Climatic factors exert a substantial influence on both biotic and abiotic components of marine ecosystems, significantly affecting the abundance and spatial distribution of fish species. In this study, we introduced a stochastic modeling framework, grounded in stochastic differential equations (SDEs), to analyze the temporal dynamics of sea surface temperature and its relationship with the abundance of Mahi Mahi (Coryphaena hippurus) in a region of the Colombian Pacific coast. Model parameters such as sea surface temperature, fish stock, and catch per unit effort for the period 2000 to 2012 were estimated using the maximum likelihood method, implemented via the Euler–Maruyama numerical scheme. The model's performance was assessed using empirical data through numerical simulation, cross-validation, and sensitivity analysis, demonstrating its applicability and robustness in capturing key ecological dynamics.
Citation: Erika Johanna Martínez-Salinas, Andrés Ríos-Gutiérrez, Viswanathan Arunachalam, John Josephraj Selvaraj. Environmental variability and fish stock dynamics: a stochastic model of Mahi Mahi abundance[J]. Mathematical Biosciences and Engineering, 2025, 22(12): 3107-3129. doi: 10.3934/mbe.2025115
Climatic factors exert a substantial influence on both biotic and abiotic components of marine ecosystems, significantly affecting the abundance and spatial distribution of fish species. In this study, we introduced a stochastic modeling framework, grounded in stochastic differential equations (SDEs), to analyze the temporal dynamics of sea surface temperature and its relationship with the abundance of Mahi Mahi (Coryphaena hippurus) in a region of the Colombian Pacific coast. Model parameters such as sea surface temperature, fish stock, and catch per unit effort for the period 2000 to 2012 were estimated using the maximum likelihood method, implemented via the Euler–Maruyama numerical scheme. The model's performance was assessed using empirical data through numerical simulation, cross-validation, and sensitivity analysis, demonstrating its applicability and robustness in capturing key ecological dynamics.
| [1] | V. Puentes, F. Escobar, C. Polo, J. Alonso, Estado de los Principales Recursos Pesqueros de Colombia–2014, Autoridad Nacional de Acuicultura y Pesca–AUNAP, 2014. |
| [2] | K. Cochrane, C. De Young, D. Soto, T. Bahri, Consecuencias del Cambio Climático Para la Pesca y la Acuicultura. Visión de Conjunto del Estado Actual de Los Conocimientos Científicos, FAO, 2012. Available from: https://adaptecca.es/recursos/buscador/consecuencias-del-cambio-climatico-para-la-pesca-y-la-acuicultura-vision-de. |
| [3] |
V. Kothandaraman, Air-water temperature relationship in Illinois river, J. Am. Water Resour. Assoc., 8 (1972), 38–45. https://doi.org/10.1111/j.1752-1688.1972.tb05091.x doi: 10.1111/j.1752-1688.1972.tb05091.x
|
| [4] | R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Stochastic Optim. Models Finance, (1975), 621–661. https://doi.org/10.1016/B978-0-12-780850-5.50052-6 |
| [5] |
R. S. Pindyck, Uncertain outcomes and climate change policy, J. Environ. Econ. Manage., 63 (2012), 289–303. https://doi.org/10.1016/j.jeem.2011.12.001 doi: 10.1016/j.jeem.2011.12.001
|
| [6] |
J. Torralba, M. Besada, A stochastic model for the Ibero-Atlantic sardine fishery. Global warming and economic effects, Ocean Coastal Manage., 114 (2015), 175–184. https://doi.org/10.1016/j.ocecoaman.2015.06.023 doi: 10.1016/j.ocecoaman.2015.06.023
|
| [7] |
T. M. Canales, M. Lima, R. Wiff, J. E. Contreras-Reyes, U. Cifuentes, J. Montero, Endogenous, climate, and fishing influences on the population dynamics of small pelagic fish in the southern Humboldt current ecosystem, Front. Mar. Sci., 7 (2020), 82 https://doi.org/10.3389/fmars.2020.00082 doi: 10.3389/fmars.2020.00082
|
| [8] |
L. Barboza, B. Li, M. P. Tingley, F. G. Viens, Reconstructing past temperatures from natural proxies and estimated climate forcings using short-and long-memory models, Ann. Appl. Stat., 8 (2014), 1966–2001. https://doi.org/10.1214/14-AOAS785 doi: 10.1214/14-AOAS785
|
| [9] | F. Dornier, M. Queruel, Caution to the wind, Energy Power Risk Manage., 13 (2000), 30–32. |
| [10] |
D. C. Brody, J. Syroka, M. Zervos, et al., Dynamical pricing of weather derivatives, Quantit. Finance, 2 (2002), 189–198. https://doi.org/10.1088/1469-7688/2/3/302 doi: 10.1088/1469-7688/2/3/302
|
| [11] |
N. C. Dzupire, P. Ngare, L. Odongo, Lévy process based Ornstein-Uhlenbeck temperature model with time varying speed of mean reversion, Adv. Appl. Stat., 53 (2018), 199–224. https://doi.org/10.17654/as053030199 doi: 10.17654/as053030199
|
| [12] |
W. Swartz, R. Sumaila, R. Watson, Global ex-vessel fish price database revisited: A new approach for estimating missing prices, Environ. Resource Econ., 56 (2013), 467–480. https://doi.org/10.1007/s10640-012-9611-1 doi: 10.1007/s10640-012-9611-1
|
| [13] |
L. M. Saavedra-Díaz, R. Pomeroy, A. A. Rosenberg, Managing small-scale fisheries in Colombia, Marit. Stud., 15 (2016), 6. https://doi.org/10.1186/s40152-016-0047-z doi: 10.1186/s40152-016-0047-z
|
| [14] | A. Lindop, T. Chen, K. Zylich, D. Zeller, A Reconstruction of Colombia's Marine Fisheries Catches, Fisheries Centre, The University of British Columbia, 2015. |
| [15] | D. Zeller, D. Pauly, Reconstruction of Marine Fisheries Catches for Fey Countries and Regions (1950–2005), Fisheries Centre, University of British Columbia, 2007. |
| [16] |
P. J. Rojas-Higuera, J. D. Pabón-Caicedo, Sobre el calentamiento y la acidificación del océano mundial y su posible expresión en el medio marino costero colombiano, Revista Acad. Colomb. Cienc. Ex. Fis. Nat., 39 (2015), 201–217. https://doi.org/10.18257/raccefyn.135 doi: 10.18257/raccefyn.135
|
| [17] | Food and Agriculture Organization, Consecuencias del Cambio Climático Para la Pesca y la Acuicultura, 2012. |
| [18] |
E. H. Allison, A. L. Perry, M. C. Badjeck, W. Neil Adger, K. Brown, D. Conway, et al., Vulnerability of national economies to the impacts of climate change on fisheries, Fish Fish., 10 (2009), 173–196. https://doi.org/10.1111/j.1467-2979.2008.00310.x doi: 10.1111/j.1467-2979.2008.00310.x
|
| [19] |
J. J. Selvaraj, V. Arunachalam, K. V. Coronado-Franco, L. V. Romero-Orjuela, Y. N. Ramírez-Yara, Time-series modeling of fishery landings in the Colombian Pacific Ocean using an ARIMA model, Reg. Stud. Mar. Sci., 39 (2020), 101477. https://doi.org/10.1016/j.rsma.2020.101477 doi: 10.1016/j.rsma.2020.101477
|
| [20] | N. M. Razali, Y. B. Wah, Power comparisons of Shapiro–Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests, J. Stat. Model. Anal., 2 (2011), 21–33. |
| [21] |
P. Alaton, B. Djehiche, D. Stillberger, On modelling and pricing weather derivatives, Appl. Math. Finance, 9 (2002), 1–20. https://doi.org/10.1080/13504860210132897 doi: 10.1080/13504860210132897
|
| [22] | A. Aguilar, Z. Malpica, B. Urbina, Dinamica de Poblaciones de Peces, primera edición, Libertad, 1995. |
| [23] |
N. H. Shah, B. M. Yeolekar, Optimal fish harvesting with deterioration, effort and price-sensitive demand, Adv. Appl. Math., 1 (2016), 124–131. https://doi.org/10.22606/jaam.2016.12005 doi: 10.22606/jaam.2016.12005
|
| [24] | M. Kessler, A. Lindner, M. Sørensen, Statistical Methods for Stochastic Differential Equations, 1st Edition, Chapman and Hall/CRC, New York, 2012. |
| [25] | P. J. Bickel, K. A. Doksum, Mathematical Statistics: Basic Ideas and Selected Topics, 1st Edition, Chapman and Hall/CRC, New York, 2015. |
| [26] | B. M. Bibby, M. Sørensen, Martingale estimation functions for discretely observed diffusion processes, Bernoulli, (1995), 17–39. https://doi.org/10.2307/3318679 |
| [27] | I. Basawa, B. Prakasa Rao, Statistical Inference for Stochastic Processes, Academic Press, (1980). |
| [28] | E. Martínez-Salinas, Un Modelo Estocástico Para Analizar Los Efectos de la Variación de la Temperatura Sobre la Captura Pesquera a lo Largo de la Costa del Pacífico Colombiano, Master's thesis, Universidad Nacional de Colombia, 2020). |
| [29] |
P. Aguirre, E. González-Olivares, S. Torres, Stochastic predator-prey model with allee effect on prey, Nonlinear Anal. Real World Appl., 14 (2013), 768–779. https://doi.org/10.1016/j.nonrwa.2012.07.032 doi: 10.1016/j.nonrwa.2012.07.032
|
| [30] |
A. Ríos-Gutiérrez, S. Torres, V. Arunachalam, Studies on the basic reproduction number in stochastic epidemic models with random perturbations, Adv. Differ. Equations, 288 (2021), 1–24. https://doi.org/10.1186/s13662-021-03445-2 doi: 10.1186/s13662-021-03445-2
|
| [31] | E. Alpaydin, Introduction to Machine Learning, MIT Press, 2020, |
| [32] | L. Arriola, J. M. Hyman, Sensitivity analysis for uncertainty quantification in mathematical models, in Mathematical and Statistical Estimation Approaches in Epidemiology, Springer, (2009), 195–247. |