Research article Special Issues

Identifiability investigation of within-host models of acute virus infection


  • Received: 29 July 2024 Revised: 24 September 2024 Accepted: 09 October 2024 Published: 28 October 2024
  • Uncertainty in parameter estimates from fitting within-host models to empirical data limits the model's ability to uncover mechanisms of infection, disease progression, and to guide pharmaceutical interventions. Understanding the effect of model structure and data availability on model predictions is important for informing model development and experimental design. To address sources of uncertainty in parameter estimation, we used four mathematical models of influenza A infection with increased degrees of biological realism. We tested the ability of each model to reveal its parameters in the presence of unlimited data by performing structural identifiability analyses. We then refined the results by predicting practical identifiability of parameters under daily influenza A virus titers alone or together with daily adaptive immune cell data. Using these approaches, we presented insight into the sources of uncertainty in parameter estimation and provided guidelines for the types of model assumptions, optimal experimental design, and biological information needed for improved predictions.

    Citation: Yuganthi R. Liyanage, Nora Heitzman-Breen, Necibe Tuncer, Stanca M. Ciupe. Identifiability investigation of within-host models of acute virus infection[J]. Mathematical Biosciences and Engineering, 2024, 21(10): 7394-7420. doi: 10.3934/mbe.2024325

    Related Papers:

  • Uncertainty in parameter estimates from fitting within-host models to empirical data limits the model's ability to uncover mechanisms of infection, disease progression, and to guide pharmaceutical interventions. Understanding the effect of model structure and data availability on model predictions is important for informing model development and experimental design. To address sources of uncertainty in parameter estimation, we used four mathematical models of influenza A infection with increased degrees of biological realism. We tested the ability of each model to reveal its parameters in the presence of unlimited data by performing structural identifiability analyses. We then refined the results by predicting practical identifiability of parameters under daily influenza A virus titers alone or together with daily adaptive immune cell data. Using these approaches, we presented insight into the sources of uncertainty in parameter estimation and provided guidelines for the types of model assumptions, optimal experimental design, and biological information needed for improved predictions.



    加载中


    [1] M. A. Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho, A. S. Perelson, Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203 (2000), 285–301. https://doi.org/10.1006/jtbi.2000.1076 doi: 10.1006/jtbi.2000.1076
    [2] A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, D. D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582–1586. https://doi.org/10.1126/science.271.5255.1582 doi: 10.1126/science.271.5255.1582
    [3] S. M. Ciupe, R. M. Ribeiro, P. W. Nelson, A. S. Perelson, Modeling the mechanisms of acute hepatitis B virus infection, J. Theor. Biol., 247 (2007), 23–35. https://doi.org/10.1016/j.jtbi.2007.02.017 doi: 10.1016/j.jtbi.2007.02.017
    [4] S. M. Ciupe, H. Dahari, A. Ploss, Mathematical models of early hepatitis B virus dynamics in humanized mice, Bull. Math. Biol., 86 (2024), 53. https://doi.org/10.1007/s11538-024-01284-2 doi: 10.1007/s11538-024-01284-2
    [5] M. A. Myers, A. P. Smith, L. C. Lane, D. J. Moquin, R. Aogo, S. Woolard, et al., Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity, eLife, 10 (2021), e68864. https://doi.org/10.7554/eLife.68864 doi: 10.7554/eLife.68864
    [6] P. Baccam, C. Beauchemin, C. A. Macken, F. G. Hayden, A. S. Perelson, Kinetics of influenza A virus infection in humans, J. Virol., 80 (2006), 7590–7599. https://doi.org/10.1128/jvi.01623-05 doi: 10.1128/jvi.01623-05
    [7] R. Ben-Shachar, K. Koelle, Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections, J. R. Soc. Interface, 12 (2015), 20140886. https://doi.org/10.1098/rsif.2014.0886 doi: 10.1098/rsif.2014.0886
    [8] R. Nikin-Beers, S. M. Ciupe, Modelling original antigenic sin in dengue viral infection, Math. Med. Biol., 35 (2018), 257–272. https://doi.org/10.1093/imammb/dqx002 doi: 10.1093/imammb/dqx002
    [9] R. Nikin-Beers, S. M. Ciupe, The role of antibody in enhancing dengue virus infection, Math. Biosci., 263 (2015), 83–92. https://doi.org/10.1016/j.mbs.2015.02.004 doi: 10.1016/j.mbs.2015.02.004
    [10] K. Best, J. Guedj, V. Madelain, X. de Lamballerie, S. Lim, C. E. Osuna, et al., Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies, Proc. Natl. Acad. Sci., 114 (2017), 8847–8852. https://doi.org/10.1073/pnas.1704011114 doi: 10.1073/pnas.1704011114
    [11] R. Ke, C. Zitzmann, D. D. Ho, R. M. Ribeiro, A. S. Perelson, In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness, Proc. Natl. Acad. Sci., 118 (2021), e2111477118. https://doi.org/10.1073/pnas.2111477118 doi: 10.1073/pnas.2111477118
    [12] N. Heitzman-Breen, S. M. Ciupe, Modeling within-host and aerosol dynamics of SARS-CoV-2: The relationship with infectiousness, PLoS Comput. Biol., 18 (2022), e1009997. https://doi.org/10.1371/journal.pcbi.1009997 doi: 10.1371/journal.pcbi.1009997
    [13] S. M. Ciupe, J. M. Heffernan, In-host modeling, Infect. Dis. Model., 2 (2017), 188–202. https://doi.org/10.1016/j.idm.2017.04.002
    [14] S. M. Ciupe, J. M. Conway, Incorporating intracellular processes in virus dynamics models, Microorganisms, 12 (2024), 900. https://doi.org/10.3390/microorganisms12050900 doi: 10.3390/microorganisms12050900
    [15] M. Chung, M. Binois, R. B. Gramacy, J. M. Bardsley, D. J. Moquin, A. P. Smith, et al., Parameter and uncertainty estimation for dynamical systems using surrogate stochastic processes, SIAM J. Sci. Comput., 41 (2019), A2212–A2238. https://doi.org/10.1137/18M1213403 doi: 10.1137/18M1213403
    [16] H. Miao, C. Dykes, L. M. Demeter, J. Cavenaugh, S. Y. Park, A. S. Perelson, et al., Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-based growth competition experiments, Bull. Math. Biol., 70 (2008), 1749–1771. https://doi.org/10.1007/s11538-008-9323-4 doi: 10.1007/s11538-008-9323-4
    [17] M. C. Eisenberg, S. L. Robertson, J. H. Tien, Identifiability and estimation of multiple transmission pathways in Cholera and waterborne disease, J. Theor. Biol., 324 (2013), 84–102. https://doi.org/10.1016/j.jtbi.2012.12.021 doi: 10.1016/j.jtbi.2012.12.021
    [18] N. Tuncer, M. Martcheva, Determining reliable parameter estimates for within-host and within-vector models of Zika virus, J. Biol. Dyn., 15 (2021), 430–454. https://doi.org/10.1080/17513758.2021.1970261 doi: 10.1080/17513758.2021.1970261
    [19] N. Tuncer, H. Gulbudak, V. L. Cannataro, M. Martcheva, Structural and practical identifiability issues of immuno-epidemiological vector–host models with application to rift valley fever, Bull. Math. Biol., 78 (2016), 1796–1827. https://doi.org/10.1007/s11538-016-0200-2 doi: 10.1007/s11538-016-0200-2
    [20] N. Heitzman-Breen, Y. R. Liyanage, N. Duggal, N. Tuncer, S. M. Ciupe, The effect of model structure and data availability on Usutu virus dynamics at three biological scales, Royal Society Open Science, 11 (2024), 231146. https://doi.org/10.1098/rsos.231146 doi: 10.1098/rsos.231146
    [21] N. Tuncer, T. T. Le, Structural and practical identifiability analysis of outbreak models, Math. Biosci., 299 (2018), 1–18. https://doi.org/10.1016/j.mbs.2018.02.004 doi: 10.1016/j.mbs.2018.02.004
    [22] P. Das, M. Igoe, A. Lacy, T. Farthing, A. Timsina, C. Lanzas, et al., Modeling county level COVID-19 transmission in the greater St. Louis area: Challenges of uncertainty and identifiability when fitting mechanistic models to time-varying processes, Math. Biosci., 371 (2024), 109181. https://doi.org/10.1016/j.mbs.2024.109181 doi: 10.1016/j.mbs.2024.109181
    [23] Y. Kao, M. C. Eisenberg, Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment, Epidemics, 25 (2018), 89–100. https://doi.org/10.1016/j.epidem.2018.05.010 doi: 10.1016/j.epidem.2018.05.010
    [24] S. M. Ciupe, N. Tuncer, Identifiability of parameters in mathematical models of SARS-CoV-2 infections in humans, Sci. Rep., 12 (2022), 14637. https://doi.org/10.1038/s41598-022-18683-x doi: 10.1038/s41598-022-18683-x
    [25] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, et al., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25 (2009), 1923–1929. https://doi.org/10.1093/bioinformatics/btp358 doi: 10.1093/bioinformatics/btp358
    [26] A. Boianelli, V. K. Nguyen, T. Ebensen, K. Schulze, E. Wilk, N. Sharma, et al., Modeling influenza virus infection: A roadmap for influenza research, Viruses, 7 (2015), 5274–5304. https://doi.org/10.3390/v7102875 doi: 10.3390/v7102875
    [27] M. J. Simpson, A. P. Browning, D. J. Warne, O. J. Maclaren, R. E. Baker, Parameter identifiability and model selection for sigmoid population growth models, J. Theor. Biol., 535 (2022), 110998. https://doi.org/10.1016/j.jtbi.2021.110998 doi: 10.1016/j.jtbi.2021.110998
    [28] A. P. Smith, D. J. Moquin, V. Bernhauerova, A. M. Smith, Influenza virus infection model with density dependence supports biphasic viral decay, Front. Microbiol., 9 (2018), 1554. https://doi.org/10.3389/fmicb.2018.01554 doi: 10.3389/fmicb.2018.01554
    [29] J. J. Sedmak, S. E. Grossberg, Interferon bioassay: Reduction in yield of myxovirus neuraminidases, J. Gen. Virol., 21 (1973), 1–7. https://doi.org/10.1099/0022-1317-21-1-1 doi: 10.1099/0022-1317-21-1-1
    [30] Y. Sun, W. J. Jusko, Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics, J. Pharm. Sci., 87 (1998), 732–737. https://doi.org/10.1021/js970414z doi: 10.1021/js970414z
    [31] A. S. Perelson, P. W. Nelson, Modeling viral infections, in Proceedings of Symposia in Applied Mathematics, 59 (2002), 139–172.
    [32] G. Bellu, M. P. Saccomani, S. Audoly, L. D'Angiò, DAISY: A new software tool to test global identifiability of biological and physiological systems, Comput. Methods Programs Biomed., 88 (2007), 52–61. https://doi.org/10.1016/j.cmpb.2007.07.002 doi: 10.1016/j.cmpb.2007.07.002
    [33] N. Meshkat, C. E. Kuo, J. DiStefano III, On finding and using identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: A novel web implementation, PLoS One, 9 (2014), e110261. https://doi.org/10.1371/journal.pone.0110261 doi: 10.1371/journal.pone.0110261
    [34] R. Dong, C. Goodbrake, H. Harrington, G. Pogudin, Differential elimination for dynamical models via projections with applications to structural identifiability, SIAM J. Appl. Algebra Geom., 7 (2023), 194–235. https://doi.org/10.1137/22M1469067 doi: 10.1137/22M1469067
    [35] H. Hong, A. Ovchinnikov, G. Pogudin, C. Yap, SIAN: Software for structural identifiability analysis of ODE models, Bioinformatics, 35 (2019), 2873–2874. https://doi.org/10.1093/bioinformatics/bty1069 doi: 10.1093/bioinformatics/bty1069
    [36] X. R. Barreiro, A. F. Villaverde, Benchmarking tools for a priori identifiability analysis, Bioinformatics, 39 (2023), btad065. https://doi.org/10.1093/bioinformatics/btad065 doi: 10.1093/bioinformatics/btad065
    [37] H. T. Banks, S. Hu, W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, Chapman and Hall/CRC, 2014. https://doi.org/10.1201/b16760
    [38] S. A. Murphy, A. W. Van der Vaart, On profile likelihood, J. Am. Stat. Assoc., 95 (2000), 449–465. https://doi.org/10.1080/01621459.2000.10474219
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(564) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog