This review examines recent developments in modeling the interaction between tumor cells and the immune system, with a specific focus on the application of delay differential equations (DDEs). The models serve as crucial tools to simulate and predict the immune response to tumor proliferation, thus facilitating a more effective evaluation of clinical and therapeutic strategies before their implementation. This approach enables the hypothetical testing of various interventions, thus resulting in significant time and resource savings. The central theme is the integration of DDEs to represent biologically realistic time delays. These delays—inherent in biological processes such as the activation and migration of immune cells to the tumor site—are essential for a more accurate and dynamic representation of the system. Furthermore, this document acknowledges the inherent limitations of these mathematical models, which are simplified representations of complex biological phenomena by nature. The precision and practical utility of these models depend on the use of biologically plausible delay formulations, the validation of parameters with empirical data, and the alignment of model predictions with clinical outcomes. Ultimately, this work underscores the considerable potential and significant challenges of employing mathematical models as a bridge between theoretical understanding and applied oncology.
Citation: John A. Arredondo, Andrés Rivera. Recent advances in ODEs modeling of tumor-immune responses: a focus on delay effects[J]. Mathematical Biosciences and Engineering, 2025, 22(12): 3060-3087. doi: 10.3934/mbe.2025113
This review examines recent developments in modeling the interaction between tumor cells and the immune system, with a specific focus on the application of delay differential equations (DDEs). The models serve as crucial tools to simulate and predict the immune response to tumor proliferation, thus facilitating a more effective evaluation of clinical and therapeutic strategies before their implementation. This approach enables the hypothetical testing of various interventions, thus resulting in significant time and resource savings. The central theme is the integration of DDEs to represent biologically realistic time delays. These delays—inherent in biological processes such as the activation and migration of immune cells to the tumor site—are essential for a more accurate and dynamic representation of the system. Furthermore, this document acknowledges the inherent limitations of these mathematical models, which are simplified representations of complex biological phenomena by nature. The precision and practical utility of these models depend on the use of biologically plausible delay formulations, the validation of parameters with empirical data, and the alignment of model predictions with clinical outcomes. Ultimately, this work underscores the considerable potential and significant challenges of employing mathematical models as a bridge between theoretical understanding and applied oncology.
| [1] |
J. C. Panetta, A logistic model of periodic chemotherapy, Appl. Math. Lett., 8 (1995), 83–86. https://doi.org/10.1016/0893-9659(95)00053-S doi: 10.1016/0893-9659(95)00053-S
|
| [2] | A. Friedman, Mathematical Biology: Modeling and Analysis, American Mathematical Society, 2012. https://doi.org/10.1137/1.9781611975263 |
| [3] | F. Giráldez, M. A. Herrero, Mathematics, Developmental Biology and Tumour Growth, American Mathematical Society, 2009. |
| [4] | J. A. Adam, N. Bellomo, A Survey of Models for Tumor-Immune System Dynamics, Birkhäuser, Boston, 1997. https://doi.org/10.1007/978-0-8176-8119-7 |
| [5] |
R. P. Araujo, D. L. S. McElwain, A history of the study of solid tumor growth: The contribution of mathematical modeling, Bull. Math. Biol., 66 (2004), 1039–1091. https://doi.org/10.1016/j.bulm.2003.11.002 doi: 10.1016/j.bulm.2003.11.002
|
| [6] |
R. Padikkamannil, H. Sharin, P. P. Reneesha, V. Nandana, V. A. Rof, A review of mathematical modeling of tumor growth and treatment, AIP Conf. Proc., 3242 (2024), 020015. https://doi.org/10.1063/5.0234470 doi: 10.1063/5.0234470
|
| [7] |
A. Yin, D. Moes, J. Swen, J. Guchelaar, A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors, CPT Pharmacomet. Syst. Pharmacol., 8 (2019), 720–737. https://doi.org/10.1002/psp4.12450 doi: 10.1002/psp4.12450
|
| [8] |
S. Tabassum, N. B. Rosli, M. S. A. B. Mazalan, Mathematical modeling of cancer growth process: A review, J. Phys. Conf. Ser., 1366 (2019), 012018. https://doi.org/10.1088/1742-6596/1366/1/012018 doi: 10.1088/1742-6596/1366/1/012018
|
| [9] |
S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. L. Ebos, L. Hlatky, et al., Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput. Biol., 10 (2014), e1003800. https://doi.org/10.1371/journal.pcbi.1003800 doi: 10.1371/journal.pcbi.1003800
|
| [10] |
M. Bodnar, U. Foryś, Periodic dynamics in a model of immune system, Appl. Math., 27 (2000), 113–126. https://doi.org/10.4064/am-27-1-113-126 doi: 10.4064/am-27-1-113-126
|
| [11] | G. I. Marchuk, Mathematical Models in Immunology, Springer-Verlag, New York, 1983. |
| [12] |
M. Moghtadaei, M. R. H. Golpayegani, R. Malekzadeh, Periodic and chaotic dynamics in a map-based model of tumor-immune interaction, J. Theor. Biol., 334 (2013), 130–140. https://doi.org/10.1016/j.jtbi.2013.05.031 doi: 10.1016/j.jtbi.2013.05.031
|
| [13] |
R. Yafia, A study of differential equation modeling malignant tumor cells in competition with immune system, Int. J. Biomath., 4 (2011), 185–206. https://doi.org/10.1142/S1793524511001404 doi: 10.1142/S1793524511001404
|
| [14] |
M. Villasana, A. Radunskaya, A delay differential equation model for tumor growth, J. Math. Biol., 47 (2003), 270–294. https://doi.org/10.1007/s00285-003-0211-0 doi: 10.1007/s00285-003-0211-0
|
| [15] |
P. Bi, S. Ruan, X. Zhang, Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays, Chaos, 24 (2014), 023101. https://doi.org/10.1063/1.4870363 doi: 10.1063/1.4870363
|
| [16] |
S. Khajanchi, S. Banerjee, Stability and bifurcation analysis of delay induced tumor immune interaction model, Appl. Math. Comput., 248 (2014), 652–671. https://doi.org/10.1016/j.amc.2014.10.009 doi: 10.1016/j.amc.2014.10.009
|
| [17] |
H. M. Safuan, Z. Jovanoski, I. N. Towers, H. S. Sidhu, Exact solution of a non-autonomous logistic population model, Ecol. Modell., 251 (2013), 99–102. https://doi.org/10.1016/j.ecolmodel.2012.12.016 doi: 10.1016/j.ecolmodel.2012.12.016
|
| [18] |
S. Benzekry, C. Lamont, D. Barbolosi, L. Hlatky, P. Hahnfeldt, Mathematical modeling of tumor-tumor distant interactions supports a systemic control of tumor growth, Cancer Res., 77 (2017), 5183–5193. https://doi.org/10.1158/0008-5472.CAN-17-0564 doi: 10.1158/0008-5472.CAN-17-0564
|
| [19] |
C. Vaghi, A. Rodallec, R. Fanciullino, J. Ciccolini, J. P. Mochel, M. Mastri, et al., Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors, PLoS Comput. Biol., 16 (2020), e1007178. https://doi.org/10.1371/journal.pcbi.1007178 doi: 10.1371/journal.pcbi.1007178
|
| [20] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5 doi: 10.1016/S0092-8240(05)80260-5
|
| [21] | Z. Fishelson, G. Berke, Tumor cell destruction by cytotoxic T lymphocytes: The basis of reduced antitumor cell activity in syngeneic hosts, J. Immunol., 126 (1981), 6–12. |
| [22] | B. D. Brondz, B. D. Brondz, T lymphocytes and Their Receptors in Immunologic Recognition, CRC Press, 1988. |
| [23] |
A. d'Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Phys. D, 208 (2005), 220–235. https://doi.org/10.1016/j.physd.2005.06.032 doi: 10.1016/j.physd.2005.06.032
|
| [24] |
R. Yafia, Hopf bifurcation in a delayed model for tumor-immune system competition with negative immune response, Discrete Dyn. Nat. Soc., 2006 (2006), 095296. https://doi.org/10.1155/DDNS/2006/95296 doi: 10.1155/DDNS/2006/95296
|
| [25] |
R. Yafia, Hopf bifurcation in differential equations with delay for tumor–immune system competition model, SIAM J. Appl. Math., 67 (2007), 1693–1703. https://doi.org/10.1137/060657947 doi: 10.1137/060657947
|
| [26] |
A. d'Onofrio, F. Gatti, P. Cerrai, L. Freschi, Delay-induced oscillatory dynamics of tumour-immune system interaction, Math. Comput. Model., 51 (2010), 572–591. https://doi.org/10.1016/j.mcm.2009.11.005 doi: 10.1016/j.mcm.2009.11.005
|
| [27] |
L. Han, C. He, Y. Kuang, Dynamics of a model of tumor-immune interaction with time delay and noise, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 2347–2363. https://doi.org/10.3934/dcdss.2020140 doi: 10.3934/dcdss.2020140
|
| [28] |
H. Z. Li, X. D. Liu, R. Yan, C. Liu, Hopf bifurcation analysis of a tumor virotherapy model with two time delays, Phys. A, 553 (2020), 124266. https://doi.org/10.1016/j.physa.2020.124266 doi: 10.1016/j.physa.2020.124266
|
| [29] |
J. Li, N. Liu, D. Wang, H. Yang, Mathematical modeling and Hopf bifurcation analysis of tumor macrophage interaction with polarization delay, J. Biol. Dyn., 19 (2025), 1–25. https://doi.org/10.1080/17513758.2025.2508240 doi: 10.1080/17513758.2025.2508240
|
| [30] |
S. Shi, J. Huang, Y. Kuang, S. Ruan, Stability and Hopf bifurcation of a tumor-immune system interaction model with an immune checkpoint inhibitor, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 106996. https://doi.org/10.1016/j.cnsns.2022.106996 doi: 10.1016/j.cnsns.2022.106996
|
| [31] |
K. Oleinika, R. J. Nibbs, G. J. Graham, A. R. Fraser, Suppression, subversion and escape: the role of regulatory T cells in cancer progression, Clin. Exp. Immunol., 171 (2012), 36–45. https://doi.org/10.1111/j.1365-2249.2012.04657.x doi: 10.1111/j.1365-2249.2012.04657.x
|
| [32] |
K. S. Kim, S. Kim, I. H. Jung, Hopf bifurcation analysis and optimal control of treatment in a delayed oncolytic virus dynamics, Math. Comput. Simul., 149 (2018), 1–15. https://doi.org/10.1016/j.matcom.2018.01.003 doi: 10.1016/j.matcom.2018.01.003
|
| [33] |
K. P. Wilkie, P. Hahnfeldt, Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion, Interface Focus, 3 (2013), 20130010. https://doi.org/10.1098/rsfs.2013.0010 doi: 10.1098/rsfs.2013.0010
|
| [34] |
Z. Kaid, C. Pouchol, J. Clairambault, A phenotype-structured model for the tumour-immune response, Math. Modell. Nat. Phenom., 18 (2023), 22. https://doi.org/10.1051/mmnp/2023025 doi: 10.1051/mmnp/2023025
|
| [35] |
E. Beretta, Y. Kuang, Modeling and analysis of a marine bacteriophage infection, Math. Biosci., 149 (1998), 57–76. https://doi.org/10.1016/S0025-5564(97)10015-3 doi: 10.1016/S0025-5564(97)10015-3
|
| [36] |
Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389–406. https://doi.org/10.1007/s002850050105 doi: 10.1007/s002850050105
|
| [37] | A. Tóbiás, Lecture Notes on Population Dynamics, 2024. Available from: https://cs.bme.hu/tobias/lecturenotes.pdf. |
| [38] |
P. Bi, H. Xiao, Bifurcations of tumor-immune competition systems with delay, Abstr. Appl. Anal., 2014 (2014), 723159. https://doi.org/10.1155/2014/723159 doi: 10.1155/2014/723159
|
| [39] |
M. Adimy, F. Crauste, S. Ruan, Periodic oscillations in leukopoiesis models with two delays, J. Theor. Biol., 242 (2006), 288–299. https://doi.org/10.1016/j.jtbi.2006.02.020 doi: 10.1016/j.jtbi.2006.02.020
|
| [40] |
M. Yu, Y. Dong, Y. Takeuchi, Dual role of delay effects in a tumour-immune system, J. Biol. Dyn., 11 (2017), 334–347. https://doi.org/10.1080/17513758.2016.1231347 doi: 10.1080/17513758.2016.1231347
|
| [41] |
M. Sardar, S. Khajanchi, S. Biswas, S. F. Abdelwahab, K. S. Nisar, Exploring the dynamics of a tumor-immune interplay with time delay, Alexandria Eng. J., 60 (2021), 4875–4888. https://doi.org/10.1016/j.aej.2021.03.041 doi: 10.1016/j.aej.2021.03.041
|
| [42] |
K. Dehingia, H. K. Sarmah, Y. Alharbi, K. Hosseini, Mathematical analysis of a cancer model with time-delay in tumor-immune interaction and stimulation processes, Adv. Differ. Equations, 2021 (2021), 473. https://doi.org/10.1186/s13662-021-03621-4 doi: 10.1186/s13662-021-03621-4
|
| [43] |
A. Alblowy, N. Maan, N. Awang, Tumor-immune interaction system with the effect of time delay and hyperglycemia on the breast cancer cells, J. Appl. Math. Phys., 11 (2023), 1160–1184. https://doi.org/10.4236/jamp.2023.114076 doi: 10.4236/jamp.2023.114076
|
| [44] |
H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. E. Ktaibi, Stochastic tumor immune interaction model with external treatments and time delays: An optimal control problem, Math. Biosci. Eng., 20 (2023), 19270–19299. https://doi.org/10.3934/mbe.2023852 doi: 10.3934/mbe.2023852
|
| [45] |
J. Li, X. Xie, D. Zhang, J. Li, X. Lin, Qualitative analysis of a simple tumor-immune system with time delay of tumor action, Discrete Contin. Dyn. Syst. Ser. B, 26 (2020), 5227–5249. https://doi.org/10.3934/dcdsb.2020262 doi: 10.3934/dcdsb.2020262
|
| [46] | W. M. Hirsch, H. Hanisch, J. P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior, Commun. Pure Appl. Math., 38 (1985), 733–753. |
| [47] | M. Galach, Dynamics of the tumor-immune system competition-the effect of time delay, Int. J. Appl. Math. Comput. Sci., 13 (2003), 395–406. |
| [48] |
M. Szafrańska-Leczycka, M. Bodnar, M. J. Piotrowska, M. Krukowski, J. Belmonte-Beitia, U. Forys, Influence of time delay on the dynamics of a mathematical model of CAR-T cell therapy with logistic tumor growth, Discrete Contin. Dyn. Syst. Ser. B, 30 (2025), 4498–4515. https://doi.org/10.3934/dcdsb.2025073 doi: 10.3934/dcdsb.2025073
|
| [49] |
R. Yafia, A study of differential equation modeling malignant tumor cells in competition with immune system, Int. J. Biomath., 4 (2011), 185–206. https://doi.org/10.1142/S1793524511001404 doi: 10.1142/S1793524511001404
|
| [50] |
J. Li, X. Ma, Y. Chen, D. Zhang, Complex dynamic behaviors of a tumor-immune system with two delays in tumor actions, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 7065–7087. https://doi.org/10.3934/dcdsb.2022033 doi: 10.3934/dcdsb.2022033
|
| [51] |
D. Kirschner, J. C. Panetta, Modelling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235–252. https://doi.org/10.1007/s002850050127 doi: 10.1007/s002850050127
|
| [52] |
M. Robertson-Tessi, A. El-Kareh, A. Goriely, A mathematical model of tumor–immune interactions, J. Theor. Biol., 294 (2012), 56–73. https://doi.org/10.1016/j.jtbi.2011.10.027 doi: 10.1016/j.jtbi.2011.10.027
|
| [53] | P. Amster, A. Rivera, J. Arredondo, Periodic solutions in a tumor-immune competition system with time-delay and chemotherapy effects, preprint, arXiv: 6884138. http://arXiv.org/abs/2510.11135 |
| [54] |
A. Tsoularis, J. Wallace, Analysis of logistic growth models, Math. Biosci., 179 (2002), 21–55. https://doi.org/10.1016/S0025-5564(02)00096-2 doi: 10.1016/S0025-5564(02)00096-2
|
| [55] |
D. Dingli, M. D. Cascino, K. Josic, S. J. Russell, Z. Bajzer, Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55–78. https://doi.org/10.1016/j.mbs.2005.11.001 doi: 10.1016/j.mbs.2005.11.001
|
| [56] |
K. S. Kim, S. Kim, I. H. Jung, Dynamics of tumor virotherapy: A deterministic and stochastic model approach, Stoch. Anal. Appl., 34 (2016), 394–414. https://doi.org/10.1080/07362994.2016.1150187 doi: 10.1080/07362994.2016.1150187
|
| [57] |
Z. Abernathy, K. Abernathy, J. Stevens, A mathematical model for tumor growth and treatment using virotherapy, AIMS Math., 5 (2020), 4136–4150. https://doi.org/10.3934/math.2020265 doi: 10.3934/math.2020265
|
| [58] |
Z. Z. Wang, Z. M. Guo, H. Smith, A mathematical model of oncolytic virotherapy with time delay, Math. Biosci. Eng., 16 (2019), 1836–1860. https://doi.org/10.3934/mbe.2019089 doi: 10.3934/mbe.2019089
|
| [59] |
E. A. B. F. Lima, N. Ghousifam, A. Ozkan, J. T. Oden, A. Shahmoradi, M. N. Rylander, et al., Calibration of multi-parameter models of avascular tumor growth using time resolved microscopy data, Sci. Rep., 8 (2018), 14558. https://doi.org/10.1038/s41598-018-32347-9 doi: 10.1038/s41598-018-32347-9
|
| [60] |
H. J. M. Miniere, E. A. B. F. Lima, G. Lorenzo, D. A. Hormuth, S. Ty, A. Brock, et al., A mathematical model for predicting the spatiotemporal response of breast cancer cells treated with doxorubicin, Cancer Biol. Ther., 25 (2024), 2321769. https://doi.org/10.1080/15384047.2024.2321769 doi: 10.1080/15384047.2024.2321769
|
| [61] |
S. Banerjee, R. R. Sarkar, Delay-induced model for tumor–immune interaction and control of malignant tumor growth, Biosystems, 91 (2008), 268–288. https://doi.org/10.1016/j.biosystems.2007.10.002 doi: 10.1016/j.biosystems.2007.10.002
|