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Abstract: Uncertainty in parameter estimates from fitting within-host models to empirical data
limits the model’s ability to uncover mechanisms of infection, disease progression, and to guide
pharmaceutical interventions. Understanding the effect of model structure and data availability on
model predictions is important for informing model development and experimental design. To address
sources of uncertainty in parameter estimation, we used four mathematical models of influenza A
infection with increased degrees of biological realism. We tested the ability of each model to reveal
its parameters in the presence of unlimited data by performing structural identifiability analyses. We
then refined the results by predicting practical identifiability of parameters under daily influenza A
virus titers alone or together with daily adaptive immune cell data. Using these approaches, we
presented insight into the sources of uncertainty in parameter estimation and provided guidelines for
the types of model assumptions, optimal experimental design, and biological information needed for
improved predictions.
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1. Introduction

The study of host-virus interactions using dynamical models (within-host models) has improved
our understanding of the mechanistic interactions that govern chronic infections caused by pathogens
such as human immunodeficiency virus [1, 2] and hepatitis B virus [3, 4], and mechanistic interactions
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that govern acute infections caused by pathogens such as influenza virus [5, 6], dengue virus [7–9],
Zika virus [10], and severe acute respiratory syndrome coronavirus 2 [11, 12]. Regardless of the virus
considered, the most basic within-host model has a general structure that includes the interaction
between the cells susceptible to the virus, the cells infected by the virus, and the virus at short (acute)
and long (chronic) timescales. The emergence of unexpected dynamics in the virus data, new
information about the virus’ life-cycle, data describing host immunity to the infection, or a
combination of some or all of the above, may require addition of complexity into the within-host
modeling process (see [13, 14] for a review).

Data fitting techniques for simple or complex within-host models use (normalized) least-squares
approaches, in which the Euclidean distance between the data and the mathematical model is
minimized with respect to the unknown parameters. The first step in the parameter estimation
algorithm is to provide an initial guess for each parameter based on prior biological knowledge, such
as the duration of eclipse stages, life-span of an infected cell and/or virus in vitro, and knowledge
from modeling of virus dynamics of related viruses. When prior knowledge is unknown, the user
makes the assumption that any positive parameter guess is acceptable. Then, an optimization search
algorithm is employed until a termination criterion is reached. For many within-host mathematical
models and corresponding datasets, the optimization is ill-posed due to the structure of the model
and/or the frequency of the data [15]. As a result, some parameters may be difficult or impossible to
quantify. To determine whether the uncertainty in parameter estimations is due to the model or the
data, both structural and practical identifiability questions need to be addressed.

Structural identifiability investigates the ability of a model to reveal its unknown parameters from
noise-free infinite amount of data [16–18]. When nonstructural identifiability of parameters occurs, it is
important to find the source of non-identifiability, such as correlation between model parameters. This
allows the user to propose additional assumptions needed to make the model structurally identifiable.
Only after the structural identifiability of the unknown parameters is guaranteed, can one conduct data
fitting schemes to estimate parameter values.

Practical identifiability investigates the ability of a model to reveal unknown structurally
identifiable parameters under scarce and noisy (among subjects) data, often examined using Monte
Carlo simulations [18–20], the Fisher information matrix (FIM) or correlation matrix [16, 21–23],
Bayesian method [24], and the profile likelihood method [25–27]. As with the structural
identifiability, it is important to identify whether the practical identifiability issues are due to model
structure. Additionally, it is important to determine whether increased data frequency, availability of
data measurements for more than one model variable, and/or relaxing restrictions imposed on the
unknown parameters can improve practical identifiability issues.

To address these important considerations in model validation, one needs to compare a set of
models for the same virus infection system and the same empirical data. Here, we accomplish that by
investigating four previously developed models of influenza A virus (IAV) infection in mice [28]. The
first three models, all validated with the same virus titer dataset, are ranging from the basic
within-host model to models with increased complexity through the addition of nonlinear terms
and/or the inclusion of additional variables for the host cell populations infected by the influenza
virus. The fourth model is the most complex, due to the addition of both nonlinear terms and variables
for the host immune system. This results in a large number of unknown parameters. To compensate
for the added complexity, this model is validated with two datasets: the same virus titer data and an
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additional immune cell population data.
The goal of this study is to determine how model complexity and data availability induce uncertainty

in parameter estimates. Using the proposed models as proof of concept, we aim to provide a framework
for model validation, from structural to practical identifiability, that can be generalized to other models
of virus infections.

2. Within-host influenza models

Figure 1. Flow charts for Models 1–4.

We consider four within-host models of acute infections used to describe influenza A virus
infection in mice [5]. They all describe the same influenza A virus titer data, but they account for
increased biological complexity, as follows. Model 1 assumes that influenza A virus infects all
available susceptible target cells before being cleared according to first order infected cells death and
viral clearance rates (target cell limitation); Model 2 explains an observed viral biphasic decay in the
data by assuming a second order (density dependent) infected cell killing rate; Model 3 explains an
observed viral expansion delay in the data by assuming the presence of an eclipse phase; and Model 4
utilizes a secondary immune cells dataset by adding a model population that describes
immune-mediated antiviral responses. With each model, we include biological realism that describes
the dynamics of virus expansion and decay in more detail, while at the same time increasing model
complexity through the addition of nonlinearities and increased numbers of model parameters. The
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flow charts of the four models are presented in Figure 1. Below we describe all models in detail, and
address the ability of accounting for complexity given the available data by investigating structural
and practical identifiability of each model considered.

Model 1 is the classical target-cell limitation model of viral infection, which considers the
interaction between target cells, infected cells, and virus as follows [5, 28]. Target cells, T , interact
with the virus, V , at rate β to become infected cells I. Infected cells die at per capita rate δ and
produce virus at rate π. Virus is cleared at rate c. Model 1 is described by the system of ordinary
differential equations (ODE) Eq (2.1) below,

Model 1:
dT
dt
= −βTV,

dI
dt
= βTV − δI,

dV
dt
= πI − cV,

(2.1)

with initial conditions T (0) = T0, I(0) = I0, and V(0) = 0.
Experimental data has shown that, following peak expansion, virus decays in a biphasic manner. To

capture the dynamics of viral decay, a modified death rate has been considered. It assumes that the rate
of infected cell clearance increases as the density of infected cells decreases, as described by δ/(Kδ+ I),
where δ is the maximum per capita death rate and Kδ is infected cell population where death rate is
half-maximal [28]. This leads to the modified target-cell limitation Model 2 given by the ODE system
Eq (2.2) below,

Model 2:
dT
dt
= −βTV,

dI
dt
= βTV −

δ

Kδ + I
I,

dV
dt
= πI − cV,

(2.2)

with initial conditions T (0) = T0, I(0) = I0, and V(0) = 0.
It was observed experimentally that, following influenza A virus exposure, there is a delay between

infection of target cells and viral production by infected cells [29]. The delay was accounted for by
assuming that, upon infection, cells enter an eclipse phase I1, where cells are infected but do not
produce virus. They become productively infected I2 after 1/k days [6], where 1/k is the average time
spent in eclipse phase. This leads to the target-cell limitation model with eclipse phase Model 3 given
by the ODE system Eq (2.3) below,

Model 3:
dT
dt
= −βTV,

dI1

dt
= βTV − kI1,

dI2

dt
= kI1 −

δ

Kδ + I2
I2,

dV
dt
= πI2 − cV,

(2.3)

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7394–7420.



7398

with initial conditions T (0) = T0, I1(0) = I0, I2(0) = 0, and V(0) = 0.

The first three models do not explicitly account for any immune responses, but indirectly assume
infected cell loss at nonspecific rate δ (or δ/(Kδ + I2)) and viral clearance at nonspecific rate c. The
observed biphasic viral decay captured by Models 2 and 3 given by Eqs (2.2) and (2.3), however, has
the additional feature that the timing of the second phase viral decay coincides with the development
of adaptive immune cells in the form of CD8+ T cells, which are responsible for killing infected cells
and resolving the infection [5]. To account for adaptive immunity (especially in the presence of
immune cell data), an additional variable E is considered. It only accounts for the effector CD8+ T
cell population (and ignores the memory CD8+ T cell population), as follows. In the absence of
infection, a baseline of influenza A virus-specific effector CD8+ T cells are present, E(0) = E0.
Infection results in recruitment of additional effector CD8+ T cells at a rate proportional to the
productively infected cells I2. This is modeled in a density dependent manner at rate λ/(KE + E),
where λ is the maximum influx and KE is the effector CD8+ T cell population where the influx is
half-maximal. Effector CD8+ T cells proliferate in the presence of infection. This is modeled by a
delayed term ηI2(t − τI)E, which assumes that expansion occurs following interaction between
effector CD8+ T cells and cells that became productively infected τI days ago. To account for effector
CD8+ T cells function, the model assumes that effector CD8+ T cells kill infected cells in a density
dependent manner modeled by the term δE/(Kδ + I2), where δE is the maximum per capita killing rate
and Kδ is the I2 concentration where the killing is half-maximal. A nonspecific infected cell killing
rate δ is still considered. The resulting delay differential equations (DDE) immune model is described
by the DDE system Eq (2.4) below,

dT
dt
= −βTV,

dI1

dt
= βTV − kI1,

dI2

dt
= kI1 − δI2 −

δE

Kδ + I2
EI2,

dV
dt
= πI2 − cV,

dE
dt
=

λ

KE + E
I2 + ηEI2(t − τI) − dEE,

(2.4)

with initial conditions T (0) = T0, I1(0) = I0, V(0) = 0, E(0) = E0, and I2(t) = 0 for −τI ≤ t ≤ 0.

To unify the goal of investigating uncertainty in parameter estimates when fitting ODE systems of
virus dynamics to data, we first approximate the DDE system given by Eq (2.4) with an ODE system as
follows [30]. For a delay of τI days, we incorporate n dummy variables which all span τI/n days in the
variable I2’s dynamics. Briefly, we let yi be the productively infected cell populations at times t − i

nτI

days post infection, for i = 1, ..., n, and consider the following ODE system for dummy variables yi(t),
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dy1

dt
= I2 −

n
τI

y1,

...

dyi

dt
=

n
τI

yi−1 −
n
τI

yi,

...

dyn

dt
=

n
τI

yn−1 −
n
τI

yn,

(2.5)

with yi(0) = 0 for i = 1, ..., n. Then, the delayed productively infected cell population is given by

I2(t − τI) ≈ yn(t). (2.6)

Without loss of generality, we assume n = 3. The corresponding immune Model 4 is given by the
ODE system Eq (2.7) below,

Model 4:
dT
dt
= −βTV,

dI1

dt
= βTV − kI1,

dI2

dt
= kI1 − δI2 −

δE

Kδ + I2
EI2,

dV
dt
= πI2 − cV,

dE
dt
=

λ

KE + E
I2 + ηEy3 − dEE,

dy1

dt
= I2 −

3
τI

y1,

dy2

dt
=

3
τI

y1 −
3
τI

y2,

dy3

dt
=

3
τI

y2 −
3
τI

y3,

(2.7)

with initial conditions T (0) = T0, I1(0) = I0, I2(0) = 0, V(0) = 0, E(0) = E0, and yi(0) = 0 for
i = 1, 2, 3.

3. Structural identifiability analysis

To study the structural identifiability of the Models 1–4, we rewrite them in the following
general form

x′(t) = f (x, p),
(3.1)
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and the observations as
y(t) = g(x, p). (3.2)

Here, x denotes the state variables, p is the parameter vector, and y is the output (given by the
empirical data), also called the observations. The generic model given by Eq (3.1) is called
structurally identifiable if the parameter vector p can be determined uniquely from the observations
given by the smooth curve y(t). Otherwise, it is said to be unidentifiable. The formal definition of
structural identifiability is provided below.

Definition 1. Let p and p̂ be two distinct parameter vectors. Model Eq (3.1) is said to be globally
(uniquely) structurally identifiable if and only if,

g(x, p) = g(x, p̂) implies p = p̂.

Definition 2. Model Eq (3.1) is said to be locally structurally locally identifiable if for any p within an
open neighborhood of p̂ in the parameter space,

g(x, p) = g(x, p̂) implies p = p̂.

Various methods have been proposed for analyzing the structural identifiability of ODE models
[16, 17, 31]. In this study, we employ the differential algebra approach. It performs the elimination
of unobserved state variables, resulting in equations expressed as functions of model parameters and
observed state variables. These are referred to as the input-output equations, and are differential-
algebraic polynomials consisting of the outputs, y(t), with model parameters, p, as coefficients. The
formal definition of structural identifiability within the differential algebra approach for model Eq (3.1)
is provided below.

Definition 3. Let c(p) denote the coefficients of the input-output equation corresponding to model
Eq (3.1) . We say that model Eq (3.1) is structurally identifiable from unlimited observations y(t) if and
only if,

c(p) = c( p̂) implies p = p̂.
Studying structural identifiability of ODE models using the differential algebra methods can be

accomplished using several platforms and available open-source software. Here, we present three
such platforms: the differential algebra for identifiability of system (DAISY) [32], the identifiable
combinations web application (COMBOS) [33], and the StructuralIdentifiability.jl in JULIA [34].

There are many similarities among the three methods. All of them offer insights into the structural
identifiability status of each parameter by categorizing them into locally identifiable, globally
identifiable, or non-identifiable. They employ a differential elimination method to calculate
input-output equations of the considered system, and test the one-to-one map between the coefficients
of the input-output equations and model parameters. COMBOS and the StructuralIdentifiability.jl
package in JULIA are superior to DAISY, as they provide globally identifiable parameter correlations
in an otherwise non-identifiable system. Even though DAISY does not print parameter correlations,
the correlations can be derived using the coefficients of the input-output equations and algebraic
manipulations in software such as MATHEMATICA. Of the three software, COMBOS does not print
the input-output equations, making for a faster (yet more opaque) platform. Previous studies have
shown that COMBOS works best for small to medium-size models and is not assured for models with
large parameter vectors [33, 35, 36]. While highly similar, it is up to the user to determine which
software is best suited for studying the identifiability of the models considered.
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3.1. Structural identifiability results

To determine whether the considered models can reveal their parameters, we examine the structural
identifiability of Models 1–3, given by Eqs (2.1)–(2.3), under unlimited observations of viral load and
the structural identifiability of Model 4, given by Eq (2.7) , under unlimited combined observations of
viral load and effector CD8+ T cell concentrations. We used the differential algebra software DAISY.

3.1.1. DAISY-based structural identifiability results for Model 1

We assume that all Model 1’s parameters p = {β, δ, π, c} are unknown and that we have unlimited
empirical observations of the viral load, y(t) = V(t). Using DAISY [32], we obtain the following
input-output equation in variable V and model parameters p,

0 = V ′′′V − V ′′V ′ + V ′′V2β + V ′′V(c + δ) − V ′2(c + δ) + V ′V2β(c + δ) + V3βcδ. (3.3)

By Definition 3, we need to examine whether another set of parameters, p̂ = {β̂, δ̂, π̂, ĉ} can produce
the same empirical observation V(t), making the map from the parameter space p to the coefficients
of input-output equation Eq (3.3) one-to-one. The coefficients of input-output equation Eq (3.3) are
c(p) = {β, c + δ, cδ}. To determine whether the map from the parameter space p to the coefficients c(p)
is one-to-one, we set c(p) = c( p̂), which is the following system:

{β = β̂, c + δ = ĉ + δ̂, cδ = ĉδ̂}. (3.4)

Solving Eq (3.4) results in the following two sets of solutions:

S 1 :
{
β = β̂, c = ĉ, δ = δ̂

}
,

S 2 :
{
β = β̂, c = δ̂, δ = ĉ

}
.

Hence, only the infection rate β is globally structurally identifiable, while the infected cells killing
rate δ and the virus clearance rate c are locally identifiable. Lastly, the virus production rate π does
not appear in the input-output equation Eq (3.3). Therefore, it is not structurally identifiable. We
summarize the results for Model 1 below (see Table 1).

Proposition 1. Model 1 given by Eq (2.1) is not structured to identify all of its parameters from
unlimited viral load observations, V(t). More precisely, parameter β is globally structurally
identifiable, parameters c and δ are locally structurally identifiable, and parameter π is not
structurally identifiable. Moreover, Model 1 is globally structural identifiable under known
initial conditions.
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Table 1. Structural identifiability results for Models 1–4 using three software: DAISY,
StructuralIdentifiability.jl package in JULIA, and COMBOS.

Model
Observed
states

DAISY JULIA COMBOS

Model 1
unknown
initial
conditions

V(t)

β

globally identifiable
{c, δ}

locally identifiable
Correlations:
c + δ = ĉ + δ̂,
cδ = ĉδ̂

β

globally identifiable
{c, δ}

locally identifiable
π

nonidentifiable
Correlations:
c + δ = ĉ + δ̂,
cδ = ĉδ̂

β

globally identifiable
{c, δ}

locally identifiable
with 2 solutions

Model 2
unknown
initial
conditions

V(t)

{β, c}
globally identifiable
Correlations:
δπ = δ̂π̂, πKδ = π̂K̂δ

{β, c}
globally identifiable
{π,Kδ, δ}

nonidentifiable
Correlations:
δπ = δ̂π̂, πKδ = π̂K̂δ

{β, c,Kδπ, δπ}

globally identifiable

Model 3
unknown
initial
conditions

V(t)

{β, c, k}

globally identifiable
Correlations:
δ

Kδ
=
δ̂

K̂δ
, πKδ = π̂K̂δ

{β, c, k}

globally identifiable
{π,Kδ, δ}

nonidentifiable
Correlations:
δπ = δ̂π̂, πKδ = π̂K̂δ

{β, c,Kδπ, δπ}

globally identifiable

Model 4
unknown
initial
conditions

V(t), E(t)

{β, c, dE , δ, k,KE , τI}
globally identifiable
Correlations:
δEη = δ̂E η̂,
Kδη = K̂δη̂,
λ

η
=
λ̂

η̂
,
π

η
=
π̂

η̂

{β, c, dE , δ, k,KE , τI}
globally identifiable
{δE ,Kδ, π, λ, η}

nonidentifiable
Correlations:
Kδπ = K̂δπ̂,

Kδλ = K̂δλ̂,

ηKδ = η̂K̂δ,
δEπ = δ̂E π̂

identifiability
unknown

All models
known
initial
conditions
except for E0

V(t)

V(t), E(t)

Models 1–3
globally identifiable
Model 4
identifiability
unknown

Models 1–4
globally identifiable

Models 1–4
identifiability
unknown
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3.1.2. DAISY-based structural identifiability results for Model 2

We assume that all parameters p = {β, δ,Kδ, π, c} of Model 2, given by Eq (2.2), are unknown and
that we have unlimited empirical observations of the viral load, y(t) = V(t). Using DAISY, we obtain
the following input-output equation,

0 = V ′′′V ′2V + 2V ′′′V ′V2c + 2V ′′′V ′VKδπ + V ′′′V3c2 + 2V ′′′V2cKδπ + V ′′′VK2
δπ

2

− V ′′V ′3 + V ′′V ′2V2β − V ′′V ′2Vc − 2V ′′V ′2Kδπ + 2V ′′V ′V3βc + V ′′V ′V2(2βKδπ + c2)
− V ′′V ′K2

δπ
2 + V ′′V4βc2 + V ′′V3c(2βKδπ + c2) + V ′′V2Kδπ(βKδπ + 2c2)

+ V ′′VKδπ2(cKδ + δ) − V ′4c + V ′3V2βc − 2V ′3Vc2 + V ′3π(−2cKδ − δ) + 2V ′2V3βc2

+ V ′2V2(2βcKδπ + βδπ − c3) − 2V ′2Vcπ(cKδ + δ) − V ′2Kδπ2(cKδ + δ) + V ′V4βc3

+ 2V ′V3βcπ(cKδ + δ) + V ′V2π(βcK2
δπ + βδKδπ − c2δ) + V4βc2δπ + V3βcδKδπ2.

(3.5)

As before, we examine whether another set of parameters, p̂, can produce the same empirical
observation V(t), making the map from the parameter space p to the coefficients of input-output
equation Eq (3.5) one-to-one. If we set c(p) = c( p̂), we obtain

c = ĉ, β = β̂, Kδπ = K̂δπ̂, cπ(cKδ + δ) = ĉπ̂(ĉK̂δ + δ̂), βc2δπ = β̂ĉ2δ̂π̂,

βcKδπ + βδπ − c3 = β̂ĉK̂δπ̂ + β̂δ̂π̂ − ĉ3, Kδπ2(ckδ + δ) = K̂δπ̂2(ĉK̂δ + δ̂),

with solutions
{c = ĉ, β = β̂, δπ = δ̂π̂, πKδ = π̂K̂δ}.

Hence, Model 2 is not structurally identifiable. In particular, infection rate β, viral clearance rate c,
and the products δπ, Kδπ (but not the individual parameters δ, π, and Kδ) are globally identifiable.
Since the correlations δπ and Kδπ are known, fixing one of these parameters can make model Eq (2.2)
identifiable. We summarize the structureal identifiability results for Model 2 below (see Table 1).

Proposition 2. Model 2 given by Eq (2.2) is not structured to identify all of its parameters from
unlimited viral load observations, V(t). More precisely, parameters β and c are globally structurally
identifiable. Moreover, the parameter products δπ and Kδπ are globally identifiable. Since the
correlations are known, fixing δ, π, or Kδ makes the Model 2 globally structurally identifiable from
unlimited observations V(t). Moreover, Model 2 is globally structural identifiable under known
initial conditions.

3.1.3. DAISY-based structural identifiability results for Model 3

We assume that all parameters p = {β, δ, k, δEKδ, π, c} of Model 3, given by Eq (2.3), are unknown
and that we have unlimited empirical observations of the viral load, y(t) = V(t). Using DAISY, we
can derive the input-output equations (they are too messy and will not be presented here). As before,
we examine whether another set of parameters, p̂, can produce the same empirical observation V(t),
making the map from parameter space p to coefficients of input-output equation (not shown) one-to-
one. If we set c(p) = c( p̂), we obtain

{c = ĉ, β = β̂, k = k̂,
δ

Kδ
=
δ̂

K̂δ
, πKδ = π̂K̂δ}.
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Hence, Model 3 is not structurally identifiable. In particular, the infection rate β, the eclipse parameter
k, the viral clearance rate c, the ratio δ/Kδ, and the product Kδπ (but not the individual parameters δ,
π, and Kδ) are globally identifiable. Since the correlations are known, fixing one of these parameters
makes the model Eq (2.3) identifiable. We summarize the results for Model 3 below (see Table 1).

Proposition 3. Model 3 given by Eq (2.3) is not structured to identify all of its parameters from
unlimited viral load observations, V(t). More precisely, parameters β, k, and c are globally
structurally identifiable. Moreover, the parameter ratio δ/Kδ and the parameter product Kδπ are
globally identifiable. Since the correlations are known, fixing the parameter δ, π, or Kδ makes Model
3 globally structurally identifiable from unlimited observations V(t). Moreover, Model 3 is globally
structural identifiable under known initial conditions.

3.1.4. DAISY-based structural identifiability results for Model 4

To study the structural identifiability of Model 4 (given by Eq (2.7)), we assume that all parameters,
p = {β, δ, k, δEKδ, π, c λ, η, dE, τI , E0}, are unknown and that we have unlimited empirical observations
for the viral load y1(t) = V(t) and the effector cell CD8+ T cell data y2(t) = E(t). Using DAISY,
we can obtain input-output equations (they are messy and will not be presented here). As before, we
examine whether another set of parameters, p̂, can produce the same empirical observations V(t) and
E(t), making the map from the parameter space p to the coefficients of input-output equations (not
shown) one-to-one. If we set c(p) = c( p̂), we obtain

{c = ĉ, β = β̂, k = k̂, dE = d̂E, δ = δ̂, KE = K̂E, τI = τ̂I ,

δEη = δ̂Eη̂, Kδη = K̂δη̂,
λ

η
=
λ̂

η̂
,
π

η
=
π̂

η̂
}.

Hence, Model 4 is not structurally identifiable. In particular, the infection rate β, the eclipse parameter
k, the viral clearance rate c, the effector cells death rate dE, the generic killing rate δ, the half-maximal
level KE, the delay τI , the ratios λ/η and π/η, and the products dEη and Kδη (but not the individual
parameters δE, η,Kδ, π, λ) are globally identifiable. If the parameter η is fixed, then the model Eq (2.7)
becomes identifiable. We summarize the results for Model 4 below (see Table 1).

Proposition 4. Model 4 given by Eq (2.7) is not structured to identify all of its parameters from
unlimited viral load and effector cell observations, V(t) and E(t). More precisely, parameters β, k, c,
dE, δ, KE, and τI are globally structurally identifiable. Moreover, the parameter ratios λ/η and π/η
and the parameter products dEη and Kδη are globally identifiable. If the parameter η is fixed, then
Model 4 becomes globally structurally identifiable from unlimited observations V(t) and E(t).

We do not know (from DAISY) whether knowing initial conditions guarantees global stability of
Model 4 (see Table 1).

3.2. Comparison among structural identifiability software

Studying structural identifiability of ODE models can be achieved using software other than DAISY
To determine how these methods compare, results from three platforms, DAISY, COMBOS [33], and
StructuralIdentifiability.jl in JULIA [34], for Models 1–4 are presented side by side in Table 1.
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We find that all three software uncover the same structural identifiability results for Models 1–3.
On the other hand, DAISY and StructuralIdentifiability.jl in JULIA uncover the same identifiability
results (while COMBOS cannot find results) for Model 4 under unknown initial conditions. Even
though Models 3 and 4 employ different interpretations of the parameter correlations among
platforms, simple algebraic manipulations show that the obtained correlations are equivalent. Given
the similarity in the results among Models 1–3, it is up to the user to decide which of the three
software is best suited for their analysis. Similarly, given the similarity in the results among DAISY
and StructuralIdentifiability.jl in JULIA for Model 4 with unknown initial conditions, it is up to the
user to decide which of the two software is best suited for their analysis. However, only
StructuralIdentifiability.jl in JULIA can be used to determine the structural identifiability of Model 4
with unknown E0 and known other initial conditions. Hence, for larger systems with nonlinear terms
of interactions, this method should be employed.

4. Data fitting methods

4.1. Empirical data

We use previously published longitudinal influenza A infectious virus titer and CD8+ T cell data in
mice from Smith et al. [5]. Adult mice were inoculated intranasally with 75 TCID50 of mouse adapted
influenza A/Puerto Rico/8/34 (H1N1) (PR8) virus.

Total infectious virus (log 10 TCID50 per lung) was measured for ten mice each day. Nine days
after inoculation, the infectious virus was no longer detectable in any of the mice. Therefore, we only
consider infectious virus titer data from the first nine days post inoculation in our analyses. We let
E(Vdata(i)) be the mean infectious virus titer data at day i = {1, ..., 9} and Var(Vdata( j)) be the infectious
virus titer variance at days i = {1, ..., 9} among the ten mice.

Moreover, total effector CD8+ T cells (cells per lung) were measured daily for five mice. Since
influenza A-specific effector CD8+ T cells were detectable for all twelve days of the study, we consider
effector CD8+ T cells data from the first twelve days post inoculation in our analyses. We let E(Edata( j))
be the mean CD8+ T cell data (per lung) at day j = {1, ..., 12} and Var(Edata( j)) be the CD8+ T cell
data variance at days j = {1, ..., 12} among the five mice.

4.2. Model parameters and initial conditions

For all models, we assume known initial conditions T (0) = 107 cells/ml, I(0) = 75 cells/ml, and
V(0) = 0 virus/ml as in [5]. For Models 3 and 4, we additionally assume that I2(0) = 0, and for Model
4, we assume yi(0) = 0, for i = 1, 2, 3. For Model 4, we assume E(0) = E0 is unknown, therefore
adding E0 to the parameter vector to be estimated from the data. Lastly, we assume all parameters are
unknown. When parameters are either very large or very small, we estimate their value on natural
logarithmic scale. In particular, we estimate p1 = {ln(β), δ, π, c} for Model 1,
p2= {ln(β), ln(δ), ln(Kδ), π, c} for Model 2, p3= {ln(β), ln(δ), ln(Kδ), π, c, k} for Model 3, and
p4= {ln(β), δ, ln(Kδ), π, c, k, δE, ln(η), ln(λ), dE, ln(KE), τI , ln(E0)} for Model 4.

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7394–7420.



7406

4.3. Data fitting algorithm

To estimate parameters p1–p3, we fit the predicted viral load log10 Vw
model(i) given by Models 1–3

to the longitudinal mean (among the ten mice) infectious virus (log10 TCID50 per lung) E(Vdata(i)),
knowing that the variance in the data at day i is Var(Vdata(i)), for i = {1...9} days. We assume that the
data satisfies the following statistical model [19, 37]

E(Vdata(i)) = log10 Vw
model(i,pw) + ϵi

√
Var(Vdata(i)), (4.1)

where Vw
model(i) is the predicted virus trajectory given by Model w at days i = {1, ..., 9} post infection;

p1= {ln(β), δ, π, c}, p2= {ln(β), ln(δ), ln(Kδ), π, c}, and p3= {ln(β), ln(δ), ln(Kδ), π, c, k}; and ϵi are
independent and identically distributed with mean zero and standard deviation σ. Given the statistical
model Eq (4.1), we assume that the measured data, E(Vdata(i)), follows a normal distribution with a
mean equal to the model prediction log10 Vw

model(i) and with variance equal to σ2Var(Vdata(i)).
Moreover, the availability of measurements from several animals that vary with time allows us to
account for the change in data variance over time, Var(Vdata(i)). Therefore, we consider the following
functional (weighted residual sum of squares), to estimate the model parameters,

RSSw(pw) =
9∑

i=1

(log10 Vw
model(i,pw) − E(Vdata(i)))2

Var(Vdata(i))
. (4.2)

Consequently, parameters of Models 1–3 are estimated by minimizing the weighted least-squares
given by

Jw(pw) = min
pw

RSSw(pw). (4.3)

Moreover, to estimate parameters p4, we fit both the predicted viral load log10 V4
model(i), given by

Model 4, to the longitudinal mean (among ten mice) infectious virus E(Vdata(i)) (knowing that the
variance in the data at days i = {1...9} is Var(Vdata(i))) and the predicted effector cell population
log10 E4

model( j), given by Model 4, to the longitudinal mean (among five mice) CD8+ T cell data
E(Edata( j)) (knowing that the variance in the data at days j = {1...12} is Var(Edata( j))). We assume
that the data is satisfying the following statistical model [19, 37]

E(Vdata(i)) = log10 V4
model(i,p4) + ϵi

√
Var(Vdata(i)), (4.4)

E(Edata( j)) = log10 E4
model( j,p4) + η j

√
Var(Edata( j)), (4.5)

where V4
model(i) is the predicted virus trajectory given by Model 4 at days i = {1, ..., 9} post infection,

E4
model( j) is the predicted CD8+ T cell population given by Model 4 at days j = {1, ..., 12} post

infection, and p4= {ln(β), δ, ln(Kδ), π, c, k, δE, ln(η), ln(λ), dE, ln(KE), τI , ln(E0)}. Here, ϵi and η j are
independent and identically distributed with mean zero and standard deviations σV and σE,
respectively. As before, the measured data E(Edata( j)) follows a normal distribution whose mean is the
model prediction log10 Ew

model(i) and whose variance is σ2
EVar(Edata( j)). We consider the following

functional (weighted residual sum of squares),

RSS4(p4) = u1

9∑
i=1

(log10 V4
model(i,p4) − E(Vdata(i)))2

Var(Vdata(i))
+ u2

12∑
j=1

(log10 Emodel( j,p4) − E(Edata( j)))2

Var(Edata( j))
.

(4.6)
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Consequently, parameters of Model 4 are estimated by minimizing the weighted least-squares
given by,

J4(p4) = min
p4

RSS4(p4). (4.7)

Note that we weighted the virus and effector cells contributions, with weights u1 = 1 and
u2 = max jVar(Edata( j))/maxiVar(Vdata(i)). We minimize all least-square functionals RSSw using the
fmincon function in MATLAB with ranges for parameters pw given in Table 2.

Table 2. Upper and lower bounds for parameters estimated by fitting Models 1–3 to influenza
A virus titer and by fitting Model 4 to both influenza A virus titer and effector CD8+ T cell
data from infected mice.

Parameter Model 1 Model 2 Model 3 Model 4
β × 10−5 0.1–10 0.1–10 0.1–10 0.1–10
δ 0–25 102–108 102–108 0–15
Kδ - 103–107 103–107 101–105

π 0–102 0–102 0–102 0–102

c 0–25 0–25 0–25 0–25
k - - 4–6 4–6
δE - - - 0–25
η × 10−7 - - - 10−2–100
λ × 103 - - - 10−2–102

dE - - - 0–25
KE × 106 - - - 0.1–103

τI - - - 0–10
E0 × 103 - - - 0.1–10

4.4. Model selection

To compare Models 1–4, we calculate the corrected Akaike information criteria (AICc), given below

AICc = n ln(
Jw

n
) + 2(M + 1) +

2(M + 1)(M + 2)
n − M

, (4.8)

where n is the number of data points used to estimate parameters pw and M is the number of estimated
parameters. In Models 1–3, n = 9 and M = 4, 5, and 6, respectively. In Model 4, n = 21 and M = 13.

4.5. Model prediction confidence interval

To quantify the uncertainty associated with predicted solutions of each model, we perform
parametric bootstrapping. It is a simulation-based method which assumes that data comes from a
known distribution with unknown parameters. For Models 1–3, we assume that the predicted viral
population for best parameter estimates, log10 Vw

model(i,pw), is the mean of the data’s normal
distribution and σ2Var(Vdata(i)) is its variance (see Eq (4.1)). Then, σ can be approximated
as follows,

σ2 ≈
1

n − M

n∑
i=1

(log10 Vw
model(i,pw) − E(Vdata(i)))2

Var(Vdata(i))
,
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(see Banks et al. for a full derivation [37]). Here, n = 9 is the number of viral samples and M is the
number of parameters (M = 4, M = 5, and M = 6 for Models 1–3, respectively). To find a confidence
region in our model predictions, we generate 1000 simulated datasets using the distribution space given
by Eq (4.1), and fit Models 1–3 to each datasets.

Similarly, for Model 4, assuming that viral data and effector cell data come from distributions with
means log10 V4

model(i,p4) and log10 E4
model(i,p4) (the predicted variables for best parameter fits) and that

σ2
VVar(Vdata(i)) and σ2

EVar(Edata( j)) are the variances, then

σ2
V ≈

1
ntot − M

nV∑
i=1

(log10 V4
model(i,p4) − E(Vdata(i)))2

Var(Vdata(i))
,

and

σ2
E ≈

1
ntot − M

nE∑
j=1

(log10(Emodel( j,p4) − E(Edata( j)))2

Var(Edata( j))
,

as before. Here, nV = 9 is the number of viral samples, nE = 12 is the number of CD8+ T cell samples,
ntot = nV + nE = 21 is the number of total data samples, and M = 13 is the number of parameters fitted.

5. Data fitting results

Table 3. Parameter estimates found by fitting Model 1, Model 2, and Model 3 to virus
titer data and Model 4 to virus titer and effector CD8+ T cell data from mice infected with
influenza A virus using fmincon routine in MATLAB.

Parameter Model 1 Model 2 Model 3 Model 4
β × 10−5 0.48 6.88 6.20 8.39
δ 1.47 1.59 × 106 1.72 × 106 0.196
Kδ - 4.69 × 104 2.37 × 105 5.49 × 103

π 1.18 0.86 1.69 0.69
c 1.48 6.49 12.34 6.19
k - - 4.82 5.02
δE - - - 14.20
η × 10−7 - - - 3.59
λ × 103 - - - 1.31
dE - - - 0.20
KE × 106 - - - 9.68
τI - - - 1.69
E0 × 103 - - - 1.21
Jw 21.12 2.09 2.39 2.14
AICc 37.67 40.88 114.1 36.78

We fitted Models 1–3 to previously published longitudinal influenza A infectious virus titer and
we fitted Model 4 to both longitudinal influenza A infectious virus titer and longitudinal CD8+ T cell
data in infected mice [5], using a normalized least-square optimization algorithm (see Section 4). The
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results from fitting V(t) given by Models 1–3 to viral load data are shown in Figure 2A–C and the
best parameter fits are given in Table 3. The results from fitting both V(t) and E(t) given by Model 4
to viral titer and effector cell data are shown in Figure 2D and the best parameter fits are given in
Table 3. Model selection, using the corrected AICc, predicts that Model 4 best describes the data
(see Table 3). To quantify the uncertainty associated with predicted solutions of each model, we find
a 90% confidence region in our model predictions (see Section 4.5), illustrated by shaded gray areas in
Figure 2A–C for Models 1–3 and by gray and blue shaded regions in Figure 2D for Model 4. We see
large error regions in virus population predictions for all models during the decay phase (gray regions
in Figure 2A–D). Moreover, Models 2–4 better capture the virus population expansion phase compared
to Model 1 (gray regions in Figure 2B–D versus gray region in Figure 2A). Lastly, the largest error in
CD8+ T cell prediction in Model 4 occurs in the second week of infection (blue region in Figure 2D).
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Figure 2. Model predictions (solid lines) and 95% model confidence regions (dashed areas)
obtained by fitting V(t) (black lines) given by A: Model 1, B: Model 2, C: Model 3 to virus
load data (black circles) and by fitting V(t) (black line) and E(t) (blue line) given by D:
Model 4 to o virus load data (black circles) and CD8+ T cell data (blue circles). Model
parameters are given in Table 3.
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6. Practical identifiability analysis

While structural identifiability investigates whether parameters can be uniquely determined from a
model given unlimited data in the absence of measurement error or noise, practical identifiability
determines whether parameters can be accurately identified in real-world scenarios, where observed
discrete and variable among subject data is contaminated with measurement errors. We and others
have employed several methods to study practical identifiability of within-host and infectious disease
models, such as Monte Carlo simulations [18–20], Fisher information matrix or correlation
matrix [16, 21–23], and Bayesian methods [24]. In this study, we use the profile likelihood
method [25, 38] described in detail below.

Consider that the vector of parameters p is partitioned into p=(r, s), where r represents the parameter
whose practical identifiability we are investigating and s represents the vector of remaining parameters.
The profile likelihood of r is given by,

PL(r) = min
s

RSS(r, s), (6.1)

where RSS is the objective functional used for data fitting (in our case, Eq (4.2) for Models 1–3 and
Eq (4.6) for Model 4). In other words, PL(r) finds the minimum of the objective functional RSS(r, s)
for an array of fixed r values over the space of the remaining parameters s. The shape of PL(r)
informs the identifiability of r, with a u-shaped PL(r) that exceeds a threshold (corresponding to a
chosen confidence level) indicating practical identifiability of r and a flat PL(r) indicating
nonpractical identifiability of r.

We estimate PL(r) over a mesh of equally spaced values of r, centered at the best-fit estimate r̂,
with the number of mesh points chosen to have enough data to generate a confidence interval for r̂, as
follows. If we consider a model with parameters p unknown and a model with parameters s unknown,
we obtain two nested models that differ by parameter r. It has been shown that the likelihood ratio of
the nested models converges to a χ2 distribution with one degree of freedom, d f = 1 (see Corrollary 2
in [38] for more detail). This helps us define the ∆-level likelihood-based confidence interval for
parameter r to be

CI = {r|PL(r) < J + ∆}, (6.2)

where ∆ is the percentile of the χ2 distribution with d f = 1, and J is the weighted least-squares
functional at the best parameter estimate [38]. This can be summarized, as follows.

Definition 4. Let CI = {r|PL(r) < J + ∆} be the likelihood-based confidence interval for parameter r.

i. If CI ⊂ [r1, r2], where r1 and r2 are finite, then parameter r is practically identifiable.
ii. If either r1 or r2 is infinite, then parameter r is not practically identifiable.

A model is practically identifiable if all parameters are practically identifiable.

For Models 1–3, we generated the profile likelihoods PL(r) for each parameter r ∈ {pw} for w =
{1, 2, 3} by fitting the functional RSSw(pw) given by Eq (4.2) and Model w to mean population viral load
data. We obtained best estimates for the remaining parameters s over a mesh of equally spaced, known
r values. Similarly, for Model 4, we generated the profile likelihood PL(r) for unknown parameters
r ∈ {p4} by fitting functional RSS4(p4) given by Eq (4.6) simultaneously to the mean population
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viral titer and the mean population effector cell data. We obtained best estimates for the remaining
parameters s over a mesh of equally spaced, known r values.

Additionally, to further explore the relationship between data availability and practical
identifiability, we generated profile likelihoods for parameters pw and Model w using simulated,
noise-free, high frequency datasets. In particular, we assumed that the virus titer data was collected
every fourteen minutes (for a total of 899 evenly spaced points) for Models 1–3 and that both the
virus titer data and the effector cell data were collected every fourteen minutes (for a total of 899
evenly spaced points of each data type) for Model 4. We fitted each model to this high frequency data
and generated profile likelihoods of the resulting parameter values. In all of our models, we chose ∆
to be the 90-th percentile of the χ2-distribution, χ2

90 [38]. This guaranteed us a 90% confidence
interval in the estimated parameter r.

6.1. Practical identifiability results

Since we determined that Models 1–4 are structurally identifiable under known initial conditions
and unlimited data, we were allowed to search for best estimates for all models’ parameters. The
resulting fitting routine may still be ill-posed, given that the data consisted of discrete (daily) datasets
that varied among the infected mice, rather than the unlimited data required by the structural
identifiability theory. Therefore, we performed practical identifiability for Models 1–4 under the
discrete subject data in [28]. We used the Profile Likelihood practical identifiability
method [23, 25–27], which has the advantage of not only determining whether a parameter is
practically identifiable, but also of determining a 90% confidence interval for the parameter space
where practical identifiability occurs.

When using the empirical population mean virus titer data in [5] for Model 1, we found that β is
practically identifiable with 90% confidence interval CI ⊂ [1.64 × 10−6, 2.94 × 10−5] and π is
practically identifiable with 90% confidence interval CI ⊂ [0.31, 3.18], respectively. On the other
hand, both δ and c are not practically identifiable, with identical 90% confidence intervals
CI ⊂ [0.87,∞] (see Figure 3A). Adding high frequency data and rerunning the profile likelihood
analysis resulted in practical identifiability of all four parameters, consistent with the structural
identifiability results for Model 1 (see Figure 3B).

Similar to Model 1, when using the empirical population mean virus titer data in [5] for Model 2,
we found that δ, Kδ, and π are practically identifiable with 90% confidence intervals CI ⊂ [1.41 ×
106, 2.06 × 106], CI ⊂ [1.74 × 104, 4.19 × 105], and CI ⊂ [0.44, 5.24], respectively. On the other
hand, both β and c are not practically identifiable, with 90% confidence intervals CI ⊂ [6.62×10−6,∞]
and CI ⊂ [3.98,∞], respectively (see Figure 3C). Adding high frequency data and rerunning the
profile likelihood analysis resulted in practical identifiability of all five parameters, consistent with the
structural identifiability results for Model 2 (see Figure 3D).

For Model 3, when using the empirical population mean virus titer data in [5], we found that β, δ,
Kδ, and π are practically identifiable with 90% confidence intervals CI ⊂ [2.17 × 10−5, 1.60 × 10−4],
CI ⊂ [1.47 × 106, 2.03 × 106], CI ⊂ [1.59 × 105, 4.32 × 105], and CI ⊂ [1.07, 4.49], respectively. On
the other hand, both c and k are not practically identifiable, with 90% confidence intervals
CI ⊂ [3.98,∞] and CI ⊂ [∞,∞], respectively (see Figure 3E). Adding high frequency data and
rerunning the profile likelihood analysis did not result in practical identifiability of all six parameters
(see Figure 3F). However, if we additionally relaxed constraints on parameters c and k to range in the
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[0, 1000] and [0, 50] intervals, compared to the constraints chosen in Table 2, we observed practical
identifiability of all five parameters, consistent with the structural identifiability results for Model 3
(see Figure 4).
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Figure 3. Profile likelihood curves generated using empirical data for A: Model 1, C:
Model 2, E: Model 3; and profile likelihood curves generated using high frequency simulated
data for B: Model 1, D: Model 2, F: Model 3. The red circles indicate best parameter
estimates given in Table 3 and the dashed lines represent a threshold equivalent to 90%
confidence level in the parameter estimate.

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7394–7420.



7413

-10 -9.5 -9

ln( )

J

J+

P
L

14.34 14.36

ln( )
12.2 12.4

ln(K )

1 1.5 2

J

J+

P
L

0 500

c
0 10 20

k

Figure 4. Profile likelihood curves generated using empirical data for Model 3 when we
relax constraints, such that c ∈ [0, 1000] and k ∈ [0, 50]. The red circles indicate the best
parameter estimate given in Table 3 and the dashed line represents a threshold equivalent
to 90% confidence level in the parameter estimate.

-12 -11 -10

ln( )

J

J+

P
L

4 5 6

k

0 0.5

0 10 20

E

J

J+

P
L

5 10
ln(K )

0 1 2

0 10 20

c

J

J+

P
L

-16 -14 -12

ln( )

6 7 8

ln( )

0 2 4

d
E

J

J+

P
L

14 16 18

ln(K
E

)

0 5

I

5 10

ln(E
0
)

J

J+

P
L

A.

-10 -9.5 -9

ln( )

J

J+

P
L

0 5 10

k

0.1 0.2 0.3

10 15 20 25

E

J

J+

P
L

10 15

ln(K )

0.6 0.8

6 6.5

c

J

J+

P
L

-15 -14.5

ln( )
0 5 10

ln( )

0 0.5
d

E

J

J+

P
L

10 15 20

ln(K
E

)

1 1.5 2

I

6.5 7 7.5

ln(E
0
)

J

J+

P
L

B.

Figure 5. Profile likelihood curves generated using empirical data for A: Model 4, and
profile likelihood curves generated using high frequency simulated data for B: Model 4. The
red circles indicate best parameter estimates given in Table 3 and the dashed lines represent
a threshold equivalent to 90% confidence level in the parameter estimate.
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For Model 4, when using the discrete empirical population mean virus titer data and the empirical
population mean effector cell data in [5] simultaneously, we found that π and E0 are practically
identifiable with 90% confidence intervals CI ⊂ [0.29, 2.49] and CI ⊂ [66, 5.41 × 10−4]. Parameters k,
λ, and KE are not practically identifiable with the same 90% confidence interval CI ⊂ [−∞,∞].
Parameters β, δE, Kδ, η, and c are also not practically identifiable with 90% confidence intervals
CI ⊂ [8.00 × 10−6,∞], CI ⊂ [1.10,∞], CI ⊂ [42.98,∞], CI ⊂ [5.37 × 10−8,∞], and CI ⊂ [3.89,∞],
respectively. Lastly, parameters δ, dE, and τ are not practically identifiable on the positive domain
with an undefined lower bound (ULB) for the 90% confidence interval and a finite upper bound. In
particular, CI ⊂ [ULB, 0.63], CI ⊂ [ULB, 3.20], CI ⊂ [ULB, 6.99], for δ, dE, and τI , respectively (see
Figure 5A). Adding high frequency data and rerunning the profile likelihood analysis resulted in
practical identifiability of all thirteen parameters, consistent with the structural identifiability results
for Model 4 (see Figure 5B).

7. Discussion

In this study, we investigated the conditions needed to ensure model identifiability in four models
of influenza A virus dynamics in infected mice. To apply the same methodology and software, all
considered models were either modeled by systems of ODEs (Models 1–3 given by equations
Eqs (2.1)–(2.3)) or approximated by a system of ODEs (Model 4 given by Eq (2.7)). The considered
models differ in the number of equations (corresponding to the number of variables) from three in
Models 1 and 2, to four in Model 3 to eight in Model 4. Consequently, the number of unknown
parameters is a maximum of four in Model 1, a maximum of five in Model 2, a maximum of six in
Model 3, and a maximum of thirteen in Model 4. Lastly, the terms of interaction include only
mass-action and linear terms for Model 1 and mass-action, linear terms, and density dependence
terms for Models 2–4.

We found that the increased complexity needed to capture biological realism comes with a cost. It
resulted in increased uncertainty in parameter estimates not only when discrete and noisy virus and
immune cell empirical data is used for validation but also when we assumed (hypothetically) that
unlimited data is available. This means that data fitting should not be conducted until it is established
that parameters can be revealed from unlimited data under the considered model structure. In other
words, the first step in the model validation is determining whether all unknown parameters are
structurally identifiable (see Figure 6).

When it comes to investigating the structural identifiability of systems of ODEs several software
platforms are available. Here, we compared results from three of them: DAISY [32], COMBOS [33],
and StructuralIdentifiability.jl in JULIA [34]. For Models 1–3 and unlimited virus titer data, we found
the same classification for the structurally identifiable parameters and the same (or equivalent)
correlations between the nonstructurally identifiable parameters, regardless of the software used
(Table 1). For the more complex Model 4 and unlimited virus titer and effector CD8+ T cell data,
however, only StructuralIdentifiability.jl in JULIA found that the model is structurally identifiable
under known (with the exception of initial effector population, E0) initial conditions (Table 1). When
initial conditions are unknown, we found identical classification for structurally identifiable
parameters and equivalent correlations between the nonstructurally identifiable parameters among
StructuralIdentifiability.jl in JULIA and DAISY (Table 1). COMBOS cannot handle the structural
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stability analyses for Model 4, regardless of whether initial conditions are known or not (Table 1).
While increased difficulty in analyzing the structural identifiability of Model 4 is not surprising given
its increased dimensionality (eight equations), multiple parameters (thirteen), and complex terms of
interaction, this model is validated with two datasets (virus titer load and effector CD8+ T cells). Our
analysis showed that the addition of data for another model variable did not compensate for the size of
the model and number of unknown parameters.

Figure 6. Flow chart of performing identifiability theory to ODE models.
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Interestingly, we found that all parameters (for all models) are structurally identifiable under
known (with the exception of initial effector population, E0) initial conditions. Given that this is an
inoculation study, the assumption of known viral inoculum (set by the experiment) and of known
initial target cell population (approximated based on the animal body weight) is not unreasonable.
When Models 1–4 are used to model natural infection, however, such initial conditions would be
unknown due to differences in individual routes of infection, heterogeneity in individual immune
responses, and variability in patient susceptibility. Under such unknowns, Models 1–4 would become
structurally unidentifiable. Hence, it would be impossible to estimate all parameters even in the
presence of unlimited data. A reduction of the unknown parameter space (based on the reported
parameter correlations) would be needed before model validation can be attempted.

We next validated Models 1–3 with discrete (daily) virus titer data (for the first nine days) and
validated Model 4 with discrete (daily) virus titer data (for the first nine days) and discrete (daily)
CD8+ T cell data (for the first twelve days). Model selection (based on AICc) favored Model 4 as
the best model (Table 3). Interestingly, Model 1 was the second best model, even though it had the
largest 90% error region around the predicted mean virus fit (Figure 2, gray shaded regions). All
models perform the worst during the contraction interval (Figure 2, gray and blue shaded regions),
suggesting uncertainty in death rates estimates (for the virus and infected cells).

We used the best parameter estimates obtained through data fitting for Models 1–4 to further
investigate their practical identifiablity. Knowing that data used for validation was collected daily and
that there was variability among the subjects at each time point, we wanted to determine whether
there is uncertainty in estimated parameters. When it comes to practical identifiability, several
methods are available, such as the Monte Carlo simulations [18–20], the Fisher information matrix or
correlation matrix [16, 21–23], and Bayesian methods [24]. In this study, we used the profile
likelihood method [25, 38] for two main reasons. First, it allowed us to not just classify the models as
practically or non-practically identifiable, but to determine a 90% confidence interval for each
practically identifiable parameter. Second, it allowed us to determine the required assumptions needed
to improve practical identifiability, while maintaining biological realism (for example, by imposing
positivity for all parameters).

We found that none of the models are practically identifiable for the daily empirical data collected
in [28] and the parameter range restrictions imposed in Table 2 (see Figures 3A,C,E, and 5A). While
Model 1, Model 2, and Model 4 become practically identifiable if we assume data is collected every
fourteen minutes (see Figures 3A,D, and 5B), Model 3 does not (see Figure 3F). For this model, we
can achieve practical identifiability only when we assume that the viral clearance rate can reach values
as high as c = 500 per day (corresponding to a life-span for the influenza virus of 2.9 minutes), and
that the epithelial cells spend 1/k = 1.2 hours in the eclipse phase before they become productively
infected (see Figure 4). While large influenza clearance rates have been reported before [28], the
eclipse phase 1/k is assumed to be conserved in a tight interval of 4–6 hours in most respiratory
infections [6, 11, 28]. Therefore, this parameter is not practically identifiable from Model 3 even when
data is collected at high frequency. This is a situation where a parameter should be removed from the
data fitting routine in order to improve the uncertainty in the estimates of the remaining parameters
(see Figure 6).

Our study has several limitations. First, Model 4 was originally expressed as a five order system of
DDEs. Given the lack of methods that can be used to determine the structural identifiability of DDEs,
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we approximated it with an eight order system of ODEs. More work is needed to determine whether
we maintain (or improve) the practical identifiability results when the DDE system is used in the place
of the ODE system. Second, we assumed that all model parameters are unknown. It is feasible that the
practical identifiability will be improved if certain parameters (such as the eclipse phase) were assumed
known. Lastly, all our practical identifiability results come in the context of daily data collection. It
would be interesting to see how data collected with random frequency (especially unavailability of
data measurements before peak viral load) changes the results. In conclusion, we investigated the
structural and practical identifiability of four nested ODE models of influenza A virus infection in
mice. We determined the tradeoff between model complexity (defined as combined system dimension,
number of unknown parameters, nonlinearity in model interactions), data availability, and our ability to
reliably estimate model parameters. We presented solutions for improving model identifiability. While
our results dependent on the structure of the models considered the available data, the methods are
generalizable and their use is needed to improve reliability and reproducibility of parameter estimates
in other systems of ODEs applied to discrete biological data.

Identifiability analysis has critical implications for experimental design, particularly when it comes
to ensuring that the data obtained in these experiments will provide accurate estimation of parameters.
For instance, if a model is not structurally identifiable even with noise-free unlimited data, then no
experimental design will allow for estimation of certain parameters. Furthermore, structural
identifiability analysis informs us which variables need to be measured in order to obtain reliable
parameter estimates. Therefore, these experiments can be designed with some structurally identifiable
models in mind. On the other hand, practical identifiability reveals the optimal data sampling
frequency, where the data is more informative for certain parameters. These results will refine the
experimental design to obtain data at those times and reduce the uncertainty in parameter estimates.
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