Research article

Emerging infectious disease dynamics with compliance and isolation resource constraints

  • Published: 11 November 2025
  • The effectiveness of isolation strategies against emerging infectious diseases (EIDs) is critically undermined by two interacting factors: Limited resource capacity and imperfect public compliance, yet their combined impact remains poorly quantified. We develop an ordinary differential equation (ODE) model incorporating a saturation function for resource limits and a compliance parameter ($ \epsilon $) to quantify their nonlinear interaction. Theoretical analysis reveals a resource-driven backward bifurcation, indicating that reducing a basic reproduction number $ R_0 $ below 1 is necessary but may be insufficient for disease elimination when isolation capacity is critically low. Numerically, we identify a counterintuitive paradox: High compliance amplifies the infection risk when isolation resources are severely constrained. The simulation results classify the dynamic regimes under various parameter settings and reveal the qualitative impact of different isolation strategies. The study finds that increasing isolation resources, combined with a certain level of compliance, significantly reduces the infection risk and aids in disease control. Notably, specific transmission patterns emerge when isolation resources are inadequate, resulting in elevated infection risks even when compliance is high. Our results underscore the imperative of synchronizing resource allocation with behavioral interventions, particularly during early outbreak stages, providing a framework for precision public health strategies.

    Citation: Xinru Li, Ning Wang, Shengqiang Liu. Emerging infectious disease dynamics with compliance and isolation resource constraints[J]. Mathematical Biosciences and Engineering, 2025, 22(12): 3262-3294. doi: 10.3934/mbe.2025120

    Related Papers:

  • The effectiveness of isolation strategies against emerging infectious diseases (EIDs) is critically undermined by two interacting factors: Limited resource capacity and imperfect public compliance, yet their combined impact remains poorly quantified. We develop an ordinary differential equation (ODE) model incorporating a saturation function for resource limits and a compliance parameter ($ \epsilon $) to quantify their nonlinear interaction. Theoretical analysis reveals a resource-driven backward bifurcation, indicating that reducing a basic reproduction number $ R_0 $ below 1 is necessary but may be insufficient for disease elimination when isolation capacity is critically low. Numerically, we identify a counterintuitive paradox: High compliance amplifies the infection risk when isolation resources are severely constrained. The simulation results classify the dynamic regimes under various parameter settings and reveal the qualitative impact of different isolation strategies. The study finds that increasing isolation resources, combined with a certain level of compliance, significantly reduces the infection risk and aids in disease control. Notably, specific transmission patterns emerge when isolation resources are inadequate, resulting in elevated infection risks even when compliance is high. Our results underscore the imperative of synchronizing resource allocation with behavioral interventions, particularly during early outbreak stages, providing a framework for precision public health strategies.



    加载中


    [1] D. M. Morens, G. K. Folkers, A. S. Fauci, The challenge of emerging and re-emerging infectious diseases, Nature, 430 (2004), 242–249. https://doi.org/10.1038/nature02759 doi: 10.1038/nature02759
    [2] K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman et al., Global trends in emerging infectious diseases, Nature, 451 (2008), 990–993. https://doi.org/10.1038/nature06536 doi: 10.1038/nature06536
    [3] N. Wang, L. Qi, M. Bessane, M. Hao, Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection, J. Differ. Equations, 369 (2023), 1–40. https://doi.org/10.1016/j.jde.2023.05.036 doi: 10.1016/j.jde.2023.05.036
    [4] N. Wang, L. Qi, G. Cheng, Dynamical analysis for the impact of asymptomatic infective and infection delay on disease transmission, Math. Comput. Simul., 200 (2022), 525–556. https://doi.org/10.1016/j.matcom.2022.04.029 doi: 10.1016/j.matcom.2022.04.029
    [5] P. P. Win, Z. Lin, M. Zhang, The final size and critical times of an SIVR epidemic model, Adv. Contin. Discrete Models, 2025 (2025), 31. https://doi.org/10.1186/s13662-025-03902-2 doi: 10.1186/s13662-025-03902-2
    [6] M. Jusup, P. Holme, K. Kanazawa, M. Takayasu, I. Romić, Z. Wang et al., Social physics, Phys. Rep., 948 (2022), 1–148. https://doi.org/10.1016/j.physrep.2021.10.005
    [7] Y. Li, Y. Yao, M. Feng, J. Wang, L. Wang, Epidemic dynamics in homes and destinations under recurrent mobility patterns, Chaos Solitons Fractals, 195 (2025), 116273. https://doi.org/10.1016/j.chaos.2025.116273 doi: 10.1016/j.chaos.2025.116273
    [8] W. Wu, Q. Zhang, H. Wang, S. Liu, Cholera dynamics driven by human behavior change via a degenerate reaction-diffusion model, Z. Angew. Math. Phys., 76 (2025), 114. https://doi.org/10.1007/s00033-025-02495-w doi: 10.1007/s00033-025-02495-w
    [9] R. J. Thorneloe, E. N. Clarke, M. A. Arden, Adherence to behaviours associated with the test, trace, and isolate system: an analysis using the theoretical domains framework, BMC Public Health, 22 (2022), 567. https://doi.org/10.1186/s12889-022-12815-8 doi: 10.1186/s12889-022-12815-8
    [10] C. N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C. R. MacIntyre, M. H. Bonds et al., Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus, Math. Biosci., 325 (2020), 108364. https://doi.org/10.1016/j.mbs.2020.108364 doi: 10.1016/j.mbs.2020.108364
    [11] T. Yu, D. Cao, S. Liu, Epidemic model with group mixing: Stability and optimal control based on limited vaccination resources, Commun. Nonlinear Sci. Numer. Simul., 61 (2018), 54–70. https://doi.org/10.1016/j.cnsns.2018.01.011 doi: 10.1016/j.cnsns.2018.01.011
    [12] H. Zhang, Z. Yang, K. A. Pawelek, S. Liu, Optimal control strategies for a two-group epidemic model with vaccination-resource constraints, Appl. Math. Comput., 371 (2020), 124956. https://doi.org/10.1016/j.amc.2019.124956 doi: 10.1016/j.amc.2019.124956
    [13] Z. Liu, D. Qiu, S. Liu, A two-group epidemic model with heterogeneity in cognitive effects, Math. Biosci. Eng., 22 (2025), 1109–1139. https://doi.org/10.3934/mbe.2025040 doi: 10.3934/mbe.2025040
    [14] X. Pian, Y. Takeuchi, P. Yan, S. Liu, Paradox of vaccination in the context of avian influenza strain mutation, Int. J. Biomath., (2025), 2550095. https://doi.org/10.1142/S1793524525500950
    [15] D. Barbisch, K. L. Koenig, F.-Y. Shih, Is there a case for quarantine? Perspectives from SARS to Ebola, Disaster Med. Public Health Prep., 9 (2015), 547–553. https://doi.org/10.1017/dmp.2015.38 doi: 10.1017/dmp.2015.38
    [16] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015.
    [17] N. H. Nam, P. T. M. Tien, L. V. Truong, et al., Early centralized isolation strategy for all confirmed cases of COVID-19 remains a core intervention to disrupt the pandemic spreading significantly, PLoS ONE, 16 (2021), e0254012. https://doi.org/10.1371/journal.pone.0254012 doi: 10.1371/journal.pone.0254012
    [18] Y. Niu, F. Xu, Deciphering the power of isolation in controlling COVID-19 outbreaks, Lancet Glob. Health, 8 (2020), e452–e453. https://doi.org/10.1016/S2214-109X(20)30085-1 doi: 10.1016/S2214-109X(20)30085-1
    [19] H. Sjodin, A. Wilder-Smith, S. Osman, Z. Farooq, J. Rocklv, Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020, Eurosurveillance, 25 (2020), 2000280. https://doi.org/10.2807/1560-7917.ES.2020.25.13.2000280 doi: 10.2807/1560-7917.ES.2020.25.13.2000280
    [20] Z. Hu, S. Liu, H. Wang, Backward bifurcation of an epidemic model with standard incidence rate and treatment rate, Nonlinear Anal. Real World Appl., 9 (2008), 2302–2312. https://doi.org/10.1016/j.nonrwa.2007.08.009 doi: 10.1016/j.nonrwa.2007.08.009
    [21] China Center for Disease Control and Prevention (China CCDC), National COVID-19 epidemic situation (September 2024) [Internet], Beijing: China CCDC; 2024 [cited 2025 Oct. 04]. Available from: https://www.chinacdc.cn/jksj/jksj01/202501/t20250117_303940.html
    [22] New Zealand Ministry of Health, National quarantine capability: Work programme and next steps [Internet], Wellington: Ministry of Health; 2024 [cited 2025 May 05]. Available from: https://www.health.govt.nz/system/files/2024-10/H2024045544.pdf.
    [23] X. Wang, Q. Li, X. Sun, et al., Effects of medical resource capacities and intensities of public mitigation measures on outcomes of COVID-19 outbreaks, BMC Public Health, 21 (2021), 1–11. https://doi.org/10.1186/s12889-021-10657-4 doi: 10.1186/s12889-021-10657-4
    [24] Z. Foroozanfar, M. Zamanian, R. Moradzadeh, F. Hajiabadi, J. Ahmadzadeh, Z. Hosseinkhani, Isolation compliance and associated factors among COVID-19 patients in north-west Iran: A cross-sectional study, Int. J. Gen. Med., 13 (2020), 1697–1703. https://doi.org/10.2147/IJGM.S264227 doi: 10.2147/IJGM.S264227
    [25] J. E. Oeltmann, D. Vohra, H. H. Matulewicz, et al., Isolation and quarantine for coronavirus disease 2019 in the United States, 2020–2022, Clin. Infect. Dis., 77 (2023), 212–219. https://doi.org/10.1093/cid/ciad163 doi: 10.1093/cid/ciad163
    [26] S. Gao, P. Binod, C. W. Chukwu, T. Kwofie, S. Safdar, L. Newman et al., A mathematical model to assess the impact of testing and isolation compliance on the transmission of COVID-19, Infect. Dis. Model., 8 (2023), 427–444. https://doi.org/10.1016/j.idm.2023.04.005 doi: 10.1016/j.idm.2023.04.005
    [27] A. Steens, B. F. De Blasio, L. Veneti, A. Gimma, W. J. Edmunds, K. Van Zandvoort et al., Poor self-reported adherence to COVID-19-related quarantine/isolation requests, Norway, April to July 2020, Eurosurveillance, 25 (2020), 2001607. https://doi.org/10.2807/1560-7917.ES.2020.25.37.2001607 doi: 10.2807/1560-7917.ES.2020.25.37.2001607
    [28] R. N. Shalan, R. Shireen, A. H. Lafta, Discrete an SIS model with immigrants and treatment, J. Interdiscip. Math., 24 (2020), 1201–1206. https://doi.org/10.1080/09720502.2020.1814496 doi: 10.1080/09720502.2020.1814496
    [29] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [30] I. Ahmad, H. Seno, An epidemic dynamics model with limited isolation capacity, Theor. Biosci., 142 (2023), 259–273. https://doi.org/10.1007/s12064-023-00399-9 doi: 10.1007/s12064-023-00399-9
    [31] Z. Fu, H. Seno, SIRI+Q model with a limited capacity of isolation, Theor. Biosci., 141 (2025), 1–24. https://doi.org/10.1007/s12064-025-00437-8 doi: 10.1007/s12064-025-00437-8
    [32] H. Zhao, L. Wang, S. M. Oliva, H. Zhu, Modeling and dynamics analysis of Zika transmission with limited medical resources, Bull. Math. Biol., 82 (2020), 1–50. https://doi.org/10.1007/s11538-020-00776-1 doi: 10.1007/s11538-020-00776-1
    [33] J. Wang, S. Liu, B. Zheng, Y. Takeuchi, T. K. N. Do, Qualitative and bifurcation analysis using an SIR model with a saturated treatment function, Math. Comput. Model., 55 (2012), 710–722. https://doi.org/10.1016/j.mcm.2011.08.045 doi: 10.1016/j.mcm.2011.08.045
    [34] V. Nenchev, Optimal quarantine control of an infectious outbreak, Chaos Solitons Fractals, 138 (2020), 110139. https://doi.org/10.1016/j.chaos.2020.110139 doi: 10.1016/j.chaos.2020.110139
    [35] T. Zhou, W. Zhang, Q. Lu, Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Appl. Math. Comput., 226 (2014), 288–305. https://doi.org/10.1016/j.amc.2013.10.020 doi: 10.1016/j.amc.2013.10.020
    [36] B. Buonomo, R. Della Marca, A. d'Onofrio, M. Groppi, A behavioural modelling approach to assess the impact of COVID-19 vaccine hesitancy, J. Theor. Biol., 534 (2022), 110973. https://doi.org/10.1016/j.jtbi.2021.110973 doi: 10.1016/j.jtbi.2021.110973
    [37] World Health Organization, COVID-19 epidemiological update – 9 October 2024 [Internet], Geneva: WHO; 2024 [cited 2025 Oct. 04]. Available from: https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-172.
    [38] Tianjin Center for Disease Control and Prevention, Epidemic situation of notifiable infectious diseases in Tianjin in January 2022 [Internet], Tianjin: CDCTJ; 2022 [cited 2025 Oct. 04]. Available from: https://www.cdctj.com.cn/system/2022/02/17/030075597.shtml.
    [39] P. Van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2 (2017), 288–303. https://doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
    [40] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [41] J. P. LaSalle, The Stability of Dynamical Systems, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1976.
    [42] N. Wang, L. Yang, S. Liu, Stochastic dynamics of coral and macroalgae: Analyzing extinction and resilience in coral reef ecosystems, Bull. Math. Biol., 87 (2025), 99. https://doi.org/10.1007/s11538-025-01479-1 doi: 10.1007/s11538-025-01479-1
    [43] X. Wang, A simple proof of Descartes's rule of signs, Am. Math. Monthly, 111 (2004), 525–526. https://doi.org/10.1080/00029890.2004.11920108 doi: 10.1080/00029890.2004.11920108
    [44] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361
    [45] C. Chen, Y. Xiao, Modeling saturated diagnosis and vaccination in reducing HIV/AIDS infection, Abstr. Appl. Anal., 2014 (2014), 414383. https://doi.org/10.1155/2014/414383 doi: 10.1155/2014/414383
    [46] Health Commission of Hubei Province, COVID-19 epidemic situation in Hubei Province on February 20, 2020 [Internet], Wuhan: Health Commission of Hubei Province; 2020 [cited 2025 May 05]. Available from: https://wjw.hubei.gov.cn/bmdt/ztzl/fkxxgzbdgrfyyq/xxfb/202002/t20200221_2144225.shtml.
    [47] H. Song, R. Wang, S. Liu, Z. Jin, D. He, Global stability and optimal control for a COVID-19 model with vaccination and isolation delays, Results Phys., 42 (2022), 106011. https://doi.org/10.1016/j.rinp.2022.106011 doi: 10.1016/j.rinp.2022.106011
    [48] M. A. Safi, A. B. Gumel, The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, Nonlinear Anal. Real World Appl., 12 (2011), 215–235. https://doi.org/10.1016/j.nonrwa.2010.06.009 doi: 10.1016/j.nonrwa.2010.06.009
    [49] Z. Memon, S. Qureshi, B. R. Memon, Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: a case study, Chaos Solitons Fractals, 144 (2021), 110655. https://doi.org/10.1016/j.chaos.2021.110655 doi: 10.1016/j.chaos.2021.110655
    [50] M. Shen, Y. Xiao, G. Zhuang, Y. Li, L. Zhang, Mass testing—An underexplored strategy for COVID-19 control, The Innovation, 2 (2021), 100114. https://doi.org/10.1016/j.xinn.2021.100114 doi: 10.1016/j.xinn.2021.100114
    [51] D. P. Oran, E. J. Topol, Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review, Ann. Intern. Med., 173 (2020), 362–367. https://doi.org/10.7326/M20-3012 doi: 10.7326/M20-3012
    [52] M. A. Seibold, C. M. Moore, J. L. Everman, B. J. M. Williams, J. D. Nolin, A. Fairbanks-Mahnke et al., Risk factors for SARS-CoV-2 infection and transmission in households with children with asthma and allergy: A prospective surveillance study, J. Allergy Clin. Immunol., 150 (2022), 302–311. https://doi.org/10.1016/j.jaci.2022.05.014 doi: 10.1016/j.jaci.2022.05.014
    [53] B. Nussbaumer-Streit, V. Mayr, A. I. Dobrescu, A. Chapman, E. Persad, I. Klerings et al., Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review, Cochrane Database Syst. Rev., (2020), CD013574. https://doi.org/10.1002/14651858.CD013574
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(321) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog