Research article Special Issues

An ensemble-acute lymphoblastic leukemia model for acute lymphoblastic leukemia image classification


  • Received: 27 October 2023 Revised: 15 December 2023 Accepted: 27 December 2023 Published: 05 January 2024
  • The timely diagnosis of acute lymphoblastic leukemia (ALL) is of paramount importance for enhancing the treatment efficacy and the survival rates of patients. In this study, we seek to introduce an ensemble-ALL model for the image classification of ALL, with the goal of enhancing early diagnostic capabilities and streamlining the diagnostic and treatment processes for medical practitioners. In this study, a publicly available dataset is partitioned into training, validation, and test sets. A diverse set of convolutional neural networks, including InceptionV3, EfficientNetB4, ResNet50, CONV_POOL-CNN, ALL-CNN, Network in Network, and AlexNet, are employed for training. The top-performing four individual models are meticulously chosen and integrated with the squeeze-and-excitation (SE) module. Furthermore, the two most effective SE-embedded models are harmoniously combined to create the proposed ensemble-ALL model. This model leverages the Bayesian optimization algorithm to enhance its performance. The proposed ensemble-ALL model attains remarkable accuracy, precision, recall, F1-score, and kappa scores, registering at 96.26, 96.26, 96.26, 96.25, and 91.36%, respectively. These results surpass the benchmarks set by state-of-the-art studies in the realm of ALL image classification. This model represents a valuable contribution to the field of medical image recognition, particularly in the diagnosis of acute lymphoblastic leukemia, and it offers the potential to enhance the efficiency and accuracy of medical professionals in the diagnostic and treatment processes.

    Citation: Mei-Ling Huang, Zong-Bin Huang. An ensemble-acute lymphoblastic leukemia model for acute lymphoblastic leukemia image classification[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 1959-1978. doi: 10.3934/mbe.2024087

    Related Papers:

  • The timely diagnosis of acute lymphoblastic leukemia (ALL) is of paramount importance for enhancing the treatment efficacy and the survival rates of patients. In this study, we seek to introduce an ensemble-ALL model for the image classification of ALL, with the goal of enhancing early diagnostic capabilities and streamlining the diagnostic and treatment processes for medical practitioners. In this study, a publicly available dataset is partitioned into training, validation, and test sets. A diverse set of convolutional neural networks, including InceptionV3, EfficientNetB4, ResNet50, CONV_POOL-CNN, ALL-CNN, Network in Network, and AlexNet, are employed for training. The top-performing four individual models are meticulously chosen and integrated with the squeeze-and-excitation (SE) module. Furthermore, the two most effective SE-embedded models are harmoniously combined to create the proposed ensemble-ALL model. This model leverages the Bayesian optimization algorithm to enhance its performance. The proposed ensemble-ALL model attains remarkable accuracy, precision, recall, F1-score, and kappa scores, registering at 96.26, 96.26, 96.26, 96.25, and 91.36%, respectively. These results surpass the benchmarks set by state-of-the-art studies in the realm of ALL image classification. This model represents a valuable contribution to the field of medical image recognition, particularly in the diagnosis of acute lymphoblastic leukemia, and it offers the potential to enhance the efficiency and accuracy of medical professionals in the diagnostic and treatment processes.



    加载中


    [1] F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, et al., Artificial intelligence in healthcare: Past, present and future, Stroke Vasc. Neurol., 2 (2017), 230–243. https://doi.org/10.1136/svn-2017-000101 doi: 10.1136/svn-2017-000101
    [2] J. Kang, Z. Ullah, J. Gwak, Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers, Sensors, 21 (2021), 1–21. https://doi.org/10.3390/s21062222 doi: 10.3390/s21062222
    [3] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, Y. Zheng, Convolutional neural networks for diabetic retinopathy, Procedia Comput. Sci., 90 (2016), 200–205. https://doi.org/10.1016/j.procs.2016.07.014 doi: 10.1016/j.procs.2016.07.014
    [4] P. Zhai, Y. Tao, H. Chen, T. Cai, J. Li, Multi-task learning for lung nodule classification on chest CT, IEEE Access, 8 (2020), 180317–180327. https://doi.org/10.1109/ACCESS.2020.3027812 doi: 10.1109/ACCESS.2020.3027812
    [5] American Cancer Society, Leukemia in Children, 2023. Available from: https://www.cancer.org/cancer/types/leukemia-in-children.html
    [6] D. Bhojwani, J. J. Yang, C. Pui. Biology of childhood acute lymphoblastic leukemia, Pediatr. Clin. North Am., 62(2015), 47–60. https://doi.org/10.1016/j.pcl.2014.09.004 doi: 10.1016/j.pcl.2014.09.004
    [7] C. Mondal, M. K. Hasan, M. Ahmad, M. A. Awal, M. T. Jawad, A. Dutta, et al., Ensemble of convolutional neural networks to diagnose acute lymphoblastic leukemia from microscopic images, Inf. Med. Unlocked, 27 (2021), 100794. https://doi.org/10.1016/j.imu.2021.100794 doi: 10.1016/j.imu.2021.100794
    [8] M. M. Hasan, M. M. Hossain, M. M. Rahman, A. Azad, S. A. Alyami, M. A. Moni, FP-CNN: Fuzzy pooling-based convolutional neural network for lung ultrasound image classification with explainable AI, Comput. Biol. Med., 165 (2023), 107407. https://doi.org/10.1016/j.compbiomed.2023.107407 doi: 10.1016/j.compbiomed.2023.107407
    [9] O. Uparkar, J. Bharti, R. K. Pateriya, R. K. Gupta, A. Sharma, Vision transformer outperforms deep convolutional neural network-based model in classifying X-ray images, Procedia Comput. Sci., 218 (2023), 2338–2349. https://doi.org/10.1016/j.procs.2023.01.209 doi: 10.1016/j.procs.2023.01.209
    [10] A. Shakarami, L. Nicolè, M. Terreran, A. P. D. Tos, S. Ghidoni, TCNN: A transformer convolutional neural network for artifact classification in whole slide images, Biomed. Signal Process. Control, 84 (2023), 104812. https://doi.org/10.1016/j.bspc.2023.104812 doi: 10.1016/j.bspc.2023.104812
    [11] K. K. Lella, A. Pja, Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: Cough, voice, and breath, Alexandria Eng. J., 61 (2022), 1319–1334. https://doi.org/10.1016/j.aej.2021.06.024 doi: 10.1016/j.aej.2021.06.024
    [12] M. Liu, A. N. J. Raj, V. Rajangam, K. Ma, Z. Zhuang, S. Zhuang, Multiscale-multichannel feature extraction and classification through one-dimensional convolutional neural network for Speech emotion recognition, Speech Commun., 156 (2024), 103010. https://doi.org/10.1016/j.specom.2023.103010 doi: 10.1016/j.specom.2023.103010
    [13] V. Singh, S. Prasad, Speech emotion recognition system using gender dependent convolution neural network, Procedia Comput. Sci., 218 (2023), 2533–2540. https://doi.org/10.1016/j.procs.2023.01.227 doi: 10.1016/j.procs.2023.01.227
    [14] F. Adolfi, J. S. Bowers, D. Poeppel, Successes and critical failures of neural networks in capturing human-like speech recognition, Neural Networks, 162 (2023), 199–211. https://doi.org/10.1016/j.neunet.2023.02.032 doi: 10.1016/j.neunet.2023.02.032
    [15] M. Jawahar, S. H, J. A. L, A. H. Gandomi, ALNett: A cluster layer deep convolutional neural network for acute lymphoblastic leukemia classification, Comput. Biol. Med., 148 (2022), 105894. https://doi.org/10.1016/j.compbiomed.2022.105894 doi: 10.1016/j.compbiomed.2022.105894
    [16] P. K. Das, S. Meher, An efficient deep convolutional neural network based detection and classification of Acute Lymphoblastic Leukemia, Expert Syst. Appl., 183 (2021), 115311. https://doi.org/10.1016/j.eswa.2021.115311 doi: 10.1016/j.eswa.2021.115311
    [17] K. K. Anilkumar, V. J. Manoj, T. M. Sagi, Automated detection of B cell and T cell acute lymphoblastic leukaemia using deep learning, IRBM, 43 (2022), 405–413. https://doi.org/10.1016/j.irbm.2021.05.005 doi: 10.1016/j.irbm.2021.05.005
    [18] R. Duggal, A. Gupta, R. Gupta, P. Mallick, SD-Layer: Stain deconvolutional layer for CNNs in medical microscopic imaging, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 10435 (2017), 435–443. https://doi.org/10.1007/978-3-319-66179-7_50
    [19] M. Ghaderzadeh, M. Aria, A. Hosseini, F. Asadi, D. Bashash, H. Abolghasemi, A fast and efficient CNN model for B-ALL diagnosis and its subtypes classification using peripheral blood smear images, Int. J. Intell. Syst., 37 (2022), 5113–5133. https://doi.org/https://doi.org/10.1002/int.22753 doi: 10.1002/int.22753
    [20] A. Panthakkan, S. M. Anzar, S. Jamal, W. Mansoor, Concatenated Xception-ResNet50-A novel hybrid approach for accurate skin cancer prediction, Comput. Biol. Med., 150 (2022), 106170. https://doi.org/10.1016/j.compbiomed.2022.106170 doi: 10.1016/j.compbiomed.2022.106170
    [21] M. A. Elashiri, A. Rajesh, S. N. Pandey, S. K. Shukla, S. Urooj, A. Lay-Ekuakille, Ensemble of weighted deep concatenated features for the skin disease classification model using modified long short term memory, Biomed. Signal Process. Control, 76 (2022), 103729. https://doi.org/10.1016/j.bspc.2022.103729 doi: 10.1016/j.bspc.2022.103729
    [22] L. F. D. J. Silva, O. A. C. Cortes, J. O. B. Diniz, A novel ensemble CNN model for COVID-19 classification in computerized tomography scans, Results Control Optim., 11 (2023), 100215. https://doi.org/10.1016/j.rico.2023.100215 doi: 10.1016/j.rico.2023.100215
    [23] N. F. Aurna, M. A. Yousuf, K. A. Taher, A. K. M. Azad, M. A. Moni, A classification of MRI brain tumor based on two stage feature level ensemble of deep CNN models, Comput. Biol. Med., 146 (2022), 105539. https://doi.org/10.1016/j.compbiomed.2022.105539 doi: 10.1016/j.compbiomed.2022.105539
    [24] F. Su, Y. Cheng, L. Chang, L. Wang, G. Huang, P. Yuan, et al., Annotation-free glioma grading from pathological images using ensemble deep learning, Heliyon, 9 (2023), 14654. https://doi.org/10.1016/j.heliyon.2023.e14654 doi: 10.1016/j.heliyon.2023.e14654
    [25] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, et al., The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository, J. Digit. Imaging, 26 (2013), 1045–1057. https://doi.org/10.1007/s10278-013-9622-7 doi: 10.1007/s10278-013-9622-7
    [26] S. Mourya, S. Kant, P. Kumar, A. Gupta, R. Gupta, C-NMC 2019 | C_NMC_2019 Dataset: ALL Challenge dataset of ISBI 2019, 2019. Available from: https://doi.org/10.7937/tcia.2019.dc64i46r
    [27] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: The all convolutional net, preprint, arXiv: 1412.6806.
    [28] M. Lin, Q. Chen, S. Yan, Network in network, preprint, arXiv: 1312.4400.
    [29] J. Hu, L. Shen, S. Albanie, G. Sun, E. Wu, Squeeze-and-excitation networks, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372 doi: 10.1109/TPAMI.2019.2913372
    [30] W. Zhou, H. Wang, Z. Wan, Ore image classification based on improved CNN, Comput. Electr. Eng., 99 (2022), 107819. https://doi.org/10.1016/j.compeleceng.2022.107819 doi: 10.1016/j.compeleceng.2022.107819
    [31] M. M. Khan, M. S. Uddin, M. Z. Parvez, L. Nahar, A squeeze and excitation ResNeXt-based deep learning model for Bangla handwritten compound character recognition, J. King Saud Univ.-Comput. Inf. Sci., 34 (2022), 3356–3364. https://doi.org/10.1016/j.jksuci.2021.01.021 doi: 10.1016/j.jksuci.2021.01.021
    [32] D. Jin, J. Xu, K. Zhao, F. Hu, Z. Yang, B. Liu, et al., Attention-based 3D convolutional network for Alzheimer's disease diagnosis and biomarkers exploration state key laboratory of management and control for complex systems, institute of automation, in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), (2019), 1047–1051. https://doi.org/10.1109/ISBI.2019.8759455
    [33] X. Li, H. Zhao, T. Ren, Y. Tian, A. Yan, W. Li, Inverted papilloma and nasal polyp classification using a deep convolutional network integrated with an attention mechanism, Comput. Biol. Med., 149 (2022), 105976. https://doi.org/10.1016/j.compbiomed.2022.105976 doi: 10.1016/j.compbiomed.2022.105976
    [34] H. Xu, Y. Liu, L. Wang, X. Zeng, Y. Xu, Z. Wang, Role of hippocampal subfields in neurodegenerative disease progression analyzed with a multi-scale attention-based network, NeuroImage Clin., 38 (2023), 103370. https://doi.org/10.1016/j.nicl.2023.103370 doi: 10.1016/j.nicl.2023.103370
    [35] E. Brochu, V. M. Cora, N. deFreitas, A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning, preprint, arXiv: 1012.2599.
  • mbe-21-02-087-supplementary.pdf
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1294) PDF downloads(76) Cited by(2)

Article outline

Figures and Tables

Figures(12)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog