Research article Special Issues

A compartmental epidemic model with age stratification for insurance premium calculation

  • Received: 16 June 2025 Revised: 27 August 2025 Accepted: 04 September 2025 Published: 17 October 2025
  • This paper develops a mathematical framework for life and health insurance premium calculation under epidemic conditions, incorporating age-structured population dynamics and disease compartments. We proposed a compartmental epidemic model with three age groups and four states (susceptible, infectious, recovered, deceased) to reflect heterogeneity in disease progression and risk exposure. The model captures differential mortality and morbidity risks across age groups and infection states, enabling dynamic adjustment of insurance premiums. By integrating actuarial principles with epidemic-driven transition probabilities, we derived explicit premium formulas and validated them through numerical simulations. Our results demonstrate that age stratification and detailed infection stages significantly impact premium pricing, particularly for older populations with higher mortality risks. Sensitivity analysis reveals that recovery and mortality rates are key drivers of premium variability. The framework provides insurers with a robust tool for pandemic risk assessment, ensuring solvency while maintaining affordability.

    Citation: Shirali Kadyrov, Gauhar Kayumova, Asilbek Yallaboyev, Bizhigit Sagidolla. A compartmental epidemic model with age stratification for insurance premium calculation[J]. Mathematical Biosciences and Engineering, 2025, 22(12): 3088-3106. doi: 10.3934/mbe.2025114

    Related Papers:

  • This paper develops a mathematical framework for life and health insurance premium calculation under epidemic conditions, incorporating age-structured population dynamics and disease compartments. We proposed a compartmental epidemic model with three age groups and four states (susceptible, infectious, recovered, deceased) to reflect heterogeneity in disease progression and risk exposure. The model captures differential mortality and morbidity risks across age groups and infection states, enabling dynamic adjustment of insurance premiums. By integrating actuarial principles with epidemic-driven transition probabilities, we derived explicit premium formulas and validated them through numerical simulations. Our results demonstrate that age stratification and detailed infection stages significantly impact premium pricing, particularly for older populations with higher mortality risks. Sensitivity analysis reveals that recovery and mortality rates are key drivers of premium variability. The framework provides insurers with a robust tool for pandemic risk assessment, ensuring solvency while maintaining affordability.



    加载中


    [1] L. Francis, M. Steffensen, Epidemiological modeling in life insurance, Soc. Sci. Res. Network, 28 (2022), 1–28. https://doi.org/10.2139/ssrn.4238013 doi: 10.2139/ssrn.4238013
    [2] G. Di Lorenzo, G. Franchetti, M. Politano, A premium structure for a pandemic insurance policy, Electron. J. Appl. Stat. Anal., 17 (2024), 703–734. https://doi.org/10.1285/i20705948v17n3p703 doi: 10.1285/i20705948v17n3p703
    [3] L. Francis, M. Steffensen, Individual life insurance during epidemics, Ann. Actuar. Sci., 18 (2024), 152–175. https://doi.org/10.1017/S1748499523000209 doi: 10.1017/S1748499523000209
    [4] C. Zhai, P. Chen, Z. Jin, T. K. Siu, Epidemic modelling and actuarial applications for pandemic insurance: A case study of Victoria, Australia, Ann. Actuar. Sci., 18 (2024), 242–269. https://doi.org/10.1017/S1748499523000246 doi: 10.1017/S1748499523000246
    [5] R. F. Arthur, M. Levin, A. Labrogere, M. W. Feldman, Age classes stratified by risk and adaptive behavior during epidemics, preprint, arXiv: 2023.05.30.23290737. https://doi.org/10.1101/2023.05.30.23290737
    [6] N. G. Davies, P. Klepac, Y. Liu, K. Prem, M. Jit, R. M. Eggo, et al., Age-dependent effects in the transmission and control of COVID-19 epidemics, Nat. Med., 26 (2020), 1205–1211. https://doi.org/10.1038/s41591-020-0962-9 doi: 10.1038/s41591-020-0962-9
    [7] K. Kim, J. W. Choi, J. Moon, H. Akilov, L. Tuychiev, B. Rakhimov, et al., Clinical features of COVID-19 in Uzbekistan, J. Korean Med. Sci., 35 (2020), e404. https://doi.org/10.3346/jkms.2020.35.e404 doi: 10.3346/jkms.2020.35.e404
    [8] P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [9] Y. Amemiya, T. Li, H. Nishiura, Age-dependent final size equation to anticipate mortality impact of COVID-19 in China, Math. Biosci. Eng., 20 (2023), 11353–11366. https://doi.org/10.3934/mbe.2023503 doi: 10.3934/mbe.2023503
    [10] Q. Yan, X. Liu, Dynamics of an epidemic model with general incidence rate dependent on a class of disease-related contact functions, Math. Biosci. Eng., 20 (2023), 20795–20808. https://doi.org/10.3934/mbe.2023920 doi: 10.3934/mbe.2023920
    [11] M. De la Sen, A. Ibeas, S. Alonso-Quesada, R. Nistal, On a new epidemic model with asymptomatic and dead-infective subpopulations with feedback controls useful for Ebola disease, Discrete Dyn. Nat. Soc., 2017 (2017), 4232971. https://doi.org/10.1155/2017/4232971 doi: 10.1155/2017/4232971
    [12] N. H. Shah, Z. A. Patel, B. M. Yeolekar, Vertical dynamics of Ebola with media impact, J. King Saud Univ. Sci., 31 (2019), 567–574. https://doi.org/10.1016/j.jksus.2018.03.011 doi: 10.1016/j.jksus.2018.03.011
    [13] Q. Niu, H. Li, Y. Liu, Z. Qin, L. Zhang, J. Chen, Z. Lyu, Toward the Internet of medical things: Architecture, trends and challenges, Math. Biosci. Eng., 21 (2024), 650–678. https://doi.org/10.3934/mbe.2024028 doi: 10.3934/mbe.2024028
    [14] Y. Ye, Q. Zhang, X. Wei, Z. Cao, H. Y. Yuan, D. D. Zeng, Equitable access to COVID-19 vaccines makes a life-saving difference to all countries, Nat. Hum. Behav., 6 (2022), 207–216. https://doi.org/10.1038/s41562-022-01289-8 doi: 10.1038/s41562-022-01289-8
    [15] C. C. Zhu, J. Zhu, X. L. Liu, Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relapse, Math. Biosci. Eng., 16 (2019), 5897–5922. https://doi.org/10.3934/mbe.2019295 doi: 10.3934/mbe.2019295
    [16] C. C. Pacheco, C. R. de Lacerda, Function estimation and regularization in the SIRD model applied to the COVID-19 pandemics, Inverse Probl. Sci. Eng., 29 (2021), 1613–1628. https://doi.org/10.1080/17415977.2021.1872563 doi: 10.1080/17415977.2021.1872563
    [17] Z. Yin, Y. Yu, Z. Lu, Stability analysis of an age-structured SEIRS model with time delay, Mathematics, 8 (2020), 455. https://doi.org/10.3390/math8030455 doi: 10.3390/math8030455
    [18] C. Cakmakli, Y. Simsek, Bridging the COVID-19 data and the epidemiological model using the time-varying parameter SIRD model, J. Econom., 242 (2024), 105787. https://doi.org/10.1016/j.jeconom.2024.105787 doi: 10.1016/j.jeconom.2024.105787
    [19] O. N. Oyelade, A. E. S. Ezugwu, T. I. A. Mohamed, L. Abualigah, Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm, IEEE Access, 10 (2022), 16150–16177. https://doi.org/10.1109/ACCESS.2022.3147821 doi: 10.1109/ACCESS.2022.3147821
    [20] R. El Chaal, S. Bouchefra, M. O. Aboutafail, Stochastic dynamics and extinction time in SIR epidemiological models, Acadlore Trans. Appl. Math. Stat., 1 (2023), 181–202. https://doi.org/10.56578/atams010305 doi: 10.56578/atams010305
    [21] S. Cox, J. Fairchild, H. Pedersen, Valuation of structured risk management products, Insur. Math. Econ., 34 (2004), 259–272. https://doi.org/10.1016/j.insmatheco.2003.12.006 doi: 10.1016/j.insmatheco.2003.12.006
    [22] R. Feng, J. Garrido, L. Jin, S. H. Loke, L. Zhang, Epidemic compartmental models and their insurance applications, in Pandemics: Insurance and Social Protection, Springer, 2 (2022), 13–40. https://doi.org/10.1007/978-3-030-78334-1_2
    [23] E. Guerra, An Application of Deterministic Epidemic Models to the Calculation of Insurance Premiums and Benefit Reserve Values, Master's thesis, California State Polytechnic University, 2022.
    [24] T. F. Harris, A. Yelowitz, C. Courtemanche, Did COVID-19 change life insurance offerings?, J. Risk Insur., 88 (2021), 831–861. https://doi.org/10.1111/jori.12344 doi: 10.1111/jori.12344
    [25] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, et al., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 368 (2020), eabb6936. https://doi.org/10.1126/science.abb6936 doi: 10.1126/science.abb6936
    [26] P. Manfredi, A. D'Onofrio, Modeling the Interplay between Human Behavior and the Spread of Infectious Diseases, Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-5474-8
    [27] H. Gründl, D. Guxha, A. Kartasheva, H. Schmeiser, Insurability of pandemic risks, J. Risk Insur., 88 (2021), 863–902. https://doi.org/10.1111/jori.12368 doi: 10.1111/jori.12368
    [28] D. C. M. Dickson, M. R. Hardy, H. R. Waters, Actuarial Mathematics for Life Contingent Risks, 2nd edition, Cambridge University Press, Cambridge, 2020.
    [29] I. Voinsky, G. Baristaite, D. Gurwitz, Effects of age and sex on recovery from COVID-19: Analysis of 5769 Israeli patients, J. Infect., 81 (2020), e102–e103. https://doi.org/10.1016/j.jinf.2020.05.026 doi: 10.1016/j.jinf.2020.05.026
    [30] M. Zanella, C. Bardelli, M. Azzi, S. Deandrea, P. Perotti, S. Silva, et al., Social contacts, epidemic spreading and health system. Mathematical modeling and applications to COVID-19 infection, Math. Biosci. Eng., 18 (2021), 3384–3403. https://doi.org/10.3934/mbe.2021169 doi: 10.3934/mbe.2021169
    [31] M. Zanella, C. Bardelli, G. Dimarco, S. Deandrea, P. Perotti, M. Azzi, et al., A data-driven epidemic model with social structure for understanding the COVID-19 infection on a heavily affected Italian Province, Math. Models Methods Appl. Sci., 31 (2021), 2533–2570. https://doi.org/10.1142/S021820252150055X doi: 10.1142/S021820252150055X
    [32] J. R. Goldstein, R. D. Lee, Demographic perspectives on the mortality of COVID-19 and other epidemics, Proc. Natl. Acad. Sci. USA, 117 (2020), 22035–22041. https://doi.org/10.1073/pnas.2006392117 doi: 10.1073/pnas.2006392117
    [33] Johns Hopkins University CSSE, 2019 Novel Coronavirus COVID-19 Data Repository, 2020. Available from: https://github.com/CSSEGISandData/COVID-19.
    [34] Statistics Agency under the President of the Republic of Uzbekistan, Demographic situation in the Republic of Uzbekistan (press release), 2024. Available from: https://stat.uz/img/demografiya-press-reliz-22_07_2024-english-_p27562.pdf.
    [35] D. Bolatova, S. Kadyrov, A. Kashkynbayev, Mathematical modeling of infectious diseases and the impact of vaccination strategies, Math. Biosci. Eng., 21 (2024), 7103–7123. https://doi.org/10.3934/mbe.2024314 doi: 10.3934/mbe.2024314
    [36] G. Albi, L. Pareschi, M. Zanella, Control with uncertain data of socially structured compartmental epidemic models, J. Math. Biol., 82 (2021), 63. https://doi.org/10.1007/s00285-021-01617-y doi: 10.1007/s00285-021-01617-y
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(438) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog