclic group of linear transformations. It is generated by $ x $ and $ y $ such that $ \left(s\right)x = \frac{-1}{s} $ and $ \left(s\right)y = \frac{s-1}{s} $. The finite presentation of $ \mathcal{M} $ is $ ⟨x, y:{x}^{2} = {y}^{3} = 1⟩ $. Let $ p $ be a prime number and $ n\in \mathbb{N} $. Then $ GF\left({p}^{n}\right) $ denote a Galois field of order $ {p}^{n} $, it is well known that $ \mathcal{M} $ cannot act directly on $ GF\left({p}^{n}\right) $ as $ \left(0\right)x = \frac{-1}{0}\notin GF\left({p}^{n}\right) $, so the action of $ \mathcal{M} $ is possible if $ \mathcal{\infty } $ is adjoined with $ GF\left({p}^{n}\right) $, that is $ \mathcal{M} $ acts on $ GF\left({p}^{n}\right)\cup \left\{\infty \right\} $. The graphical interpretation of the action of $ \mathcal{M} $ is described with the help of coset graphs [28,29,30,31]. As $ \left(s\right){y}^{3} = s $, so $ y $ has cycles of length three which are represented by triangles whose vertices are elements of $ GF\left({p}^{n}\right)\cup \left\{\infty \right\} $ are permuted counter-clockwise by $ y $. Moreover, since $ \left(s\right){x}^{2} = s $, therefore an undirected line connecting a pair of vertices of the triangles is drawn to represent $ x $. The heavy dots are used to denote fixed points of $ x $ and $ y $, if they exist. For the better understanding of readers, here we describe the action of $ \mathcal{M} $ on $ GF\left(23\right)\cup \left\{\infty \right\} $ and draw the corresponding coset graph. We apply $ \left(s\right)x = \frac{-1}{s} $ and $ \left(s\right)y = \frac{s-1}{s} $ on each element of $ GF\left(23\right)\cup \left\{\infty \right\} $ and obtain permutation representations of $ x $ and $ y $. For example, $ \left(1\right)x = \frac{-1}{1}\equiv 22 $ and $ \left(22\right)x = \frac{-1}{22}\equiv 1 $ mean a cycle $ \left({\rm{1, 22}}\right) $ of $ x $. Moreover, $ \left(2\right)y = \frac{1}{2}\equiv 12 $, $ \left(12\right)y = \frac{11}{12}\equiv 22 $ and $ \left(22\right)y = \frac{21}{22}\equiv 2 $ give rise to a cycle $ \left({\rm{2, 12, 22}}\right) $ of $ y $. In a similar way, all other cycles of $ x $ and $ y $ can be computed and we have the following permutation representations of $ x $ and $ y $.

    $ x:\left(0, \infty \right)\left({\rm{22, 1}}\right)\left({\rm{11, 2}}\right)\left({\rm{15, 3}}\right)\left({\rm{17, 4}}\right)\left({\rm{9, 5}}\right)\left({\rm{19, 6}}\right)\left({\rm{13, 7}}\right)\left({\rm{20, 8}}\right)\left({\rm{16, 10}}\right)\left({\rm{21, 12}}\right)\left({\rm{18, 14}}\right) ; $
    $ y:\left({\rm{1, 0}}, \infty \right)\left({\rm{2, 12, 22}}\right)\left({\rm{11, 3}}, 16\right)\left({\rm{15, 4}}, 18\right)\left({\rm{17, 5}}, 10\right)\left({\rm{9, 6}}, 20\right)\left({\rm{19, 7}}, 14\right)\left({\rm{13, 8}}, 21\right) . $

    The permutation representation of $ y $ consists of 8 cycles. Consequently, the resulting coset graph has eight triangles. The graphical version of the cycle $ \left({\rm{1, 0}}, \infty \right) $ in $ y $ is a triangle with the vertices $ {\rm{1, 0}} $ and $ \infty $ permuted counter-clockwise by $ y $. In a similar way, we can draw and label all triangles. The permutation representation of $ x $ contains 12 transpositions which correspond to12 undirected lines joining all 24 vertices of 8 triangles. For instance, $ \left(1, 22\right) $ means the vertices 1 and 22 are connected through an undirected line. Similarly, the remaining vertices can be joined with each other through $ x $ and the following coset graph is emerged (See Figure 1).

    Figure 1.  Coset graph of $ \mathcal{M} $ on $ {F}_{23}\cup \left\{\infty \right\} $.

    In the next subsection, we have introduced a new notion namely matrix transformer to generate a strong S-box from an initial S-box.

    Suppose $ M $ is a square matrix of order $ n $. Let us define the position of the elements of $ M $ as follows;

    kth element $ = $ mth element of $ {⌈\frac{k}{n}⌉}^{th} $ row

    where $ m = \left\{n        if n divides mk  mod (n)     otherwise

    \right. $, and $ ⌈\frac{k}{n}⌉ $ means ceiling of $ ⌈\frac{k}{n}⌉ $.

    For example, in a $ 3\times 3 $ matrix, we have 1st element means 1st element of 1st row, 2nd element means 2nd element of 1st row, 3rd element means 3rd element of 1st row, 4th element means 1st element of 2nd row and so on.

    Definition 2.1. A square matrix $ A $ of order $ n $ with entries from $ \left\{{\rm{1, 2}}, 3, \dots , {n}^{2}\right\} $ is called matrix transformer of square matrix $ M $ of order $ n $ if the action of $ A $ on $ M $ evolves a new matrix $ {M}^{\text{'}} $ of order $ n $ in the following way; $ t\in \left\{{\rm{1, 2}}, 3, \dots , {n}^{2}\right\} $ is the ith element of the matrix transformer $ A⟺ $ tth element of $ {M}^{\text{'}} $ is equal to ith element of $ M. $

    Example 2.1. Consider $ M = \left(fdgcaiehb

    \right) $ and $ A = \left(397862415
    \right) $. Then the action of of $ A $ on $ M $ generates $ {M}^{\text{'}} = \left(hifebagcd
    \right) $.

    In this section, we propose our S-box construction method based on the concepts describe in the previous section.

    The proposed S-box generation scheme involves coset graph of the modular group $ \mathcal{M} $ on $ GF\left({2}^{10}\right)\cup \left\{\infty \right\} $. So, in the 1st phase, we have to construct the Galois field $ GF({2}^{10} $). It is well-known that a primitive irreducible polynomial of degree $ 10 $ over $ {\mathbb{Z}}_{2} $ is required to compute all the elements of $ GF({2}^{10} $) [32]. For that purpose, we choose $ p\left(\kappa \right) = {\kappa }^{10}+{\kappa }^{7}+1 $ and obtain $ GF\left({2}^{10}\right) = \left\{0, {\kappa }^{1}, {\kappa }^{2}, {\kappa }^{3}, \dots , {\kappa }^{1023} = 1\right\} $. In Table 1, we present some of the elements of $ GF({2}^{10} $) along with their binary and decimal form.

    Table 1.  Structure of 𝐺𝐹 ($ {2}^{10} $).
    Binary form Decimal 𝐺𝐹 $ \left({2}^{10}\right) $ Binary form Decimal 𝐺𝐹($ {2}^{10} $) Binary form Decimal 𝐺𝐹($ {2}^{10} $) Binary form Decimal 𝐺𝐹($ {2}^{10} $)
    0000000000 0 0 0000000001 1 $ 1 $ 0000000010 2 $ {\kappa }^{1} $ 0000000100 4 $ {\kappa }^{2} $
    0000001000 8 $ {\kappa }^{3} $ 0000010000 16 $ {\kappa }^{4} $ 0000100000 32 $ {\kappa }^{5} $ 0001000000 64 $ {\kappa }^{6} $
    0010000000 128 $ {\kappa }^{7} $ 0100000000 256 $ {\kappa }^{8} $ 1000000000 512 $ {\kappa }^{9} $ 0010000001 129 $ {\kappa }^{10} $
    0100000010 258 $ {\kappa }^{11} $ 1000000100 516 $ {\kappa }^{12} $ 0010001001 137 $ {\kappa }^{13} $ 0100010010 274 $ {\kappa }^{14} $
    1000100100 548 $ {\kappa }^{15} $ 0011001001 201 $ {\kappa }^{16} $ 0110010010 402 $ {\kappa }^{17} $ 1100100100 804 $ {\kappa }^{18} $
    1011001001 713 $ {\kappa }^{19} $ 0100010011 275 $ {\kappa }^{20} $ 1000100110 550 $ {\kappa }^{21} $ 0011001101 205 $ {\kappa }^{22} $
    1010111011 699 $ {\kappa }^{311} $ 0111110111 503 $ {\kappa }^{312} $ 1111101110 1006 $ {\kappa }^{313} $ 1101011101 861 $ {\kappa }^{314} $
    1000111011 571 $ {\kappa }^{315} $ 0011110111 247 $ {\kappa }^{316} $ 0111101110 494 $ {\kappa }^{317} $ 1111011100 988 $ {\kappa }^{318} $
    1100111001 825 $ {\kappa }^{319} $ 1011110011 755 $ {\kappa }^{320} $ 0101100111 359 $ {\kappa }^{321} $ 1011001110 718 $ {\kappa }^{322} $
    0100011101 285 $ {\kappa }^{323} $ 1000111010 570 $ {\kappa }^{324} $ 0011110101 245 $ {\kappa }^{325} $ 0111101010 490 $ {\kappa }^{326} $
    0100110000 304 $ {\kappa }^{1007} $ 1001100000 608 $ {\kappa }^{1008} $ 0001000001 65 $ {\kappa }^{1009} $ 0010000010 130 $ {\kappa }^{1010} $
    0100000100 260 $ {\kappa }^{1011} $ 1000001000 520 $ {\kappa }^{1012} $ 0010010001 145 $ {\kappa }^{1013} $ 0100100010 290 $ {\kappa }^{1014} $
    1001000100 580 $ {\kappa }^{1015} $ 0000001001 9 $ {\kappa }^{1016} $ 0000010010 18 $ {\kappa }^{1017} $ 0000100100 36 $ {\kappa }^{1018} $
    0001001000 72 $ {\kappa }^{1019} $ 0010010000 144 $ {\kappa }^{1020} $ 0100100000 288 $ {\kappa }^{1021} $ 1001000000 576 $ {\kappa }^{1022} $

     | Show Table
    DownLoad: CSV

    To draw the coset graph of $ \mathcal{M} $ on $ GF\left({2}^{10}\right)\cup \mathit{\infty } $, we firstly apply the generators $ \left(s\right)x = \frac{-1}{s} $ and $ \left(s\right)y = \frac{s-1}{s} $ of $ \mathcal{M} $ on all elements of $ GF\left({2}^{10}\right)\cup \mathit{\infty }{\rm{t}}{\rm{o}}{\rm{ }}{\rm{g}}{\rm{e}}{\rm{t}} $ permutation representations of $ x $ and $ y $. For instance, $ \left({\kappa }^{1}\right)x = \frac{-1}{{\kappa }^{1}} = \frac{1}{{\kappa }^{1}} = \frac{{\kappa }^{1023}}{{\kappa }^{1}} = {\kappa }^{1022} $ and $ \left({\kappa }^{1022}\right)x = \frac{-1}{{\kappa }^{1022}} = \frac{1}{{\kappa }^{1022}} = \frac{{\kappa }^{1023}}{{\kappa }^{1022}} = {\kappa }^{1} $ yield a cycle $ \left({\kappa }^{1}, {\kappa }^{126}\right) $ of $ x $. Moreover, $ \left({\kappa }^{1}\right)y = \frac{{\kappa }^{1}-1}{{\kappa }^{1}} = \frac{{\kappa }^{947}}{{\kappa }^{1}} = {\kappa }^{946} $, $ \left({\kappa }^{946}\right)y = \frac{{\kappa }^{946}-1}{{\kappa }^{946}} = \frac{{\kappa }^{1022}}{{\kappa }^{946}} = {\kappa }^{76} $ and $ \left({\kappa }^{76}\right)y = \frac{{\kappa }^{76}-1}{{\kappa }^{76}} = \frac{{\kappa }^{77}}{{\kappa }^{76}} = {\kappa }^{1} $, generate a $ \left({\kappa }^{1}, {\kappa }^{946}, {\kappa }^{76}\right){\rm{o}}{\rm{f}} \ y $.

    Similarly, the remaining cycles of $ x $ and $ y $ can be found and some of them are presented below;

    $ x:\left(0, {\rm{\infty }}\right)\left(1\right)\left({\kappa }^{1}, {\kappa }^{1022}\right)\left({\kappa }^{2}, {\kappa }^{1021}\right)\left({\kappa }^{3}, {\kappa }^{1020}\right)\left({\kappa }^{4}, {\kappa }^{1019}\right)\left({\kappa }^{5}, {\kappa }^{1018}\right)\left({\kappa }^{6}, {\kappa }^{1017}\right)\left({\kappa }^{7}, {\kappa }^{1016}\right)\left({\kappa }^{8}, {\kappa }^{1015}\right) $
    $ \left({\kappa }^{9}, {\kappa }^{1014}\right)\dots \left({\kappa }^{507}, {\kappa }^{516}\right)\left({\kappa }^{508}, {\kappa }^{515}\right)\left({\kappa }^{509}, {\kappa }^{514}\right)\left({\kappa }^{510}, {\kappa }^{513}\right)\left({\kappa }^{511}, {\kappa }^{512}\right) \text{;} $
    $ y:\left({\kappa }^{1}, {\kappa }^{946}, {\kappa }^{76}\right)\left({\kappa }^{2}, {\kappa }^{869}, {\kappa }^{152}\right)\left({\kappa }^{3}, {\kappa }^{1013}, {\kappa }^{7}\right)\left({\kappa }^{4}, {\kappa }^{715}, {\kappa }^{304}\right)\left({\kappa }^{5}, {\kappa }^{510}, {\kappa }^{508}\right)\left({\kappa }^{6}, {\kappa }^{1003}, {\kappa }^{14}\right) $
    $ \left({\kappa }^{8}, {\kappa }^{407}, {\kappa }^{608}\right)\dots \left({\kappa }^{650}, {\kappa }^{713}, {\kappa }^{683}\right)\left({\kappa }^{652}, {\kappa }^{656}, {\kappa }^{738}\right)\left({\kappa }^{654}, {\kappa }^{695}, {\kappa }^{697}\right)\left(0, \infty , 1\right)\left({\kappa }^{341}\right)\left({\kappa }^{682}\right) . $

    Both permutations of $ x $ and $ y $ produced a disconnected coset graph which contains 172 number of patches. It is important to note that out of these 172 patches, 170 are of the same type, denoted by $ {\eta }_{1}, {\eta }_{2}, {\eta }_{3}, \dots , {\eta }_{170} $. The other two patches are denoted by $ {\eta }_{171} $ and $ {\eta }_{172} $. We denote this coset graph by $ D $ and $ D = {\eta }_{1}\cup {\eta }_{2}\cup {\eta }_{3}\cup \dots \cup {\eta }_{170}\cup {\eta }_{171}\cup {\eta }_{172} $ The Figures 24 represent $ {\eta }_{1}, {\eta }_{171} $ and $ {\eta }_{172} $ respectively.

    Figure 2.  A copy of the patches $ {\eta }_{1} $ of constructed graph.
    Figure 3.  The patch $ {\eta }_{171} $ of constructed graph.
    Figure 4.  The patch $ {\eta }_{172} $ of constructed graph.

    Step I: We first construct a square matrix of order 16 using vertices of coset graph in a specific way.

    Consider a patch $ {\eta }_{1} $ containing $ {\kappa }^{1} $ as vertex from the coset graph $ D $. The application of $ xyx{y}^{-1}x $ on $ {\kappa }^{1} $ carries us to $ {\kappa }^{77} $ by following the route $ {\kappa }^{1}\stackrel{x}{\to }{\kappa }^{1022}\stackrel{y}{\to }{\kappa }^{947}\stackrel{x}{\to }{\kappa }^{76}\stackrel{{y}^{-1}}{\to }{\kappa }^{946}\stackrel{x}{\to }{\kappa }^{77} $ (see Figure 2). So, in this way, we generate a sequence $ {\kappa }^{1}, {\kappa }^{1022}, {\kappa }^{947}, {\kappa }^{76}, {\kappa }^{946}, {\kappa }^{77} $ of vertices. Consider a sub-sequence $ \left\{{\kappa }^{i}:i\equiv 1 \ mod \ \left(4\right)\right\} = {\kappa }^{1}, {\kappa }^{77}\} $ of this sequence and place $ {\kappa }^{1} $ and $ {\kappa }^{77} $ at 1st and 2nd position of the first row respectively. Thereafter, we find the vertex from $ D-\left\{{{\rm{ \mathsf{ η} }}}_{1}\right\} $ having the smallest power of $ \kappa $, that is, $ {\kappa }^{2} $. Let us denote the copy from $ D-\left\{{{\rm{ \mathsf{ η} }}}_{1}\right\} $ containing $ {\kappa }^{2} $ by $ {{\rm{ \mathsf{ η} }}}_{2} $. Note that if $ {\kappa }^{2} $ would been exhausted in $ {{\rm{ \mathsf{ η} }}}_{1} $ , then $ {{\rm{ \mathsf{ η} }}}_{2} $ is a copy from $ D-\left\{{\Gamma }_{1}\right\} $ containing $ {\kappa }^{3} $ . Generate a sequence of the vertices of the type $ {\kappa }^{i}:i\equiv 1 \ mod \ \left(4\right) $, present in $ {{\rm{ \mathsf{ η} }}}_{2}, $ in a similar way as done in the case of $ {{\rm{ \mathsf{ η} }}}_{1} $. Write this sequence at the 1st row after $ {\kappa }^{77} $ by maintaining the order of sequence. After that, we chose a copy from $ d-\left\{{{\rm{ \mathsf{ η} }}}_{1}, {{\rm{ \mathsf{ η} }}}_{2}\right\} $ possessing a vertex $ {\kappa }^{m} $, where $ m $ is the least positive integer. In a similar way, continue to select the copies $ {\eta }_{i} $ and write vertices of the type $ {\kappa }^{i} $ such that $ i\equiv 1 \ mod \ \left(4\right) $ in the matrix until all copies $ {{\rm{ \mathsf{ η} }}}_{i} $ are used. So, a square matrix of 256 distinct entries from $ {GF\left({2}^{10}\right)}^{*} = \left\{{\kappa }^{1}, {\kappa }^{5}, {\kappa }^{9}, \dots , {\kappa }^{1021}\right\} $ is generated (see Table 2).

    Table 2.  Outcome of Step I.
    $ {\kappa }^{1} $ $ {\kappa }^{77} $ $ {\kappa }^{1021} $ $ {\kappa }^{869} $ $ {\kappa }^{1013} $ $ {\kappa }^{5} $ $ {\kappa }^{513} $ $ {\kappa }^{1017} $ $ {\kappa }^{1009} $ $ {\kappa }^{9} $ $ {\kappa }^{189} $ $ {\kappa }^{13} $ $ {\kappa }^{301} $ $ {\kappa }^{709} $ $ {\kappa }^{353} $ $ {\kappa }^{193} $
    $ {\kappa }^{209} $ $ {\kappa }^{17} $ $ {\kappa }^{729} $ $ {\kappa }^{1005} $ $ {\kappa }^{393} $ $ {\kappa }^{21} $ $ {\kappa }^{305} $ $ {\kappa }^{1001} $ $ {\kappa }^{645} $ $ {\kappa }^{937} $ $ {\kappa }^{25} $ $ {\kappa }^{385} $ $ {\kappa }^{997} $ $ {\kappa }^{421} $ $ {\kappa }^{817} $ $ {\kappa }^{29} $
    $ {\kappa }^{537} $ $ {\kappa }^{457} $ $ {\kappa }^{993} $ $ {\kappa }^{317} $ $ {\kappa }^{265} $ $ {\kappa }^{637} $ $ {\kappa }^{605} $ $ {\kappa }^{33} $ $ {\kappa }^{989} $ $ {\kappa }^{401} $ $ {\kappa }^{909} $ $ {\kappa }^{149} $ $ {\kappa }^{237} $ $ {\kappa }^{273} $ $ {\kappa }^{37} $ $ {\kappa }^{161} $
    $ {\kappa }^{985} $ $ {\kappa }^{473} $ $ {\kappa }^{545} $ $ {\kappa }^{41} $ $ {\kappa }^{849} $ $ {\kappa }^{981} $ $ {\kappa }^{413} $ $ {\kappa }^{45} $ $ {\kappa }^{977} $ $ {\kappa }^{897} $ $ {\kappa }^{673} $ $ {\kappa }^{397} $ $ {\kappa }^{49} $ $ {\kappa }^{225} $ $ {\kappa }^{749} $ $ {\kappa }^{973} $
    $ {\kappa }^{253} $ $ {\kappa }^{109} $ $ {\kappa }^{965} $ $ {\kappa }^{181} $ $ {\kappa }^{233} $ $ {\kappa }^{53} $ $ {\kappa }^{481} $ $ {\kappa }^{969} $ $ {\kappa }^{665} $ $ {\kappa }^{213} $ $ {\kappa }^{865} $ $ {\kappa }^{57} $ $ {\kappa }^{437} $ $ {\kappa }^{529} $ $ {\kappa }^{345} $ $ {\kappa }^{737} $
    $ {\kappa }^{449} $ $ {\kappa }^{389} $ $ {\kappa }^{61} $ $ {\kappa }^{917} $ $ {\kappa }^{961} $ $ {\kappa }^{493} $ $ {\kappa }^{65} $ $ {\kappa }^{621} $ $ {\kappa }^{957} $ $ {\kappa }^{297} $ $ {\kappa }^{945} $ $ {\kappa }^{145} $ $ {\kappa }^{153} $ $ {\kappa }^{221} $ $ {\kappa }^{69} $ $ {\kappa }^{953} $
    $ {\kappa }^{725} $ $ {\kappa }^{261} $ $ {\kappa }^{549} $ $ {\kappa }^{477} $ $ {\kappa }^{73} $ $ {\kappa }^{949} $ $ {\kappa }^{701} $ $ {\kappa }^{405} $ $ {\kappa }^{81} $ $ {\kappa }^{177} $ $ {\kappa }^{765} $ $ {\kappa }^{941} $ $ {\kappa }^{593} $ $ {\kappa }^{785} $ $ {\kappa }^{321} $ $ {\kappa }^{113} $
    $ {\kappa }^{197} $ $ {\kappa }^{85} $ $ {\kappa }^{349} $ $ {\kappa }^{589} $ $ {\kappa }^{489} $ $ {\kappa }^{577} $ $ {\kappa }^{89} $ $ {\kappa }^{893} $ $ {\kappa }^{933} $ $ {\kappa }^{761} $ $ {\kappa }^{93} $ $ {\kappa }^{657} $ $ {\kappa }^{929} $ $ {\kappa }^{229} $ $ {\kappa }^{721} $ $ {\kappa }^{97} $
    $ {\kappa }^{925} $ $ {\kappa }^{573} $ $ {\kappa }^{165} $ $ {\kappa }^{417} $ $ {\kappa }^{517} $ $ {\kappa }^{101} $ $ {\kappa }^{789} $ $ {\kappa }^{133} $ $ {\kappa }^{921} $ $ {\kappa }^{805} $ $ {\kappa }^{601} $ $ {\kappa }^{525} $ $ {\kappa }^{661} $ $ {\kappa }^{557} $ $ {\kappa }^{105} $ $ {\kappa }^{837} $
    $ {\kappa }^{269} $ $ {\kappa }^{913} $ $ {\kappa }^{597} $ $ {\kappa }^{169} $ $ {\kappa }^{705} $ $ {\kappa }^{117} $ $ {\kappa }^{461} $ $ {\kappa }^{445} $ $ {\kappa }^{905} $ $ {\kappa }^{333} $ $ {\kappa }^{553} $ $ {\kappa }^{125} $ $ {\kappa }^{245} $ $ {\kappa }^{121} $ $ {\kappa }^{357} $ $ {\kappa }^{901} $
    $ {\kappa }^{689} $ $ {\kappa }^{257} $ $ {\kappa }^{521} $ $ {\kappa }^{649} $ $ {\kappa }^{129} $ $ {\kappa }^{561} $ $ {\kappa }^{429} $ $ {\kappa }^{889} $ $ {\kappa }^{733} $ $ {\kappa }^{329} $ $ {\kappa }^{829} $ $ {\kappa }^{717} $ $ {\kappa }^{581} $ $ {\kappa }^{137} $ $ {\kappa }^{885} $ $ {\kappa }^{873} $
    $ {\kappa }^{141} $ $ {\kappa }^{881} $ $ {\kappa }^{501} $ $ {\kappa }^{541} $ $ {\kappa }^{877} $ $ {\kappa }^{777} $ $ {\kappa }^{853} $ $ {\kappa }^{325} $ $ {\kappa }^{157} $ $ {\kappa }^{361} $ $ {\kappa }^{505} $ $ {\kappa }^{569} $ $ {\kappa }^{613} $ $ {\kappa }^{861} $ $ {\kappa }^{669} $ $ {\kappa }^{857} $
    $ {\kappa }^{381} $ $ {\kappa }^{797} $ $ {\kappa }^{629} $ $ {\kappa }^{173} $ $ {\kappa }^{313} $ $ {\kappa }^{845} $ $ {\kappa }^{585} $ $ {\kappa }^{841} $ $ {\kappa }^{425} $ $ {\kappa }^{465} $ $ {\kappa }^{741} $ $ {\kappa }^{185} $ $ {\kappa }^{377} $ $ {\kappa }^{565} $ $ {\kappa }^{833} $ $ {\kappa }^{609} $
    $ {\kappa }^{825} $ $ {\kappa }^{693} $ $ {\kappa }^{201} $ $ {\kappa }^{745} $ $ {\kappa }^{821} $ $ {\kappa }^{757} $ $ {\kappa }^{205} $ $ {\kappa }^{813} $ $ {\kappa }^{441} $ $ {\kappa }^{249} $ $ {\kappa }^{809} $ $ {\kappa }^{485} $ $ {\kappa }^{409} $ $ {\kappa }^{625} $ $ {\kappa }^{217} $ $ {\kappa }^{337} $
    $ {\kappa }^{469} $ $ {\kappa }^{801} $ $ {\kappa }^{685} $ $ {\kappa }^{793} $ $ {\kappa }^{617} $ $ {\kappa }^{773} $ $ {\kappa }^{533} $ $ {\kappa }^{241} $ $ {\kappa }^{681} $ $ {\kappa }^{781} $ $ {\kappa }^{309} $ $ {\kappa }^{497} $ $ {\kappa }^{293} $ $ {\kappa }^{769} $ $ {\kappa }^{509} $ $ {\kappa }^{433} $
    $ {\kappa }^{633} $ $ {\kappa }^{653} $ $ {\kappa }^{753} $ $ {\kappa }^{365} $ $ {\kappa }^{277} $ $ {\kappa }^{281} $ $ {\kappa }^{453} $ $ {\kappa }^{289} $ $ {\kappa }^{285} $ $ {\kappa }^{677} $ $ {\kappa }^{641} $ $ {\kappa }^{713} $ $ {\kappa }^{373} $ $ {\kappa }^{697} $ $ {\kappa }^{369} $ $ {\kappa }^{381} $

     | Show Table
    DownLoad: CSV

    We can generate 3 more tables simply by replacing the type of vertices in step I, from $ {\kappa }^{i}:i\equiv 1 \ mod \ \left(4\right) $ to $ {\kappa }^{i}:i\equiv 0 \ mod \ \left(4\right) $, $ {\kappa }^{i}:i\equiv 2 \ mod \ \left(4\right) $ and $ {\kappa }^{i}:i\equiv 3 \ mod \ \left(4\right) $ .

    Step II: The outcome of Step I yields a $ 16\times 16 $ matrix of distinct element from $ {GF\left({2}^{10}\right)}^{*} = \left\{{\kappa }^{1}, {\kappa }^{5}, {\kappa }^{9}, \dots , {\kappa }^{1021}\right\} $. To bring all the element in the range of 0 to 255, we define a mapping $ f:{GF\left({2}^{10}\right)}^{*}⟶GF\left({2}^{8}\right) $ by $ f\left({\kappa }^{n}\right) = {\beta }^{\frac{n-1}{4}} $. Note the Galois $ GF\left({2}^{8}\right) $ is generated by primitive irreducible polynomial $ {\beta }^{8}+{\beta }^{6}+{\beta }^{5}+{\beta }^{3}+1 $. Table 3 shows some of the elements of $ GF({2}^{8} $) and their binary and decimal form.

    Table 3.  Structure of 𝐺𝐹 ($ {2}^{8} $).
    Binary form Decimal 𝐺𝐹 ($ {2}^{8} $) Binary form Decimal 𝐺𝐹 ($ {2}^{8} $) Binary form Decimal 𝐺𝐹 ($ {2}^{8} $) Binary form Decimal 𝐺𝐹 ($ {2}^{8} $)
    00000000 0 0 00000001 1 $ 1 $ 00000010 2 $ {\beta }^{1} $ 00000100 4 $ {\beta }^{2} $
    00001000 8 $ {\beta }^{3} $ 00010000 16 $ {\beta }^{4} $ 00100000 32 $ {\beta }^{5} $ 01000000 64 $ {\beta }^{6} $
    10000000 128 $ {\beta }^{7} $ 01101001 105 $ {\beta }^{8} $ 11010010 210 $ {\beta }^{9} $ 11001101 205 $ {\beta }^{10} $
    11110011 243 $ {\beta }^{11} $ 10001111 143 $ {\beta }^{12} $ 01110111 119 $ {\beta }^{13} $ 11101110 238 $ {\beta }^{14} $
    10101100 172 $ {\beta }^{163} $ 00110001 49 $ {\beta }^{164} $ 01100010 98 $ {\beta }^{165} $ 11000100 196 $ {\beta }^{166} $
    11100001 225 $ {\beta }^{167} $ 10101011 171 $ {\beta }^{168} $ 00111111 63 $ {\beta }^{169} $ 01111110 126 $ {\beta }^{170} $
    11111100 252 $ {\beta }^{171} $ 10010001 145 $ {\beta }^{172} $ 01001011 75 $ {\beta }^{173} $ 10010110 150 $ {\beta }^{174} $
    11010111 215 $ {\beta }^{243} $ 11000111 199 $ {\beta }^{244} $ 11100111 231 $ {\beta }^{245} $ 10100111 167 $ {\beta }^{246} $
    00100111 39 $ {\beta }^{247} $ 01001110 78 $ {\beta }^{248} $ 10011100 156 $ {\beta }^{249} $ 01010001 81 $ {\beta }^{250} $
    10100010 162 $ {\beta }^{251} $ 00101101 45 $ {\beta }^{252} $ 01011010 90 $ {\beta }^{253} $ 10110100 180 $ {\beta }^{254} $

     | Show Table
    DownLoad: CSV

    In this manner, we have designed our initial S-box (See Table 4). We have examined its cryptographic strength via some well-known performance evaluation criteria and found that it provides adequate security for transmitting sensitive information. To increase its security even further, let us proceed to step III.

    Table 4.  Initial S-box.
    24 41 1 180 2 140 113 52 32 4 190 42 125 102 90 60
    8 128 205 45 253 16 250 86 162 109 17 115 244 81 217 64
    238 48 101 57 156 59 148 78 35 105 122 98 100 39 210 182
    104 167 50 239 46 231 38 13 243 221 213 97 72 132 199 143
    248 164 83 215 119 55 214 223 219 181 177 200 3 135 224 235
    111 216 6 54 80 99 108 241 12 73 30 94 27 76 149 185
    96 232 87 129 192 195 67 116 240 166 233 188 254 23 69 58
    7 187 133 51 203 63 212 29 68 31 153 186 62 74 93 79
    124 157 28 173 154 141 77 14 92 146 171 91 229 137 144 85
    5 155 193 10 82 36 20 168 174 230 18 121 21 40 71 249
    227 130 196 9 252 61 176 134 201 160 178 43 88 117 107 44
    22 208 11 150 33 19 66 236 114 246 112 202 118 152 34 194
    138 251 197 169 237 26 145 158 56 179 95 15 255 161 159 106
    234 120 220 198 110 222 147 183 142 218 123 191 228 131 139 151
    245 165 89 163 209 189 206 65 47 225 175 103 53 247 207 75
    211 136 226 25 170 242 70 184 126 84 172 49 37 127 204 0

     | Show Table
    DownLoad: CSV

    Step III: Since an S-box is a square matrix of order $ 16 $. Therefore, the newly defined notion "matrix transformer" (see Section 2.2) can be used on initial S-box to enhance the security level. For this purpose, we tried several matrix transformers on our initial S-box by using MATLAB program and found that the matrix transformer displayed in Table 5 is the most suitable. The application of this matrix transformer on our initial S-box gives rise an S-box (See Table 6) with very high NL value 111. We call it our proposed S-box. An algorithm illustrating the process of using matrix transformers on the initial S-box is presented in Figure 5, while a flowchart can be found in Figure 6 to facilitate comprehension.

    Table 5.  Matrix Transformer.
    102 62 108 235 184 163 44 240 53 89 70 150 160 155 220 164
    191 172 135 79 174 109 12 201 144 251 133 186 134 71 228 147
    96 14 50 114 65 32 106 120 255 218 94 177 136 233 115 219
    226 250 211 176 68 230 6 199 156 61 9 165 26 196 139 41
    1 22 209 125 215 180 63 113 193 192 241 43 17 127 20 67
    169 208 256 198 33 28 243 54 234 45 247 101 73 202 252 248
    246 154 207 78 19 3 232 236 224 131 59 31 171 39 238 34
    40 24 142 72 83 217 103 82 187 52 210 23 7 205 124 123
    64 110 170 153 57 112 253 189 56 229 188 60 86 42 36 121
    30 140 76 168 122 141 97 152 146 137 27 16 162 195 145 25
    221 105 111 69 81 13 194 15 107 48 249 119 8 74 254 35
    117 128 173 2 18 242 90 84 167 116 143 132 11 26 99 46
    138 88 190 77 104 231 200 204 151 197 178 158 183 213 87 222
    55 58 92 161 37 95 100 166 157 85 148 245 91 179 181 4
    75 214 38 98 212 149 5 130 244 175 21 203 51 227 182 66
    185 225 47 10 129 206 118 49 80 223 216 237 239 126 93 159

     | Show Table
    DownLoad: CSV
    Table 6.  Proposed S-box.
    248 150 195 151 206 38 62 88 213 25 118 250 61 48 134 121
    3 33 192 224 175 164 186 187 249 152 18 99 72 5 188 59
    80 58 44 144 110 89 23 7 143 137 200 113 73 194 226 160
    184 101 53 31 32 241 234 92 154 120 233 91 221 41 214 124
    156 75 235 46 9 190 81 51 27 117 245 193 169 129 45 126
    252 29 203 236 218 229 159 251 4 66 228 220 204 122 222 238
    20 163 34 147 94 24 212 237 130 148 201 1 16 157 196 141
    223 57 210 246 22 70 43 78 85 82 79 93 215 127 135 208
    170 65 166 202 17 244 205 100 230 138 199 155 36 133 112 162
    71 174 64 123 189 42 56 168 173 232 102 243 142 15 0 125
    198 21 140 60 97 183 114 10 111 28 254 128 11 253 225 239
    98 95 131 55 139 207 255 2 211 115 68 171 14 197 8 181
    219 176 40 132 179 54 13 145 86 76 103 158 74 242 87 216
    83 153 50 209 161 165 119 172 63 105 182 90 227 106 84 240
    136 104 247 217 146 231 26 67 39 12 180 116 49 69 37 52
    177 19 108 47 191 96 30 185 178 167 109 149 77 107 35 6

     | Show Table
    DownLoad: CSV
    Figure 5.  Algorithm describing step III.
    Figure 6.  Flow chart of Step III.

    This section contains performance evaluation of the suggested S-box through different state of the art metrics such as the nonlinearity test, differential uniformity, bit independence criterion, strict avalanche criterion and linear approximation probability. We see that the outcome scores of our S-box obtained via these analyses are nearly equals to the ideal ones, demonstrating the effectiveness and capability of the proposed scheme. The analyses applied on our S-box are detailed below.

    Nonlinearity is a key factor to determine the robustness of a substitution box. If an S-box maps input to output linearly, its resistance is very low [33]. A powerful S-box nonlinearly maps input to output. Any S-box with a higher nonlinearity value guarantees more security against cryptanalytic attacks. In the case of Boolean function of the form $ \theta :{F}_{2}^{n}⟶{F}_{2} $, The nonlinearity is calculated as

    $ {N}_{\theta } = {2}^{n-1}-\frac{1}{2}\left[{(}_{h}\in GF{\left(2\right)}^{{n}^{{\rm{max}}}}\right)\left|{S}_{\theta }\left(h\right)\right| $ (4.1)

    Note that, $ {S}_{\theta }\left(h\right) = \sum _{g\in GF{\left(2\right)}^{n}}{\left(-1\right)}^{\theta \left(g\right) \oplus g.h} $ represents the Walsh spectrum of $ \theta \left(g\right) $. Table 7 indicates the nonlinearity values of all Boolean functions of the proposed S-box. The average Non-linearity of our S-box is 110.75.

    Table 7.  Nonlinearities of all Boolean mappings involved in the suggested S-box.
    Boolean mapping $ {\theta }_{0} $ $ {\theta }_{1} $ $ {\theta }_{2} $ $ {\theta }_{3} $ $ {\theta }_{4} $ $ {\theta }_{5} $ $ {\theta }_{6} $ $ {\theta }_{7} $ Mean
    NL score 110 112 110 112 110 110 110 112 110

     | Show Table
    DownLoad: CSV

    SAC is another effective tool to judge the security of an S-box. It was proposed by Webster and Tavares [34]. To meet this requirement, the input bit of any cryptosystem must change along with a 50% change in the output bits. The SAC performance of the S-box is determined by the dependency matrix. The perfect SAC score for the best cryptographic confusion is 0.5. Table 8 shows the dependency matrix of SAC values obtain by proposed S-box. The mean SAC value of proposed S-box is 0.5051, which differs slightly from the optimal value. Therefore, the suggested S-box fulfills the SAC criterion.

    Table 8.  SAC values of constructed S-box.
    0.4844 0.5469 0.4688 0.5625 0.5312 0.5312 0.5156 0.4844
    0.4531 0.4844 0.5469 0.5 0.5 0.4844 0.4844 0.5625
    0.5312 0.4688 0.5312 0.5312 0.4375 0.4688 0.5156 0.5
    0.4375 0.5 0.5469 0.5 0.5469 0.5312 0.4844 0.5156
    0.4531 0.5625 0.5625 0.4688 0.4688 0.5156 0.4375 0.5312
    0.5781 0.4844 0.5312 0.5469 0.5156 0.5 0.5156 0.5
    0.5 0.4531 0.4531 0.4219 0.5156 0.5469 0.5312 0.4844
    0.5 0.4844 0.5312 0.5312 0.5 0.5312 0.4375 0.5469

     | Show Table
    DownLoad: CSV

    This test [34] is satisfied if the output bits operate independently, i.e., do not depend on each other. More specifically, no statistical dependencies or patterns should be present in the bits of the output vectors. It is intended to boost output bit autonomy for greater security. An S-box is said to be meet the BIC criterion if it satisfies SAC and possess nonlinearity score for all Boolean mappings. The Tables 9 and 10 depict the dependency matrices for BIC-nonlinearity and BIC-SAC respectively. The results show that the proposed S-box conforms to the required BIC standards.

    Table 9.  BIC outcomes for nonlinearity related to newly constructed S-box.
    - 110 110 112 112 110 112 110
    110 - 108 110 112 112 108 110
    110 108 - 110 112 110 110 112
    112 110 110 - 110 110 110 112
    112 112 112 110 - 110 110 110
    110 112 110 110 110 - 112 110
    112 108 110 110 110 112 - 112
    110 110 112 112 110 110 112 -

     | Show Table
    DownLoad: CSV
    Table 10.  BIC outcomes for SAC related to newly constructed S-box.
    - 0.4805 0.5098 0.4941 0.4902 0.498 0.5215 0.4824
    0.4805 - 0.5195 0.5176 0.4922 0.4922 0.4766 0.4902
    0.5098 0.5195 - 0.5 0.4902 0.5137 0.4922 0.498
    0.4941 0.5176 0.5 - 0.4961 0.5117 0.5273 0.4902
    0.4902 0.4922 0.4902 0.4961 - 0.4922 0.5293 0.5195
    0.498 0.4922 0.5137 0.5117 0.4922 - 0.4707 0.4863
    0.5215 0.4766 0.4922 0.5273 0.5293 0.4707 - 0.4883
    0.4824 0.4902 0.498 0.4902 0.5195 0.4863 0.4883 -

     | Show Table
    DownLoad: CSV

    Modern block ciphers are designed to create as much complexity among the bits as possible to protect the privacy of the information and to offer protection against various decryption techniques employed by the cryptanalysts. It is accomplished by S-box. The lower the value of LP, the better the capability of S-box to withstand linear attacks. The LP value of an S-box can be calculated by using the following equation [35];

    $ LP = {(}_{{\rm{\Gamma }}{\rm{w}}}, {\rm{\Gamma }}{w}^{\text{'}}\ne {0}^{max}\left|\frac{\#\left\{w\in K:w.{\rm{\Gamma }}{\rm{w}} = {\rm{S}}\left(w\right).{\rm{\Gamma }}{w}^{\text{'}}\right\}}{{2}^{n}}-\frac{1}{2}\right| $ (4.2)

    where $ K = \left\{{\rm{0, 1}}, . . . , {2}^{n}\right\} $ and $ {\rm{\Gamma }}{\rm{w}} $ and $ {\rm{\Gamma }}{w}^{\text{'}} $ are the input mask and output mask respectively $ . $ The designed S-box has an LP score of 0.0781.

    The resistance of S-box to differential cryptanalysis is investigated by DU [35]. To determine DU, a input differential $ \Delta {\sigma }_{i} $ is uniquely linked to an output differential $ \Delta {\rho }_{i} $, for all $ i $. For a given S-box, its value can be calculated by using the following equation:

    $ DU = {(}_{\Delta {\sigma }_{i}}\ne 0, \Delta {\rho }_{i}^{max}\left\{{\sigma }_{i}\in {\rm{\Gamma }}:S\left({\sigma }_{i}\right)⨁S\left({\sigma }_{i}+\Delta {\sigma }_{i}\right) = \Delta {\rho }_{i}\right\} $ (4.3)

    It is necessary to develop an S-box with smaller DU values in order to withstand differential cryptanalysis attacks. The maximum DU score of the proposed S-box is 6 (See Table 11), indicating its ability to counter differential attacks.

    Table 11.  DU scores of newly constructed S-box.
    4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
    4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6
    4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
    4 4 4 6 4 4 6 4 4 4 4 4 4 4 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
    4 4 4 4 4 6 4 6 4 4 4 4 4 4 4 4
    6 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4
    4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 -

     | Show Table
    DownLoad: CSV

    According to the performance study and comparative analysis, our S-box has better cryptographic properties than many recently designed S-boxes based on optimization, chaos and algebraic techniques. The comparison present in Table 12 demonstrates the suggested technique of designing S-boxes outperforms many of the available approaches. Here are our findings:

    Table 12.  Comparison of the various analyses between different S-boxes.
    S-box Nonlinearity
    Min Max Average
    SAC BIC-SAC BIC-NL DU LP
    Suggested S-box 110 112 110.75 0.5051 0.4989 110.55 6 0.0781
    AES [36] 112 112 112 0.5058 0.5046 112 4 0.0625
    Reference [37] 106 108 106.25 0.5112 0.4975 103.93 12 0.1484
    Reference [38] 106 110 106.5 0.5010 0.4987 103.93 10 0.125
    Reference [39] 106 108 107 0.4949 0.5019 102.29 12 0.141
    Reference [40] 106 110 108.5 0.4995 0.5011 103.85 10 0.109
    Reference [41] 108 110 109.75 0.5042 0.4987 110.6 6 0.0859
    Reference [42] 102 110 106.5 0.4943 0.5019 103.35 12 0.1468
    Reference [43] 104 108 105.5 0.5065 0.5031 103.57 10 0.1328
    Reference [44] 104 110 107 0.4993 0.5050 103.29 10 0.1328

     | Show Table
    DownLoad: CSV

    1. The S-box must have a high nonlinear value to resist linear attacks. According to Table 12, the average nonlinearity of our S-box is almost equal to AES, outperforming all other S-boxes show in Table 12. Therefore, there is considerable confusion, which makes the proposed method resistant to all the existing linear cryptanalysis.

    2. The prime goal of every S-box designer is to achieve a SAC score close to the optimal value (0.50). From Table 12 demonstrates that the suggested S-box satisfies the requirements of strict avalanche criterion.

    3. The reading of BIC-NL and BIC-SAC obtained from the prosed S-box are very encouraging are better than those of most of the S-boxes in Table 12

    4. A potent S-box has a smaller DU value. As seen in Table 12, the DU score of the suggested S-box is less than the S-boxes developed in [37,38,39,40,41,42,43,44].

    5. A smaller LP score makes an S-box more resistant to linear cryptanalysis. The LP score of our S-box is 0.0781, which is slightly higher than AES but lower than the LP values of all S-boxes in Table 12.

    The evaluating the suitability of an S-box to be employed in an encryption process using the majority logic criteria (MLC) is a useful approach [45]. Randomness in the encoded picture is assessed using these five analyses energy, entropy, homogeneity, contrast and correlation.

    Homogeneity and energy are utilized to identify the features of the encoded picture. The correlation test assesses the resemblance level between the host and encrypted picture. The lower correlation value implies more distortion caused by encryption. Through contrast, the decrease of brightness of the plaintext image is assessed. The greater the contrast value, the more efficient the encryption procedure. The process of encryption distorts the plaintext, and statistical parameters characterize the resiliency of S-box. The S-box that is formed is utilized to encrypt digital photos. To conduct MLC four 256 × 256 JPEG photos of Cameraman, Pepper, Lena and Baboon are selected. Two steps of substitution using our S-box are performed in the encrypting process. Encryption is accomplished through two steps of S-box substitution. During the 1st phase, the substitution is performed in a forward direction (from the start pixel to the end pixel) and subsequently in an opposite way. All simulations were conducted using the MATLAB programming. The original and encrypted photos are shown in Figure 7. The distorted pictures differ significantly from their corresponding undistorted versions. The level of visual distortion is quite large, since the graphics lack a pattern that promotes security breaches from the host picture. Table 13 shows the findings of all MLC testing performed. Table 14 presents the calculated correlation coefficients for pictures.

    Figure 7.  Plain and distorted images using proposed S-box.
    Table 13.  Results of MLC for our S-box.
    Image Correlation Entropy Energy Homogeneity Contrast
    Cameraman Host 0.9227 7.0097 0.1805 0.8952 0.5871
    Cameraman-Enc 0.0394 7.9972 0.0149 0.3999 10.0509
    Pepper Host 0.9312 7.5326 0.1096 0.8880 0.3849
    Pepper-Enc 0.0021 7.9972 0.0156 0.3902 10.4802
    Baboon Host 0.7983 7.2649 0.0943 0.7820 0.6326
    Baboon-Enc 0.0071 7.9975 0.0156 0.3945 10.3994
    Lena Host 0.9024 7.4439 0.1127 0.8622 0.4482
    Lena-Enc $ - $ 0.0379 7.9976 0.0157 0.3822 10.8896

     | Show Table
    DownLoad: CSV
    Table 14.  Horizontal and vertical correlation matrices for S-box.
    Image Cameraman Pepper Baboon Lena
    Vertical Plain Image 0.9745 0.9137 0.9090 0.9321
    Distorted Image 0.0310 $ - $ 0.0392 $ - $ 0.0128 $ - $ 0.0117
    Horizontal Plain Image 0.9610 0.9204 0.8727 0.883
    Distorted Image $ - $ 0.0026 $ - $ 0.0015 0.0039 $ - $ 0.0021

     | Show Table
    DownLoad: CSV

    The results suggest that the created substitution box is suitable for encryption purposes and are good enough to be used in the systems designed to ensure the reliability and security of sensitive data.

    The experimental assessments of the proposed image encryption technique are discussed in this section. The $ 256\times 256 $ pixel grayscale photos of Cameraman, Pepper and Baboon are picked for the experiment. Table 15 contains a variety of image quality measurements that have been suggested for use with two rounds of encryption using S-boxes. These methods have been thoroughly discussed. The findings indicate that the recommended S-box is robust enough to survive various attacks.

    Table 15.  Outcomes of various image quality measures.
    Test Cameraman-Enc Pepper-Enc Baboon-Enc Lena-Enc
    MSE $ 9212.16 $ $ 8656.41 $ $ 7854.44 $ $ 8414.71 $
    MSE [6] $ 9079.09 $ $ 8190.01 $ $ 8011.23 $ $ 8239.51 $
    MSE [15] $ 9189.41 $ $ 8612.09 $ $ 7599.03 $ $ 7930.39 $
    MSE [17] $ 9187.38 $ $ 8423.61 $ $ 7865.21 $ $ 8274.13 $
    PSNR $ 8.4723 $ $ 8.8563 $ $ 9.8912 $ 8.9912
    PSNR [6] $ 8.1129 $ $ 8.9710 $ $ 8.5539 $ $ 9.1902 $
    PSNR [15] $ 8.2897 $ $ 8.7091 $ $ 8.1331 $ $ 8.9500 $
    PSNR [17] $ 8.2891 $ $ 8.3353 $ $ 8.9361 $ $ 8.0032 $
    SSIM1 $ 0.0009 $ $ 0.0012 $ $ 0.0010 $ $ 0.0011 $
    SSIM1 [6] $ 0.0013 $ $ 0.0008 $ $ 0.0011 $ $ 0.0012 $
    SSIM1 [15] $ 0.0010 $ $ 0.0012 $ $ 0.0008 $ $ 0.0014 $
    SSIM1 [17] $ 0.0009 $ $ 0.0015 $ $ 0.0012 $ $ 0.0013 $
    NCC $ 0.8633 $ $ 0.8710 $ $ 0.9121 $ $ 0.8803 $
    NCC [6] $ 0.8537 $ $ 0.8675 $ $ 0.8912 $ $ 0.9016 $
    NCC [15] $ 0.8733 $ $ 0.8712 $ $ 0.8543 $ $ 0.8461 $
    NCC [17] $ 0.8640 $ $ 0.87134 $ $ 0.9001 $ $ 0.8692 $
    AD $ -7.4523 $ $ -4.9812 $ $ -2.3419 $ $ -5.3881 $
    AD [6] $ -{\rm{3, 4511}} $ $ -5.6634 $ $ -1.4529 $ $ -2.3319 $
    AD [15] $ -{\rm{6, 7819}} $ $ -3.8873 $ $ -2.8827 $ $ -4.1198 $
    AD [17] $ -3.4429 $ $ -4.9821 $ $ -2.3872 $ $ -7.6594 $
    SC $ 0.8496 $ $ 0.8345 $ $ 0.8456 $ $ 0.8247 $
    SC [6] $ 0.8455 $ $ 0.8451 $ $ 0.8401 $ $ 0.8342 $
    SC [15] $ 0.8341 $ $ 0.8489 $ $ 0.8465 $ $ 0.8231 $
    SC [17] $ 0.8436 $ $ 0.8111 $ $ 0.8265 $ $ 0.8490 $
    MD $ 240 $ $ 238 $ $ 212 $ $ 234 $
    MD [6] $ 211 $ $ 231 $ $ 233 $ $ 241 $
    MD [15] $ 223 $ $ 227 $ $ 227 $ $ 228 $
    MD [17] $ 234 $ $ 238 $ $ 221 $ $ 219 $
    NAE $ 0.6358 $ $ 0.6273 $ $ 0.6147 $ $ 0.6384 $
    NAE [6] $ 0.6455 $ $ 0.5932 $ $ 0.5813 $ $ 0.6459 $
    NAE [15] $ 0.6040 $ $ 0.6193 $ $ 0.6388 $ $ 0.6026 $
    NAE [17] $ 0.6219 $ $ 0.6243 $ $ 0.6012 $ $ 0.5856 $
    RMSE $ 94.6682 $ $ 91.7245 $ $ 84.9561 $ $ 87.9349 $
    RMSE [6] $ 90.6638 $ $ 92.3402 $ $ 88.3476 $ $ 86.7938 $
    RMSE [15] $ {\rm{93, 4428}} $ $ 89.7690 $ $ 91.2398 $ $ 87.3947 $
    RMSE [17] $ 90.4582 $ $ 85.1109 $ $ 84.8934 $ $ 88.1831 $
    UQI $ 0.0218 $ $ 0.0332 $ $ 0.0314 $ $ 0.0338 $
    UQI [6] $ 0.0127 $ $ 0.0412 $ $ 0.0279 $ $ 0.0178 $
    UQI [15] $ 0.0347 $ $ 0.0456 $ $ 0.0127 $ $ 0.0391 $
    UQI [17] $ 0.0234 $ $ 0.0401 $ $ 0.0298 $ $ 0.0281 $
    MI $ -1.0292 $ $ -1.0187 $ $ -1.0184 $ $ -1.0281 $
    MI [6] $ -1.0195 $ $ -1.0490 $ $ -1.0328 $ $ -1.0402 $
    MI [15] $ -1.0371 $ $ -1.0197 $ $ -1.0294 $ $ -1.0406 $
    MI [17] $ -1.341 $ $ -1.0198 $ $ -1.0384 $ $ -1.0327 $

     | Show Table
    DownLoad: CSV

    During encryption MSE analysis assesses the unpredictability of the encrypted picture [46]. This technique computes the squared difference between the original and distorted picture. It can be computed as follows:

    $ MSE = \frac{1}{U\times V}\sum _{{y}_{2} = 1}^{U}\sum _{{y}_{1} = 1}^{V}{\left(O\left({y}_{1}, {y}_{2}\right)-E\left({y}_{1}, {y}_{2}\right)\right)}^{2} $ (6.1)

    where U and V represent the dimensions of original $ O\left({y}_{1}, {y}_{2}\right) $ and distorted $ E\left({y}_{1}, {y}_{2}\right) $ pictures respectively. For effective encryption methods, the MSE rating must be as high as conceivable [46].

    The PSNR test [38] is an ideal criterion for assessing the quality of picture encryption techniques. It estimates how well the original picture matches the ciphertext. PSNR value is calculated using the following formula;

    $ PSNR = 10{log}_{10}\frac{{V}^{2}}{\sqrt{MSE}} $ (6.2)

    where $ V $ is the amount of variance that was at its highest in the original picture data. It is necessary to have a higher value of PSNR in order to get a superior encoded picture [47].

    To determine the average and maximum dissimilarities between the unencrypted $ O $ and encrypted $ E $ pictures, researchers used the AD and MD test [47]. AD and MD values are determined using the following formulas;

    $ AD = \frac{\sum _{{y}_{2} = 1}^{R}\sum _{{y}_{1} = 1}^{S}\left[O\left({y}_{1}, {y}_{2}\right)-E\left({y}_{1}, {y}_{2}\right)\right]}{R\times S} $ (6.3)
    $ MD = {\rm{max}}\left|O\left({y}_{1}, {y}_{2}\right)-E\left({y}_{1}, {y}_{2}\right)\right| $ (6.4)

    MI measures how much information can be retrieved about the original picture from a distorted version of it. Let us denote the joint probability function of $ O $ and $ E $ by $ \rho \left({y}_{1}, {y}_{2}\right) $, then the value of MI can be determined by using the formula below;

    $ MI = \sum _{{y}_{1}\in O}\sum _{{y}_{2}\in E}\rho \left({y}_{1}, {y}_{2}\right){log}_{2}\frac{\rho \left({y}_{1}, {y}_{2}\right)}{\rho \left({y}_{1}\right)\rho \left({y}_{2}\right)} $ (6.5)

    The MI value must always be kept to a minimum in a decent encryption system [48].

    As stated in reference [49], the UQI method partitions the evaluation of image distortion into three components: luminance, structural comparisons and contrast. The UQI metric for a pair of images $ O $ and $ E $ can be expressed as follows;

    $ UQ\left(O, E\right) = \frac{4{\rho }_{o}{\rho }_{E}{\rho }_{oE}}{\left({\rho }_{0}^{2}-{\rho }_{E}^{2}\right)\left({\varphi }_{0}^{2}-{\varphi }_{E}^{2}\right)} $ (6.6)

    where $ {\rho }_{o} $, $ {\rho }_{E} $ represent the mean values of the original and distorted images, respectively, and $ {\varphi }_{o} $, $ {\varphi }_{E} $ represent the standard deviation of the original and distorted images, respectively.

    SSIM is an enhanced version of the UQI designed to assess the similarity between two images. In particular, SSIM evaluates the fidelity of one of the images by assuming that the other image is free from errors. The computation of the SSIM score involves analyzing a pair of windows $ \left(R, S\right) $ of the image using the following formula:

    $ SSIM\left(R, S\right) = \frac{\left({\nu }_{R}{\nu }_{S}+{a}_{1}\right)\left(2{\varphi }_{R}{\varphi }_{S}+{a}_{2}\right)}{\left({\nu }_{R}^{2}+{\nu }_{R}^{2}+{a}_{1}\right)\left({\varphi }_{R}^{2}+{\varphi }_{R}^{2}+{a}_{2}\right)} $ (6.7)

    where $ {\varphi }_{R} $ and $ {\varphi }_{S} $ are the variances of R and S and ­ $ {\nu }_{R} $ and $ {\nu }_{S} $ are the average scores of R and S respectively. The range of the SSIM score lies between -1 to 1, where a score of 1 indicates that the images are identical. A score close to 0 indicates a strong encryption scheme [48].

    As stated in citation [49], the correlation function provides a means of measuring the proximity of two digital images. The NCC method is a well-established technique for assessing the similarity between two images. Its calculation is based on the following formula:

    $ NCC = \sum _{{y}_{2} = 1}^{U}\sum _{{y}_{1} = 1}^{V}\left(\frac{O\left({y}_{1}, {y}_{2}\right)\times E\left({y}_{1}, {y}_{2}\right)}{\sum _{{y}_{2} = 1}^{U}\sum _{{y}_{1} = 1}^{V}{\left|O\left({y}_{1}, {y}_{2}\right)\right|}^{2}}\right) $ (6.8)

    NAE [49] can be used to assess the efficiency of an image encryption process by comparing the pixel values of the original image with those of the encrypted (ciphered) image. To calculate the NAE between the plain and ciphered image, the formula is:

    $ NAE = \frac{\sum _{{y}_{2} = 1}^{U}\sum _{{y}_{1} = 1}^{V}\left|O\left({y}_{1}, {y}_{2}\right)-E\left({y}_{1}, {y}_{2}\right)\right|}{\sum _{{y}_{2} = 1}^{U}\sum _{{y}_{1} = 1}^{V}\left|O\left({y}_{1}, {y}_{2}\right)\right|} $ (6.9)

    The assessment of an image encryption algorithm's effectiveness can be facilitated by utilizing RMSE as a performance metric. The calculation of RMSE involves determining the square root of the average of all the squared errors [49]. Its frequent use and flexibility make it a versatile and valuable error metric for numerical forecasting. The mathematical expression for RMSE is indicated below;

    $ RMSE = \sqrt{\frac{\sum _{{y}_{2} = 1}^{U}\sum _{{y}_{1} = 1}^{V}{\left|O\left({y}_{1}, {y}_{2}\right)-E\left({y}_{1}, {y}_{2}\right)\right|}^{2}}{U\times V}} $ (6.10)

    SC is a correlation-based measure that quantifies the similarity between two images. The following mathematical equation is used to compute its score;

    $ SC = \frac{\sum _{{y}_{2} = 1}^{U}\sum _{{y}_{1} = 1}^{V}{\left|O\left({y}_{1}, {y}_{2}\right)\right|}^{2}}{\sum _{{y}_{2} = 1}^{U}\sum _{{y}_{1} = 1}^{V}{\left|E\left({y}_{1}, {y}_{2}\right)\right|}^{2}} $ (6.11)

    A robust cryptosystem is extremely sensitive to modifications in one bit of the plaintext. Through UACI, NPCR and BACI testing, the sensitivity of the system is assessed.

    UACI indicates the unified mean intensity change between original and encrypted image while NPCR calculates the number of pixels change rate of the encrypted image if a single pixel is altered in the original image. In BACI analysis, the image difference $ \Delta = abs\left({E}_{1}-{E}_{2}\right) $ is partitioned into blocks of pixels and arranged in a 2 × 2 matrix. This involves dividing the image into smaller, non-overlapping regions, or "blocks", to facilitate the comparison of pixel values before and after the intervention.

    The following formulae are used to compute the values of UACI, NPCR and BACI:

    $ UACI = \frac{1}{JK}\sum _{j, k}\frac{{E}_{1}\left(j, k\right)-{E}_{2}\left(j, k\right)}{255}\times 100{\rm{\%}} $ (7.1)
    $ NPCR = \frac{\sum _{jk}D\left(j, k\right)}{JK}\times 100\% $ (7.2)
    $ BACI = \frac{1}{\left(J-1\right)\left(K-1\right)}\sum _{i = 1}^{\left(J-1\right)\left(K-1\right)}\frac{{Z}_{i}}{255}\times 100{\rm{\%}} $ (7.3)

    where $ {E}_{1}\left(j, k\right) $ and $ {E}_{2}\left(j, k\right) $ denote the grayscale values of pixels obtained $ \left(j, k\right) $ th position and $ D\left(j, k\right) = \left\{0         if E1(j,k) and E2(j,k) are equal  1       otherwise

    \right. $ and $ {Z}_{i} = \frac{1}{6}\left(\left|{a}_{1}-{a}_{2}\right|+\left|{a}_{1}-{a}_{3}\right|+\left|{a}_{1}-{a}_{4}\right|+\left|{a}_{2}-{a}_{3}\right|+\left|{a}_{2}-{a}_{4}\right|+\left|{a}_{3}-{a}_{4}\right|\right) $ and $ {\Delta }_{i} = \left[a1a2a3a4
    \right] $.

    Table 16 depicts the findings of the differential analysis for NPCR, UACI, and BACI, confirming the excellent performance of encryption effect provided by the designed S-box.

    Table 16.  NPCR, UACI and BACI outcomes.
    Image NPCR UACI BACI
    Cameraman 99.63% 33.12% 24.60%
    Pepper 99.81% 33.21% 26.38%
    Baboon 99.76% 32.86% 24.25%
    Lena 99.79% 33.16% 23.09%

     | Show Table
    DownLoad: CSV

    Summing up, the present work has discussed and examined the development of modular group coset graphs over a finite field of order 1024 and a matrix transformer for application in S-box construction. An initial S-box is formed through coset graphs and after that the application of a matrix transformer on it enhances its working efficiency significantly, resulting in a robust S-box. Comparison of proposed method with other state-of-the-art S-box construction algorithms shows that the proposed mechanism outperforms other algorithms in terms of mean nonlinear score, LP, SAC, BIC and DU scores. In addition, the performance of the designed S-box when applied to encrypt certain plaintext graphics has been determined to be extraordinary using a variety of assessment tools.

    As our experience with applying matrix transformer to coset graph S-box to improve its resilience has been promising, we plan to research novel ways for designing S-boxes combining matrix transformers and chaotic systems. Moreover, we intend to evaluate the application of S-box to cloud encryption.

    This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Grant No. 3011).

    The authors declare there is no conflict of interest.


    Acknowledgments



    We would like to thank the patients who gracefully collaborated with us and made this research possible. The authors also express their gratitude to the Vice-Chancellor of Research and Technology of Guilan University of Medical Sciences for their cooperation and managements.

    Conflict of interest



    There is no conflict of interest.

    [1] Duhig K, Vandermolen B, Shennan A (2018) Recent advances in the diagnosis and management of pre-eclampsia. F1000Res 7: 242. doi: 10.12688/f1000research.12249.1
    [2] ACOG (2013) Hypertension in pregnancy. Report of the American college of obstetricians and gynecologists' task force on hypertension in pregnancy. Obstet Gynecol 122: 1122–1131.
    [3] Fayyaz S, Agrawal N, Yadav P, et al. (2018) Can high first trimester NLR and PLR is early predictor for preeclampsia ?: An experience of single tertiary care center. Arch Reprod Med Sex Health 1: 3–7.
    [4] Peres GM, Mariana M, Cairrão E (2018) Pre-Eclampsia and eclampsia: An update on the pharmacological treatment applied in Portugal. J Cardiovasc Dev Dis 5: pii: E3.
    [5] Bokslag A, van Weissenbruch M, Mol BW, et al. (2016) Preeclampsia; short and long-term consequences for mother and neonate. Early Hum Dev 102: 47–50. doi: 10.1016/j.earlhumdev.2016.09.007
    [6] Ghulmiyyah L, Sibai B (2012) Maternal mortality from preeclampsia/eclampsia. Semin Perinatol 36: 56–59. doi: 10.1053/j.semperi.2011.09.011
    [7] Grotegut CA (2016) Prevention of preeclampsia. J Clin Invest 126: 4396–4398. doi: 10.1172/JCI91300
    [8] Safari M, Yazdanpanah B (2003) Preeclampsia and maternal and fetal side effects prevalence in women visiting maternity of Yasuj Imam sajjad hospital. J Shahrekord Univ Med Sci 5: 47–53.
    [9] Anderson UD, Gram M, Åkerström B, et al. (2015) First trimester prediction of preeclampsia. Curr Hypertens Rep 17: 1–8. doi: 10.1007/s11906-014-0510-4
    [10] Jadli A, Sharma N, Damania K, et al. (2015) Promising prognostic markers of preeclampsia: New avenues in waiting. Thromb Res 136: 189–195. doi: 10.1016/j.thromres.2015.05.011
    [11] Brunelli VB, Prefumo F (2015) Quality of first trimester risk prediction models for pre-eclampsia: A systematic review. BJOG 122: 904–914. doi: 10.1111/1471-0528.13334
    [12] Vahidroodsari F, Ayati S, Ebrahimimonfared M (2009) Before pregnancy BMI effect on incident of pregnancy blood pressure and preeclampsia. J Babol Med Sc Univ 11: 49–53.
    [13] Nasiriamiri F, Aghajanidelavar M, Mohammadpourtahmtan RA (2009) Survey on mean arterial pressure diagnostic value in second three month pregnancy in preeclampsia prediction. J Mazandaran Univ Med Sci 45: 67–73.
    [14] Ferro F, Rocha E, Nobrega L, et al. (2016) Transorbital ultrasonographic measurement of the optic nerve sheath diameter in preeclampsia [24J]. Obst Gyn 127: 87.
    [15] Dehnadi Moghadam A, Alizadeh A, Yousefzadeh Chabok SH, et al. (2015) Evaluation of correlation between optic nerve sheath diameter and intracranial pressure in patients with head trauma. J Guilan Univ Med Sci 23: 44–49.
    [16] Sekhon MS, Griesdale DE, Robba C, et al. (2014) Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med 40: 1267–1274. doi: 10.1007/s00134-014-3392-7
    [17] Whiteley JR, Taylor J, Henry M, et al. (2015) Detection of elevated intracranial pressure in robot-assisted laparoscopic radical prostatectomy using ultrasonography of optic nerve sheath diameter. J Neurosurg Anesthesiol 27: 155–159. doi: 10.1097/ANA.0000000000000106
    [18] Dip F, Nguyen D, Sasson M, et al. (2016) The relationship between intracranial pressure and obesity: An ultrasonographic evaluation of the optic nerve. Surg Endosc 30: 2321–2325. doi: 10.1007/s00464-015-4458-5
    [19] Gagnon A, Wilson RD (2008) Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can 30: 918–932. doi: 10.1016/S1701-2163(16)32973-5
    [20] Ortega J, Urias E, Arteaga C (2015) Comparative study measuring optic nerve sheath diameter by transorbital ultrasound in healthy women, pregnant women and pregnant with preeclampsia/eclampsia. Intensive Care Med Exp 3: A992. doi: 10.1186/2197-425X-3-S1-A992
    [21] Cuningham FG, Gant NF, Leveno KJ, et al. (2001) Williams obstetrics. 21st ed. New York: Mc Graw-Hill, 568–569.
    [22] Davaryari N, Razavi Panah R, Homayoon Mehr S, et al. (2011) A comparison of serum level of selenium in women with preeclampsia and normal pregnant women. Med J Mashhad Univ Med Sci 54: 80–85.
    [23] Dargahi R, Shahbazzadegan S, Naghizadeh-Baghi A, et al. (2018) Expression levels of Drosha and Dicer enzymes and DGCR8 protein in pre-eclamptic patients. Iran J Obstet Gynecol Infertility 20: 40–49.
    [24] Samiee Rad F, Jahani Hashemi H, Sofiabadi M, et al. (2017) Evaluation of severity of preeclampsia with mother's serum high sensitive C-reactive protein (Hs-CRP). SSU_J 25: 556–563.
    [25] Nikpour S, Atarodi Kashani Z, Mokhtarshahi S, et al. (2007) Study of the correlation of the consumption of Vitamin C-Rich foods with preeclampsia and eclampsia in women referred to Shahid Akbar Abadi Hospital in Tehran, 2004. Razi J Med Sci 14: 179–192.
    [26] Tessema GA, Tekeste A, Ayele TA (2015) Preeclampsia and associated factors among pregnant women attending antenatal care in Dessie referral hospital, Northeast Ethiopia: A hospital-based study. BMC Pregnancy Childbirth 15: 73. doi: 10.1186/s12884-015-0502-7
    [27] Singh SK, Bhatia K (2018) Ultrasonographic optic nerve sheath diameter as a surrogate measure of raised intracranial pressure in severe pregnancy-induced hypertension patients. Anesth Essays Res 12: 42–46. doi: 10.4103/aer.AER_218_17
    [28] Goeres P, Zeiler FA, Unger B, et al. (2016) Ultrasound assessment of optic nerve sheath diameter in healthy volunteers. J Crit Care 31: 168–71. doi: 10.1016/j.jcrc.2015.10.009
    [29] Brzan Simenc G, Ambrozic J, Prokselj K, et al. (2018) Ocular ultrasonography for diagnosing increased intracranial pressure in patients with severe preeclampsia. Int J Obstet Anesth 36: 49–55. doi: 10.1016/j.ijoa.2018.06.005
  • This article has been cited by:

    1. Abdul Razaq, Louai A. Maghrabi, Musheer Ahmad, Farrah Aslam, Wei Feng, Fuzzy Logic-Based Substitution-Box for Robust Medical Image Encryption in Telemedicine, 2024, 12, 2169-3536, 7584, 10.1109/ACCESS.2024.3351794
    2. Abdul Razaq, Louai A. Maghrabi, Musheer Ahmad, Qamar H. Naith, Novel substitution-box generation using group theory for secure medical image encryption in E-healthcare, 2024, 9, 2473-6988, 6207, 10.3934/math.2024303
    3. Mohammad Mazyad Hazzazi, Souad Ahmad Baowidan, Awais Yousaf, Muhammad Adeel, An Innovative Algorithm Based on Chaotic Maps Amalgamated with Bit-Level Permutations for Robust S-Box Construction and Its Application in Medical Image Privacy, 2024, 16, 2073-8994, 1070, 10.3390/sym16081070
    4. Dhakshinamoorthy Vignesh, Nur Aisyah Abdul Fataf, Santo Banerjee, A Novel Fractional Sine Chaotic Map and Its Application to Image Encryption and Watermarking, 2023, 13, 2076-3417, 6556, 10.3390/app13116556
    5. Ahmet Malal, Cihangir Tezcan, FPGA-friendly compact and efficient AES-like 8 × 8 S-box, 2024, 105, 01419331, 105007, 10.1016/j.micpro.2024.105007
    6. Yilmaz Aydin, Ali Murat Garipcan, Fatih Özkaynak, A Novel Secure S-box Design Methodology Based on FPGA and SHA-256 Hash Algorithm for Block Cipher Algorithms, 2024, 2193-567X, 10.1007/s13369-024-09251-8
    7. Jieun Ryu, Yongbhin Kim, Seungtai Yoon, Ju-Sung Kang, Yongjin Yeom, IPCC7: Post-Quantum Encryption Scheme Based on a Perfect Dominating Set in 3-Regular Graph, 2024, 12, 2169-3536, 4575, 10.1109/ACCESS.2024.3349704
    8. Anand Prakash Dube, Raghav Yadav, 2024, Enhanced Dynamic S-Box Design Based on Adaptive Heuristic Evolution and Multi-Stage Nonlinearity for Securing IoT-Based Remote Health Monitoring Systems, 979-8-3315-0843-2, 1, 10.1109/ICEC59683.2024.10837025
    9. Yong Zhang, Image encryption algorithm based on butterfly module and chaos, 2025, 03784754, 10.1016/j.matcom.2025.01.011
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5183) PDF downloads(612) Cited by(3)

Figures and Tables

Figures(2)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog