Research article Special Issues

A novel model for malware propagation on wireless sensor networks


  • Received: 27 November 2023 Revised: 25 January 2024 Accepted: 29 January 2024 Published: 22 February 2024
  • The main goal of this work was to propose a novel mathematical model for malware propagation on wireless sensor networks (WSN). Specifically, the proposed model was a compartmental and global one whose temporal dynamics were described by means of a system of ordinary differential equations. This proposal was more realistic than others that have appeared in the scientific literature since. On the one hand, considering the specifications of malicious code propagation, several types of nodes were considered (susceptible, patched susceptible, latent non-infectious, latent infectious, compromised non-infectious, compromised infectious, damaged, ad deactivated), and on the other hand, a new and more realistic term of the incidence was defined and used based on some particular characteristics of transmission protocol on wireless sensor networks.

    Citation: Angel Martin-del Rey. A novel model for malware propagation on wireless sensor networks[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 3967-3998. doi: 10.3934/mbe.2024176

    Related Papers:

  • The main goal of this work was to propose a novel mathematical model for malware propagation on wireless sensor networks (WSN). Specifically, the proposed model was a compartmental and global one whose temporal dynamics were described by means of a system of ordinary differential equations. This proposal was more realistic than others that have appeared in the scientific literature since. On the one hand, considering the specifications of malicious code propagation, several types of nodes were considered (susceptible, patched susceptible, latent non-infectious, latent infectious, compromised non-infectious, compromised infectious, damaged, ad deactivated), and on the other hand, a new and more realistic term of the incidence was defined and used based on some particular characteristics of transmission protocol on wireless sensor networks.



    加载中


    [1] P. G. Steeneken, E. Kaiser, G. J. Verbiest, M. C. ten Veldhuis, Sensors in agriculture: towards an internet of plants, Nat. Rev. Method. Prim., 3 (2023), 60. https://doi.org/10.1038/s43586-023-00250-x doi: 10.1038/s43586-023-00250-x
    [2] J. Garcia-Martin, A. Torralba, E. Hidalgo-Fort, D. Daza, R. Gonzalez-Carvajal, Iot solution for smart water distribution networks based on a low-power wireless network, combined at the device-level: A case study, Int. Things, 22 (2023), 100746.
    [3] B. Camboim, J. Tavares, M. Tavares, J. Barbosa, Posture monitoring in healthcare: a systematic mapping study and taxonomy, Med. Biol. Eng. Comput., 61 (2023), 1887–1899. https://doi.org/10.1007/s11517-023-02851-w doi: 10.1007/s11517-023-02851-w
    [4] M. Conti, Secure Wireless Sensor Networks. Threats and Solutions, Springer Science Business Media, 2016.
    [5] J. Lopez, J. Zhou, Wireless Sensor Network Security, IOS Press, 2008.
    [6] P. Devi, B. Jaison, Protection on wireless sensor network from clone attack using the sdn-enabled hybrid clone node detection mechanisms, Comput. Commun., 152 (2020), 316–322.
    [7] S. A. Elsaid, N. S. Albatati, An optimized collaborative intrusion detection system for wireless sensor networks, Soft Comput., 24 (2020), 12553–12567.
    [8] A. Salim, W. Osamy, A. Aziz, A. Khedr, Seedgt: Secure and energy efficient data gathering technique for iot applications based wsns, J. Netw. Comput. Appl., 202. https://doi.org/10.1016/j.jnca.2022.103353 doi: 10.1016/j.jnca.2022.103353
    [9] D. Cong, X. Zhongwei, A secure three-factor authentication scheme for multi-gateway wireless sensor networks based on elliptic curve cryptography, Ad Hoc Netw., 127 (2022), 102768.
    [10] X. Liu, Z. Guo, J. Ma, Y. Song, A secure authentication scheme for wireless sensor networks based on dac and intel sgx, IEEE Int. Things J., 9 (2022), 3533–3547. https://doi.org/10.1109/JIOT.2021.3097996 doi: 10.1109/JIOT.2021.3097996
    [11] V. Rao, K. Prema, A review on lightweight cryptography for internet-of-things based applications, J. Ambient Intell. Humaniz. Comput., 12 (2021), 8835–8857. https://doi.org/10.1007/s12652-020-02672-x doi: 10.1007/s12652-020-02672-x
    [12] A. Gautam, R. Kumar, A comprehensive study on key management, authentication and trust management techniques in wireless sensor networks, SN Appl. Sci., 3 (2021), 50. https://doi.org/10.1007/s42452-020-04089-9 doi: 10.1007/s42452-020-04089-9
    [13] M. Faisal, I. Ali, M. Khan, J. Kim, S. Kim, Cyber security and key management issues for internet of things: Techniques, requirements, and challenges, Complexity, 2020 (2020). https://doi.org/10.1155/2020/6619498 doi: 10.1155/2020/6619498
    [14] C. Kumar, R. Amin, M. Brindha, Safecom: Robust mutual authentication and session key sharing protocol for underwater wireless sensor networks, J. Syst. Architect., 130 (2022), 102650. https://doi.org/10.1016/j.sysarc.2022.102650 doi: 10.1016/j.sysarc.2022.102650
    [15] E. Praveen Kumar, S. Priyanka, A comprehensive survey on hardware-assisted malware analysis and primitive techniques, Comput. Netw., 235 (2023), 109967. https://doi.org/10.1016/j.comnet.2023.109967 doi: 10.1016/j.comnet.2023.109967
    [16] M. K. Roberts, P. Ramasamy, An improved high performance clustering based routing protocol for wireless sensor networks in iot, Telecommun. Syst., 82 (2023), 45–59. https://doi.org/10.1007/s11235-022-00968-1 doi: 10.1007/s11235-022-00968-1
    [17] C. H. Nwokoye, V. Madhusudanan, Epidemic models of malicious-code propagation and control in wireless sensor networks: An indepth review, Wirel. Pers. Commun., 125 (2022), 1827–1856. https://doi.org/10.1007/s11277-022-09636-8 doi: 10.1007/s11277-022-09636-8
    [18] R. K. Shakya, T. H. Ayane, F. D. Diba, P. Mamoria, Seirs model with spatial correlation for analyzing dynamic of virus spreading in event-driven wireless sensor networks, Int. J. Syst. Assur. Eng. Manag., 13 (2022), 752–760. https://doi.org/10.1007/s13198-021-01336-z doi: 10.1007/s13198-021-01336-z
    [19] Y. Zhou, Y. Wang, K. Zhou, S. F. Shen, W. X. Ma, Dynamical behaviors of an epidemic model for malware propagation in wireless sensor networks, Front. Physics, 11 (2023). https://doi.org/10.3389/fphy.2023.1198410 doi: 10.3389/fphy.2023.1198410
    [20] X. Zhu, J. Huang, Malware propagation model for cluster-based wireless sensor networks using epidemiological theory, PeerJ Comput. Sci., 7 (2021), e728. https://doi.org/10.7717/peerj-cs.728 doi: 10.7717/peerj-cs.728
    [21] H. Zhou, S. Shen, J. Liu, Malware propagation model in wireless sensor networks under attack-defense confrontation, Comput. Commun., 162 (2020), 51–58. https://doi.org/10.1016/j.comcom.2020.08.009 doi: 10.1016/j.comcom.2020.08.009
    [22] Y. Wang, D. Li, N. Dong, Cellular automata malware propagation model for wsn based on multi-player evolutionary game, IET Netw., 7 (2018), 129–135. https://doi.org/10.1049/iet-net.2017.0070 doi: 10.1049/iet-net.2017.0070
    [23] G. Liu, J. Li, Z. Liang, Z. Peng, Dynamical behavior analysis of a time-delay sirs-l model in rechargeable wireless sensor networks, Mathematics, 9 (2021), 2007. https://doi.org/10.3390/math9162007 doi: 10.3390/math9162007
    [24] G. Liu, J. Li, Z. Liang, Z. Peng, Analysis of time-delay epidemic model in rechargeable wireless sensor networks, Mathematics, 9 (2021), 978. https://doi.org/10.3390/math9090978 doi: 10.3390/math9090978
    [25] S. Awasthi, N. Kumar, P. K. Srivastava, An epidemic model to analyze the dynamics of malware propagation in rechargeable wireless sensor network, J. Discrete Math. Sci. Criptogr., 24 (2021), 1529–1543. https://doi.org/10.1080/09720529.2021.1951436 doi: 10.1080/09720529.2021.1951436
    [26] S. Kumari, R. K. Upadhyay, Exploring the dynamics of a malware propagation model and its control strategy, Wirel. Pers. Commun., 121 (2021), 1945–1978. https://doi.org/10.1007/s11277-021-08748-x doi: 10.1007/s11277-021-08748-x
    [27] G. Liu, J. Chen, Z. Liang, Z. Peng, J. Li, Dynamical analysis and optimal control for a seir model based on virus mutation in wsns, Mathematics, 9 (2021), 929. https://doi.org/10.3390/math9090929 doi: 10.3390/math9090929
    [28] X. Ye, S. Xie, S. Shen, Sir1r2: Characterizing malware propagation in wsns with second immunization, IEEE Access, 9 (2021), 82083–82093. https://doi.org/10.1109/ACCESS.2021.3086531 doi: 10.1109/ACCESS.2021.3086531
    [29] D. Ganeshan, K. Selvan, Analytical solution of propagation of worms in wireless sensor network model by homotopy perturbation method, Tamkang J. Math., 51 (2020), 333–347.
    [30] R. Ojha, P. Srivastava, G. Sanyal, N. Gupta, Improved model for the stability analysis of wireless sensor network against malware attacks, Wirel. Pers. Commun., 116 (2021), 2525–2548. https://doi.org/10.1007/s11277-020-07809-x doi: 10.1007/s11277-020-07809-x
    [31] Y. Zhou, Y. Wang, K. Zhou, S. F. Shen, W. X. Ma, Dynamical behaviors of an epidemic model for malware propagation in wireless sensor networks, Front. Phys., 11 (2023). https://doi.org/10.3389/fphy.2023.1198410 doi: 10.3389/fphy.2023.1198410
    [32] X. Zhong, B. Peng, F. Deng, G. Liu, Stochastic stabilization of malware propagation in wireless sensor network via aperiodically intermittent white noise, Complexity, 2020 (2020), 2903635. https://doi.org/10.1155/2020/2903635 doi: 10.1155/2020/2903635
    [33] J. D. Hernández Guillén, A. Martín del Rey, A mathematical model for malware spread on wsns with population dynamics, Phys. A, 545 (2020), 123609. https://doi.org/10.1016/j.physa.2019.123609 doi: 10.1016/j.physa.2019.123609
    [34] B. Du, H. Wang, M. Liu, An information diffusion model in social networks with carrier compartment and delay, Nonlinear Anal. Model Control, 23 (2018), 568–582. https://doi.org/10.15388/NA.2018.4.7 doi: 10.15388/NA.2018.4.7
    [35] H. Zhang, S. Shen, Q. Cao, X. Wu, S. Liu, Modeling and analyzing malware diffusion in wireless sensor networks based on cellular automaton, Int. J. Distrib. Sens. Netw., 16 (2020). https://doi.org/10.1177/1550147720972944 doi: 10.1177/1550147720972944
    [36] S. Shen, H. Zhou, S. Feng, J. Liu, H. Zhang, Q. Cao, An epidemiology-based model for disclosing dynamics of malware propagation in heterogeneous and mobile wsns, IEEE Access, 8 (2020), 43876–43887. https://doi.org/10.1109/ACCESS.2020.2977966 doi: 10.1109/ACCESS.2020.2977966
    [37] S. Shen, H. Zhou, S. Feng, L. Huang, J. Liu, S. Yu and Q. Cao, Hsird: A model for characterizing dynamics of malware diffusion in heterogeneous wsns, J. Netw. Comput. Appl., 146, 102420. https://doi.org/10.1016/j.jnca.2019.102420 doi: 10.1016/j.jnca.2019.102420
    [38] S. Shen, H. Zhou, S. Feng, J. Liu, Q. Cao, Snird: Disclosing rules of malware spread in heterogeneous wireless sensor networks, IEEE Access, 7 (2019), 92881–92892. https://doi.org/10.1109/ACCESS.2019.2927220 doi: 10.1109/ACCESS.2019.2927220
    [39] D. Acarali, M. Rajarajan, N. Komninos, B. Zarpelao, Modelling the spread of botnet malware in iot-based wireless sensor networks, Secur. Commun. Netw., 2019 (2019). https://doi.org/10.1155/2019/3745619 doi: 10.1155/2019/3745619
    [40] X. Wu, Q. Cao, J. Jin, Y. Li, H. Zhang, Nodes availability analysis of nb-iot based heterogeneous wireless sensor networks under malware infection, Wirel. Commun. Mob. Comput., 2019 (2019). https://doi.org/10.1155/2019/4392839 doi: 10.1155/2019/4392839
    [41] R. M. Carnier, Y. Li, Y. Fujimoto, J. Shikata, Exact markov chain of random propagation of malware with network-level mitigation, IEEE Int. Things J., 10 (2023), 10933–10947. https://doi.org/10.1109/JIOT.2023.3240421 doi: 10.1109/JIOT.2023.3240421
    [42] V. Srivastava, P. K. Srivastava, J. Mishra, R. P. Ojha, P. S. Pandey, R. S. Dwivedi, et al., Generalized defensive modeling of malware propagation in wsns using atangana-baleanu- caputo (abc) fractional derivative, IEEE Access, 11 (2023), 49042–49058. https://doi.org/10.1109/ACCESS.2023.3276351 doi: 10.1109/ACCESS.2023.3276351
    [43] Y. Zhou, B. T. Liu, K. Zhou, S. F. Shen, Malware propagation model of fractional order, optimal control strategy and simulations, Front. Phys., 11 (2023). https://doi.org/10.3389/fphy.2023.1201053 doi: 10.3389/fphy.2023.1201053
    [44] S. J. Achar, C. Baishya, M. K. A. Kaabar, Dynamics of the worm transmission in wireless sensor network in the framework of fractional derivatives, Math. Meth. Appl. Sci., 45 (2022), 4278–4294. https://doi.org/10.1002/mma.8039 doi: 10.1002/mma.8039
    [45] G. Liu, Z. Tan, Z. Liang, H. Chen, X. Zhong, Fractional optimal control for malware propagation in the internet of underwater things, IEEE Int. Things J. https://doi.org/10.1109/JIOT.2023.3331736 doi: 10.1109/JIOT.2023.3331736
    [46] J. Bi, F. Zhang, A. Dorri, C. Zhang, C. Zhang, A risk management approach to double-virus tradeoff problem, IEEE Access, 7 (2019), 144472–144480. https://doi.org/10.1109/ACCESS.2019.2944985 doi: 10.1109/ACCESS.2019.2944985
    [47] S. Shen, H. Li, R. Han, A. V. Vasilakos, Y. Wang, Q. Cao, Differential game-based strategies for preventing malware propagation in wireless sensor networks, IEEE Trans. Inf. Forensic Secur., 9 (2014), 1962–1973. https://doi.org/10.1109/TIFS.2014.2359333 doi: 10.1109/TIFS.2014.2359333
    [48] Y. Yang, G. Liu, Z. Liang, H. Chen, L. Zhu, X. Zhong, Hybrid control for malware propagation in rechargeable wusn and wasn: From knowledge-driven to data-driven, Chaos Solitons Fractals, 173 (2023). https://doi.org/10.1016/j.chaos.2023.113703 doi: 10.1016/j.chaos.2023.113703
    [49] B. Xu, M. Lu, H. Zhang, C. Pan, A novel multi-agent model for robustness with component failure and malware propagation in wireless sensor networks, Sensors, 21 (2021), 4873. https://doi.org/10.3390/s21144873 doi: 10.3390/s21144873
    [50] S. Muthukrishnan, S. Muthukumar, V. Chinnadurai, Optimal control of malware spreading model with tracing and patching in wireless sensor networks, Wirel. Pers. Commun., 117 (2021), 2061–2083. https://doi.org/10.1007/s11277-020-07959-y doi: 10.1007/s11277-020-07959-y
    [51] J. Bi, S. He, F. Luo, W. Meng, L. Ji, D. W. Huang, Defense of advanced persistent threat on industrial internet of things with lateral movement modeling, IEEE Trans. Ind. Inform., 19 (2023), 9619–9630. https://doi.org/10.1109/TII.2022.3231406 doi: 10.1109/TII.2022.3231406
    [52] J. Bi, F. Luo, S. He, G. Liang, W. Meng, M. Sun, False data injection and propagation-aware game theoretical approach for microgrids, IEEE Trans. Smart Grid, 13 (2022), 3342–3353. https://doi.org/10.1109/TSG.2022.3174918 doi: 10.1109/TSG.2022.3174918
    [53] J. Bi, F. Luo, G. Liang, X. Yang, S. He, Z. Y. Dong, Impact assessment and defense for smart grids with fdia against ami, IEEE Trans. Netw. Sci. Eng., 10 (2023), 578–591. https://doi.org/10.1109/TNSE.2022.3197682 doi: 10.1109/TNSE.2022.3197682
    [54] O. Dieckmann, J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley and Sons, Ltd., 2000.
    [55] O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the basic reproduction ration $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/bf00178324 doi: 10.1007/bf00178324
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(970) PDF downloads(101) Cited by(1)

Article outline

Figures and Tables

Figures(18)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog