Accurately predicting the discharge coefficient (Cd) is fundamental to the hydraulic design and performance of side weirs. In this study, we introduced a novel artificial intelligence (AI) framework to enhance the prediction accuracy of Cd for two-cycle trapezoidal labyrinth side weirs. Using a comprehensive laboratory dataset, three distinct machine learning models (MLMs), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Gene Expression Programming (GEP), were developed and rigorously compared with application of the Γ-test technique for sensitivity analysis, systematically identifying the five most influential geometric and hydraulic parameters (Fr, $ \frac{\text{L}}{\text{B}} $, $ \frac{{\text{L}}_{\text{e}}}{\text{L}} $, $ \frac{{\text{Y}}_{\text{1}}\text{-P}}{\text{P}} $, α) to serve as model inputs. The model's efficacy was evaluated across training, testing, and validation phases using multiple statistical metrics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2), and the Maximum Developed Discrepancy Ratio (Cd(DDRmax)). The results demonstrated that the three MLMs are effective predictive tools. However, the ANN model, specifically an MLP5-7-1 architecture utilizing Atan and Identity activation functions optimized with the BFGS 385 algorithm, significantly outperformed the others. It achieved superior results (e.g., validation phase: RMSE = 0.0061, MAE = 0.0003, R2 = 0.9301, Cd(DDRmax) = 5.22), confirming its highest predictive accuracy and robustness. This research conclusively shows that MLMs, particularly ANN, offer a highly precise and efficient method for predicting Cd in complex hydraulic structures.
Citation: Mehdi Fuladipanah, Saleema Panda, Namal Rathnayake, Upaka Rathnayake, Hazi Md. Azamathulla, Yukinobu Hoshino. Artificial Intelligence for Hydraulic Engineering: Predicting discharge coefficients in trapezoidal side weirs[J]. Mathematical Biosciences and Engineering, 2025, 22(12): 3236-3261. doi: 10.3934/mbe.2025119
Accurately predicting the discharge coefficient (Cd) is fundamental to the hydraulic design and performance of side weirs. In this study, we introduced a novel artificial intelligence (AI) framework to enhance the prediction accuracy of Cd for two-cycle trapezoidal labyrinth side weirs. Using a comprehensive laboratory dataset, three distinct machine learning models (MLMs), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Gene Expression Programming (GEP), were developed and rigorously compared with application of the Γ-test technique for sensitivity analysis, systematically identifying the five most influential geometric and hydraulic parameters (Fr, $ \frac{\text{L}}{\text{B}} $, $ \frac{{\text{L}}_{\text{e}}}{\text{L}} $, $ \frac{{\text{Y}}_{\text{1}}\text{-P}}{\text{P}} $, α) to serve as model inputs. The model's efficacy was evaluated across training, testing, and validation phases using multiple statistical metrics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R2), and the Maximum Developed Discrepancy Ratio (Cd(DDRmax)). The results demonstrated that the three MLMs are effective predictive tools. However, the ANN model, specifically an MLP5-7-1 architecture utilizing Atan and Identity activation functions optimized with the BFGS 385 algorithm, significantly outperformed the others. It achieved superior results (e.g., validation phase: RMSE = 0.0061, MAE = 0.0003, R2 = 0.9301, Cd(DDRmax) = 5.22), confirming its highest predictive accuracy and robustness. This research conclusively shows that MLMs, particularly ANN, offer a highly precise and efficient method for predicting Cd in complex hydraulic structures.
| [1] |
E. M. Emiroglu, M. Cihan Aydin, N. Kaya, Discharge characteristics of a trapezoidal labyrinth side weir with one and two cycles in subcritical flow, J. Irrig. Drain. Eng., 140 (2014), 04014007. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000709 doi: 10.1061/(ASCE)IR.1943-4774.0000709
|
| [2] | X. Han, H. Zhang, N. Yi, G. Gao, Experimental study on flow capacity of a typical side weir, In: Proceedings of the 5th International Conference on Advances in Civil and Ecological Engineering Research, Springer, (2024), 245–255. https://doi.org/10.1007/978-981-99-5716-3_21 |
| [3] | H. F. Isleem, M. K. Elshaarawy, A. K. Hamed, Analysis of flow dynamics and energy dissipation in piano key and labyrinth weirs using computational fluid dynamics, In: Computational Fluid Dynamics-Analysis, Simulations, and Applications, IntechOpen, (2024). https://doi.org/10.5772/intechopen.1006332 |
| [4] |
S. M. Seyedian, O. Kisi, Uncertainty analysis of discharge coefficient predicted for rectangular side weir using machine learning methods, J. Hydrol. Hydromechan., 72 (2024), 113–130. https://doi.org/10.2478/johh-2023-0043 doi: 10.2478/johh-2023-0043
|
| [5] |
Z. M. Hadi, H. Q. Majeed, Experimental and numerical study of the discharge capacity of a labyrinth side weir in a straight channel, AIP Conference Proceedings, 3091 (2024), 020038. https://doi.org/10.1063/5.0204400 doi: 10.1063/5.0204400
|
| [6] |
S. M. Borghei, M. A. Nekooie, H. Sadeghian, M. R. J. Ghazizadeh, Triangular labyrinth side weirs with one and two cycles, Proc. Inst. Civ. Eng. Water Manag., 166 (2011), 27–42. https://doi.org/10.1680/wama.11.00032 doi: 10.1680/wama.11.00032
|
| [7] | M. R. Namaee, An investigation of flow over side weir by numerical model, J. De L'hydraulique, 36 (2014), 1–11. Available from: https://www.persee.fr/doc/jhydr_0000-0001_2014_act_36_1_2313 |
| [8] |
S. Balahang, M. Ghodsian, Evaluating performance of various methods in predicting triangular sharp-crested side weir discharge, Appl. Water Sci., 13 (2023), 171. https://doi.org/10.1007/s13201-023-01971-w doi: 10.1007/s13201-023-01971-w
|
| [9] |
A. Lindermuth, T. St Pierre Ostrander, S. Achleitner, B. Gems, M. Aufleger, Discharge calculation of side weirs with several weir fields considering the undisturbed normal flow depth in the channel, Water, 13 (2021), 1717. https://doi.org/10.3390/w13131717 doi: 10.3390/w13131717
|
| [10] |
S. Bagheri, A. H. Kabiri-Samani, M. Heidarpour, Discharge coefficient of rectangular sharp-crested side weirs Part I: Traditional weir equation, Flow Meas. Instrum., 35 (2014), 109–115. https://doi.org/10.1016/j.flowmeasinst.2013.11.005 doi: 10.1016/j.flowmeasinst.2013.11.005
|
| [11] |
S. Bagheri, A. R. Kabiri-Samani, M. Heidarpour, Discharge coefficient of rectangular sharp-crested side weirs part Ⅱ: Domınguez's method, Flow Meas. Instrum., 35 (2014), 116–121. https://doi.org/10.1016/j.flowmeasinst.2013.10.006 doi: 10.1016/j.flowmeasinst.2013.10.006
|
| [12] |
T. Nandesamoorthy, A. Thomson, Discussion of spatially varied flow over side weir, ASCE J. Hydraul. Division, 98 (1972), 2234–2235. https://doi.org/10.1061/JYCEAJ.0003529 doi: 10.1061/JYCEAJ.0003529
|
| [13] |
K. Subramanya, S. C. Awasthy, Spatially varied flow over side weirs, ASCE J. Hydraul. Division, 98 (1972), 1–10. https://doi.org/10.1061/JYCEAJ.0003188 doi: 10.1061/JYCEAJ.0003188
|
| [14] |
L. Yu-Tech, Discussion of spatially varied flow over side weir, ASCE J. Hydraul. Division, 98 (1972), 2046–2048. https://doi.org/10.1061/JYCEAJ.0003489 doi: 10.1061/JYCEAJ.0003489
|
| [15] |
C. P. Kumar, S. K. Pathak, Triangular side weirs, ASCE J. Irrig. Drain. Eng., 113 (1987), 98–105. https://doi.org/10.1061/(ASCE)0733-9437(1987)113:1(98) doi: 10.1061/(ASCE)0733-9437(1987)113:1(98)
|
| [16] |
K. G. R. Raju, B. Prasad, S. K. Grupta, Side weir in rectangular channel, ASCE J. Hydraul. Division, 105 (1979), 547–554. https://doi.org/10.1061/JYCEAJ.0005207 doi: 10.1061/JYCEAJ.0005207
|
| [17] |
W. H. Hager, Lateral outflow over side weirs, ASCE J. Hydraul. Eng., 113 (1987), 491–504. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:4(491) doi: 10.1061/(ASCE)0733-9429(1987)113:4(491)
|
| [18] |
H. F. Cheong, Discharge coefficient of lateral diversion from trapezoidal channel, ASCE J. Irrig. Drain. Eng., 117 (1991), 321–333. https://doi.org/10.1061/(ASCE)0733-9437(1991)117:4(461) doi: 10.1061/(ASCE)0733-9437(1991)117:4(461)
|
| [19] |
R. Singh, D. Manivannan, T. Satyanarayana, Discharge coefficient of rectangular side weirs, ASCE J. Irrig. Drain. Eng., 20 (1994), 814–819. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:4(814) doi: 10.1061/(ASCE)0733-9437(1994)120:4(814)
|
| [20] |
P. K. Swamee, S. K. P. Santosh, S. A. Masoud, Side weir analysis using elementary discharge coefficient, ASCE J. Irrig. Drain. Eng., 20 (1994), 742–755. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:4(742) doi: 10.1061/(ASCE)0733-9437(1994)120:4(742)
|
| [21] |
M. R. Jalili, S. M. Borghei, Discussion: Discharge coefficient of rectangular side weirs, ASCE J. Irrigat. Drain. Eng., 122 (1996), 132. https://doi.org/10.1061/(ASCE)0733-9437(1996)122:2(132) doi: 10.1061/(ASCE)0733-9437(1996)122:2(132)
|
| [22] | M. Borghei, M. R. Jalili, M. Ghodsian, Discharge coefficient for sharp-crested side weir in subcritical flow, ASCE J. Hydraul. Eng., 125 (11999), 1051–1056. https://doi.org/10.1061/(ASCE)0733-9429(1999)125: 10(1051) |
| [23] | M. Ghodsian, Flow over triangular side weir, Sci. Iran. Sharif Univ. Technol., 11 (2004), 114–120. |
| [24] |
K. H. V. Durga Rao, C. R. S. Pillai, Study of flow over side weirs under supercritical conditions, Water Resour. Manag., 22 (2008), 131–143. https://doi.org/10.1007/s11269-007-9153-4 doi: 10.1007/s11269-007-9153-4
|
| [25] |
O. Bilhan, M. E. Emiroglu, O. Kisi, Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel, Adv. Eng. Software, 41 (2010), 831–837. https://doi.org/10.1016/j.advengsoft.2010.03.001 doi: 10.1016/j.advengsoft.2010.03.001
|
| [26] |
O. Bilhan, M. E. Emiroglu, O. Kisi, Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels, Adv. Eng. Software, 42 (2011), 208–214. https://doi.org/10.1016/j.advengsoft.2011.02.006 doi: 10.1016/j.advengsoft.2011.02.006
|
| [27] |
M. E. Emiroglu, H. Agaccioglu, N. Kaya, Discharging capacity of rectangular side weirs in straight open channels, Flow Meas. Instrum., 22 (2011), 319–330. https://doi.org/10.1016/j.flowmeasinst.2011.04.003 doi: 10.1016/j.flowmeasinst.2011.04.003
|
| [28] |
M. E. Emiroglu, N. Kaya, Discharge coefficient for trapezoidal labyrinth side weir in subcritical flow, Water Resour. Manag., 25 (2011), 1037–1058. https://doi.org/10.1007/s11269-010-9740-7 doi: 10.1007/s11269-010-9740-7
|
| [29] |
A. Keshavarzi, J. Ball, Discharge coefficient of sharp‐crested side weir in trapezoidal channel with different side-wall slopes under subcritical flow conditions, Irrig. Drain., 63 (2014), 512–522. https://doi.org/10.1002/ird.1856 doi: 10.1002/ird.1856
|
| [30] | M. Ura, Y. Kita, J. Akiyama, H. Moriyama, J. A. Kumar, Discharge coefficient of oblique side weirs, J. Hydrosci. Hydraul. Eng., 19 (2001), 85–96. |
| [31] |
M. E. Emiroglu, N. Kaya, H. Agaccioglu, Discharge capacity of labyrinth side weir located on a straight channel, J. Irrig. Drain. Eng., 136 (2010), 37–46. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000112 doi: 10.1061/(ASCE)IR.1943-4774.0000112
|
| [32] |
S. M. Borghei, A. Parvaneh, Discharge characteristics of a modified oblique side weir in subcritical flow, Flow Meas. Instrum., 22 (2011), 370–376. https://doi.org/10.1016/j.flowmeasinst.2011.04.009 doi: 10.1016/j.flowmeasinst.2011.04.009
|
| [33] | M. Karimi, M. J. Ghazizadeh, M. Saneie, J. Attari, Flow characteristics over asymmetric triangular labyrinth side weirs, Flow Meas. Instrum., 68, (2019), 101574. https://doi.org/10.1016/j.flowmeasinst.2019.101574 |
| [34] |
B. S. Hussein, S. A. Jalil, Hydrodynamic behavior simulation of flow performance over labyrinth side weir, Polish J. Environ. Studies, 33 (2024), 1159–1171. https://doi.org/10.15244/pjoes/173442 doi: 10.15244/pjoes/173442
|
| [35] | Y. Qian, P. Guo, Y. Wang, Y. Zhao, H. Lin, Y. Liu, Advances in laboratory-scale hydraulic fracturing experiments, Adv. Civil Eng., (2020), 1–18. https://doi.org/10.1155/2020/1386581 |
| [36] |
A. M. Armanuos, M. K. Elshaarawy, Estimating saltwater wedge length in sloping coastal aquifers using explainable machine learning models, Earth Sci. Inform., 18 (2025), 405. https://doi.org/10.1007/s12145-025-01900-2 doi: 10.1007/s12145-025-01900-2
|
| [37] |
A. K. Hamed, M. K. Elshaarawy, Soft computing approaches for forecasting discharge over symmetrical piano key weirs, AI Civil Eng., 4 (2025), 6. https://doi.org/10.1007/s43503-024-00048-0 doi: 10.1007/s43503-024-00048-0
|
| [38] |
A. K. Hamed, M. K. Elshaarawy, M. M. Alsaadawi, Stacked-based machine learning to predict the uniaxial compressive strength of concrete materials, Comput. Struct., 308 (2025), 107644. https://doi.org/10.1016/j.compstruc.2025.107644 doi: 10.1016/j.compstruc.2025.107644
|
| [39] |
R. Fatahi-Alkouhi, E. Afaridegan, N. Amanian, Discharge coefficient estimation of modified semi-cylindrical weirs using machine learning approaches, Stochast. Environ. Res. Risk Assess., 38 (2024), 3177–3198. https://doi.org/10.1007/s00477-024-02739-7 doi: 10.1007/s00477-024-02739-7
|
| [40] | S. Emami, H. Emami, J. Parsa, LXGB: A machine learning algorithm for estimating the discharge coefficient of pseudo-cosine labyrinth weir, Sci. Rep., 13 (2023). https://doi.org/10.1038/s41598-023-39272-6 |
| [41] |
W. Chen, D. Sharifrazi, G. Liang, S. S. Band, K. W. Chau, A. Mosavi, Accurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unit, Eng. Appl. Comput. Fluid Mechan., 16 (2022), 965–976. https://doi.org/10.1080/19942060.2022.2053786 doi: 10.1080/19942060.2022.2053786
|
| [42] |
N. H. Elmasry, M. K. Elshaarawy, Hybrid metaheuristic optimized Catboost models for construction cost estimation of concrete solid slabs, Sci. Rep., 15 (2025), 21612. https://doi.org/10.1038/s41598-025-06380-4 doi: 10.1038/s41598-025-06380-4
|
| [43] |
D. F. N. Dursun, M. Firat Kaya, Estimating discharge coefficient of semi-elliptical side weir using ANFIS, J. Hydrol., 426 (2012), 55–62. https://doi.org/10.1016/j.jhydrol.2012.01.010 doi: 10.1016/j.jhydrol.2012.01.010
|
| [44] |
A. H. Zaji, H. Bonakdari, Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs, Flow Meas. Instrum., 40 (2014), 149–156. https://doi.org/10.1016/j.flowmeasinst.2014.10.002 doi: 10.1016/j.flowmeasinst.2014.10.002
|
| [45] |
A. Parsaie, A. Haghiabi, The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir, Water Resour. Manag., 29 (2015), 973–985. https://doi.org/10.1007/s11269-014-0827-4 doi: 10.1007/s11269-014-0827-4
|
| [46] |
I. Ebtehaj, H. Bonakdari, A. H. Zaji, H. Azimi, A. Sharifi, Gene expression programming to predict the discharge coefficient in rectangular side weirs, Appl. Soft Comput., 35 (2015), 618–628. https://doi.org/10.1016/j.asoc.2015.07.003 doi: 10.1016/j.asoc.2015.07.003
|
| [47] |
A. Eghbalzadeh, M. Javan, M. Hayati, A. Amini, Discharge prediction of circular and rectangular side orifices using artificial neural networks, KSCE J. Civ. Eng., 20 (2016), 990–996. https://doi.org/10.1007/s12205-015-0440-y doi: 10.1007/s12205-015-0440-y
|
| [48] |
F. Khoshbin, H. Bonakdari, S. H. Ashraf Talesh, Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs, Eng. Optim., 48 (2016), 933–948. https://doi.org/10.1080/0305215X.2015.1071807 doi: 10.1080/0305215X.2015.1071807
|
| [49] |
H. M. Azamathulla, A. H. Haghiabi, A. Parsaie, Prediction of side weir discharge coefficient by support vector machine technique, Water Supply, 16 (2016), 1002–1016. https://doi.org/10.2166/ws.2016.014 doi: 10.2166/ws.2016.014
|
| [50] | Y. Yasi, Z. Gholami, Performance evaluation of discharge coefficient in physical models of labyrinth fuse gate spillways with intellectual and statistical models, Iran J. Irrig. Drain., 11 (2017), 798–809. |
| [51] |
H. Karami, S. Karimi, M. Rahmanimanesh, S. Farzin, Predicting discharge coefficient of triangular labyrinth weir using support vector regression support vector regression-firefly response surface methodology and principal component analysis, Flow Meas. Instrum., 55 (2017), 75–81. https://doi.org/10.1016/j.flowmeasinst.2016.11.010 doi: 10.1016/j.flowmeasinst.2016.11.010
|
| [52] |
S. Shabanlou, Improvement of extreme learning machine using self-adaptive evolutionary algorithm for estimating discharge capacity of sharp-crested weirs located on the end of circular channels, Flow Meas. Instrum., 59 (2018), 63–71. https://doi.org/10.1016/j.flowmeasinst.2017.11.003 doi: 10.1016/j.flowmeasinst.2017.11.003
|
| [53] |
A. H. Azimi, A. Rajabi, S. Shabanlu, Optimized ANFIS-genetic algorithm-particle swarm optimization model for estimation of side orifices discharge coefficient, J. Numer. Methods Civ. Eng., 2 (2018), 27–38. https://doi.org/10.29252/nmce.2.4.27 doi: 10.29252/nmce.2.4.27
|
| [54] |
R. Ezzeldin, A. Hatata, Application of NARX neural network model for discharge prediction through lateral orifices, Alex. Eng. J., 57 (2018), 2991–2998. https://doi.org/10.1016/j.aej.2018.04.001 doi: 10.1016/j.aej.2018.04.001
|
| [55] | A. Parsaie, A. Haghiabi, Z. Shamsi, Intelligent mathematical modeling of discharge coefficient of non-linear weirs with triangular plan, AUT J. Civ. Eng., 3 (2019), 149–156. |
| [56] |
M. Majedi Asl, M. Fuladipanah, Application of the evolutionary methods in determining the discharge coefficient of triangular labyrinth weirs, JWSS-Isfahan Univ. Technol., 22 (2019), 279–290. https://doi.org/10.29252/jstnar.22.4.279 doi: 10.29252/jstnar.22.4.279
|
| [57] | A. Parsaie, A. H. Haghiabi, Mathematical expression for discharge coefficient of Weir-Gate using soft computing techniques, J. Appl. Water Eng. Res., (2020), 1–9. https://doi.org/10.1080/23249676.2020.1787250 |
| [58] |
A. Y. Mohammed, A. Sharifi, Gene Expression Programming (GEP) to predict coefficient of discharge for oblique side weir, Appl. Water Sci., 10 (2020), 1–9. https://doi.org/10.1007/s13201-020-01211-5 doi: 10.1007/s13201-020-01211-5
|
| [59] | A. Hussain, A. Shariq, M. Danish, M. A. Ansari, Discharge coefficient estimation for rectangular side weir using GEP and GMDH methods, Adv. Comput. Design, 6 (2021), 135–151. |
| [60] |
Z. Hu, H. Karami, A. Rezaei, Y. DadrasAjirlou, Md. J. Piran, S. S. Band, et al., Using soft computing and machine learning algorithms to predict the discharge coefficient of curved labyrinth overflows, Eng. Appl. Comput. Fluid Mech., 15 (2021), 1002–1015. https://doi.org/10.1080/19942060.2021.1934546 doi: 10.1080/19942060.2021.1934546
|
| [61] |
M. D. Mustafa, T. Mansoor, M. Muzzammil, Support vector machine (SVM) approach to develop the discharge prediction model for triangular labyrinth weir, Water Supply, 22 (2022), 8942–8956. https://doi.org/10.2166/ws.2022.393 doi: 10.2166/ws.2022.393
|
| [62] | M. Fuladipanah, M. Majedi-Asl, Soft computing application to amplify discharge coefficient prediction in side rectangular weirs, Irrig. Water Eng., 12 (2022), 213–233. |
| [63] |
M. Majedi-Asl, M. Fuladipanah, V. Arun, R. P. Tripathi, Using data mining methods to improve discharge coefficient prediction in Piano Key and Labyrinth weirs, Water Supply, 22 (2022), 1964–1982. https://doi.org/10.2166/ws.2021.304 doi: 10.2166/ws.2021.304
|
| [64] |
S. Li, G. Shen, A. Parsaie, G. Li, D. Cao, Discharge modeling and characteristic analysis of semi-circular side weir based on the soft computing method, J. Hydroinform., 26 (2024), 175–188. https://doi.org/10.2166/hydro.2023.268 doi: 10.2166/hydro.2023.268
|
| [65] |
W. Tian, H. F. Isleem, A. K. Hamed, M. K. Elshaarawy, Enhancing discharge prediction over Type-A piano key weirs: An innovative machine learning approach, Flow Meas. Instrum., 100 (2024), 102732. https://doi.org/10.1016/j.flowmeasinst.2024.102732 doi: 10.1016/j.flowmeasinst.2024.102732
|
| [66] | P. Heramb, P. K. Singh, K. V. R. Rao, A. Subeesh, Modelling reference evapotranspiration using gene expression programming and artificial neural network at Pantnagar, India, Inf. Process. Agric., (2022). https://doi.org/10.1016/j.inpa.2022.05.007 |
| [67] |
M. Fuladipanah, A. Shahhosseini, N. Rathnayake, H. M. Azamathulla, U. Rathnayake, D. P. P. Meddage, et al., In-depth simulation of rainfall–runoff relationships using machine learning methods, Water Pr. Technol., 19 (2024), 2442–2459. https://doi.org/10.2166/wpt.2024.147 doi: 10.2166/wpt.2024.147
|
| [68] | N. Koncar, Optimisation methodologies for direct inverse neurocontrol (Publication No. SW72BZ), Doctoral dissertation, London University, England, (1997). |
| [69] |
A. Malik, Y. Tikhamarine, N. Al-Ansari, S. Shahid, H. S. Sekhon, R. K. Pal, et al., Daily pan-evaporation estimation in different agroclimatic zones using novel hybrid support vector regression optimized by Salp swarm algorithm in conjunction with gamma test, Eng. Appl. Comput. Fluid Mech., 15 (2021), 1075–1094. https://doi.org/10.1080/19942060.2021.1942990 doi: 10.1080/19942060.2021.1942990
|