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Abstract: The timely diagnosis of acute lymphoblastic leukemia (ALL) is of paramount importance 
for enhancing the treatment efficacy and the survival rates of patients. In this study, we seek to 
introduce an ensemble-ALL model for the image classification of ALL, with the goal of enhancing 
early diagnostic capabilities and streamlining the diagnostic and treatment processes for medical 
practitioners. In this study, a publicly available dataset is partitioned into training, validation, and test 
sets. A diverse set of convolutional neural networks, including InceptionV3, EfficientNetB4, ResNet50, 
CONV_POOL-CNN, ALL-CNN, Network in Network, and AlexNet, are employed for training. The 
top-performing four individual models are meticulously chosen and integrated with the squeeze-and-
excitation (SE) module. Furthermore, the two most effective SE-embedded models are harmoniously 
combined to create the proposed ensemble-ALL model. This model leverages the Bayesian 
optimization algorithm to enhance its performance. The proposed ensemble-ALL model attains 
remarkable accuracy, precision, recall, F1-score, and kappa scores, registering at 96.26, 96.26, 96.26, 
96.25, and 91.36%, respectively. These results surpass the benchmarks set by state-of-the-art studies in 
the realm of ALL image classification. This model represents a valuable contribution to the field of medical 
image recognition, particularly in the diagnosis of acute lymphoblastic leukemia, and it offers the potential 
to enhance the efficiency and accuracy of medical professionals in the diagnostic and treatment processes. 

Keywords: medical image classification; acute lymphoblastic leukemia; deep learning; convolutional 
neural networks 
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1. Introduction 

The recognition of medical diseases through image analysis relies heavily on the rapid advancement 
of artificial intelligence and machine learning technologies. Artificial intelligence, designed to replicate 
human cognitive functions, is ushering in a profound transformation in healthcare. This transformation is 
propelled by the growing abundance of healthcare data and the swift evolution of analytical capabilities, 
effectively reshaping conventional healthcare into an era of smart healthcare [1]. In recent years, the 
convergence of big data and deep learning technology has propelled medical disease image recognition 
to the forefront of research in the medical field. Historically, physicians heavily leaned on their 
experience and professional expertise for disease diagnosis and treatment. Nevertheless, given the 
immense diversity of diseases and their intricate presentations, relying solely on human judgment, 
doctors are susceptible to subjective biases and the risk of misdiagnosis. Furthermore, healthcare 
professionals must contend with a substantial volume of cases and a vast array of imaging data, 
resulting in an overwhelming workload. Consequently, there is a growing demand for swift and precise 
automated systems to support physicians in their diagnostic endeavors. Leveraging machine learning 
and deep learning techniques, these systems can autonomously scrutinize and detect anomalies in 
medical images, providing valuable aid to doctors in the process of diagnosing and treating 
diseases. Currently, medical disease image recognition technology has found extensive 
applications, with research conducted in various domains, such as brain tumors [2], diabetic 
retinopathy [3], lung diseases [4], and more. A meticulously crafted convolutional neural network 
(CNN) model not only offers valuable reference for medical professionals but also has the capability 
to automatically outline or pinpoint the specific areas of interest for observation through computer-
assisted detection. This capability aids physicians in promptly interpreting medical images and taking 
the appropriate actions based on the findings. 

One of the most prevalent form of cancer in children is acute lymphoblastic leukemia (ALL) [5–7], a 
condition that impacts white blood cells (WBCs). In ALL, patients typically exhibit an overabundance 
of immature WBCs within the bone marrow. These immature WBCs can potentially disseminate to 
other organs, including the spleen, liver, lymph nodes, central nervous system, and testicles. It is 
noteworthy that a substantial proportion of ALL cases, approximately 55% of the global total, are 
concentrated in the Asia-Pacific region [7]. 

The CNN stands as one of the prominent techniques in the realm of deep learning. It excels in 
training and categorizing extensive volumes of intricate data through its model. CNNs find application 
in a diverse range of domains, encompassing image recognition [8–10], and voice recognition [11–14]. 
The architecture of a CNN typically comprises one or more convolutional layers, a pooling layer, a 
rectified linear units layer (ReLU layer), a fully connected layer, and various hyperparameters, among 
other components. 

Jawahar et al. [15] introduced a cutting-edge deep neural network model called ALNett, which 
leverages deep convolutions featuring varying dilation rates for the classification of microscopic 
leukocyte images. The model’s performance was assessed against several pre-trained models, 
including VGG16, ResNet-50, GoogleNet, and AlexNet. The experimental findings revealed that the 
proposed ALNett model achieved an impressive classification accuracy of 91.13%, all while 
maintaining low computational complexity. Mondal et al. [7] also contributed to the field by deploying 
a deep CNN to identify ALL. Their study delved into the development of weighted ensembles of deep 
CNN with the aim of recommending improved classifiers for ALL diagnosis. 
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Das and Meher [16] introduced an effective deep CNN framework designed to enhance the 
accuracy of ALL detection. This framework incorporates innovative components, including depth-wise 
separable convolution, a linear bottleneck architecture, reverse residual structures, and skip 
connections. As a result, it not only achieves greater speed but also gains popularity in the field. A key 
feature of this method is the introduction of a novel probability-based weighting factor, skillfully 
combining the strengths of MobilenetV2 and ResNet18 while preserving the advantages of both 
approaches. Anilkumar et al. [17] have effectively classified ALL using deep CNN s, achieving an 
impressive accuracy rate of 94.12%. In a related study, Duggal et al. [18] introduced an innovative 
approach by incorporating a stain de-convolutional layer at the front of a CNN. They utilized this 
model to discriminate between malignant immature white blood cells and benign immature white 
blood cells, thereby enabling the detection of ALL. All three of these studies have contributed 
significantly to the field by proposing deep neural network models that leverage deep convolution and 
feature extraction techniques to successfully classify and identify ALL images. 

In 2022, Ghaderzadeh et al. [19] assembled a dataset for ALL and conducted a comprehensive 
study. They employed ten different CNN models, including EfficientNet, MobileNetV3, VGG-19, 
Xception, InceptionV3, ResNet50V2, VGG-16, NASNetLarge, InceptionResNetV2, and 
DenseNet201, for various feature extraction tasks. Among these ten models, DenseNet201 emerged as 
the top-performing model, achieving exceptional classification results with an accuracy of 99.85%, 
sensitivity of 99.52%, and specificity of 99.89%. Panthakkan et al. [20] devised an innovative approach 
by integrating the Xception and ResNet50V2 models, ultimately creating a 4 × 4 × 2048 feature map 
in the final layer of feature extraction. They then concatenated and integrated the features extracted 
from Xception and ResNet50V2 into a 1 × 1 convolutional layer. This concatenated feature 
representation was subsequently combined with a classifier to form a unified deep network. The 
purpose of this proposed model is to provide valuable assistance to dermatologists and clinicians in 
the early detection of skin cancer within the clinical process. 

Elashiri et al. [21] conducted a study in which they integrated features extracted by three different 
models: ResNet50, VGG16, and DeepLabv3. These integrated features were then passed to the feature 
transformation stage, employing weighted feature extraction facilitated by a hybrid squirrel butterfly 
search optimization technique. The transformed features were subsequently input to a modified long 
short-term memory (LSTM) for the final classification process. Remarkably, this approach yielded the 
highest accuracy rate, reaching an impressive 93%. Silva et al. [22] introduced an EnsembleDVX 
model, which combines the capabilities of DenseNet169, VGG16, and Xception in the context of 
COVID-19 detection. The ensemble EnsembleDVX model demonstrates superior performance when 
compared to individual single models. Additionally, Aurna et al. [23] introduced a two-phase ensemble 
model designed for the accurate and automated detection of brain tumors. This ensemble model 
effectively combines features extracted from five individual models and, through the use of principal 
component analysis, selects the most significant combinations of these features. The results obtained 
from the ensemble model surpass the performance of the single models, demonstrating its efficacy in 
precise brain tumor detection. Su et al. [24] utilized a combination of deep learning and ensemble 
learning techniques to tackle the challenging task of glioma grading, specifically focusing on the 
classification between glioma grades II and III. They constructed an ensemble model called LR-14, 
which is based on logistic regression and integrates the predictions from 14 different deep learning 
classifiers. This ensemble LR-14 model emerged as the top-performer, achieving the highest level of 
performance for this critical classification task. 
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As indicated by the examples mentioned, ensemble models have proven their effectiveness in the 
realm of medical classification. The outcomes from these integrated models have generally 
outperformed those from single models, underlining the value of combining different approaches for 
improved results. However, it is worth noting that many ensemble models tend to be complex with a 
significant number of parameters, which can lead to longer training times and increased computational 
demands. Hence, our primary objective of this study is to introduce a streamlined ensemble model 
with fewer parameters. The aim is to reduce training time while achieving enhanced stability and 
accuracy compared to single models. This approach seeks to strike a balance between computational 
efficiency and performance in the context of medical classification, potentially offering a more 
practical and accessible solution. 

2. Materials and methods 

2.1. ALL challenge dataset of ISBI 2019 (C-NMC 2019) 

ALL accounts for around 25% of all pediatric cancers [25]. Identifying immature leukemic blasts 
from normal cells under a microscope is a challenging task because, morphologically, the images of 
these two cell types can be quite similar. The dataset used in this study was from the ALL Challenge 
dataset of ISBI 2019 (C-NMC 2019) [26]. The whole training set comprises a total of 73 subjects 
(10661 images), including 46 with ALL (7272 images) and 26 with Normal conditions (3,389 images). 
The training set is split into three folds including fold0, fold1, and fold2 (Table 1). Among the three 
folds, fold0, containing 2397 ALL images and 1,130 normal images, is split into training, validation, 
and test sets in this study. Table 2 provides an overview of example images and the number of training, 
test, and validation sets used in this investigation. 

Table 1. The number of images for C-NMC 2019 dataset. 

 ALL Normal Total 
train_fold0 2397 1130 3527 
train_fold1 2418 1163 3581 
train_flod2 2457 1096 3553 
Total 7272 3389 10661 

Table 2. Examples and number of images used in this study. 

Class Example Training Test Validation Total 

ALL 

 

1535 479 383 2397 

Normal 

 

724 226 180 1130 

Total 2259 705 563 3527 
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2.2. Methodological framework 

The proposed ensemble-ALL model is outlined and introduced as follows: 
1) Data Splitting (Step 1): The initial dataset is divided into distinct subsets, including training, 

validation, and test sets. 
2) Individual Model Training (Step 2): In additional to the well-known models, including InceptionV3, 

EfficientNetB4, ResNet50, and AlexNet, we have selected three models, ALL-CNN [27], 
CONV_POOL-CNN [27], and Network in Network (NIN-CNN) [28], with simple architecture in 
this study. The above seven models are independently applied to the C-NMC 2019 dataset. 

3) Model Selection and Enhancement (Step 3): The top-performing four individual models are 
meticulously selected and integrated with the squeeze-and-excitation (SE) module to evaluate 
whether this fusion enhances performance. 

4) Ensemble Model Formation (Step 4): The two most promising SE-embedded models are 
combined to create the proposed ensemble-ALL model. 

5) Bayesian Optimization (Step 5): Bayesian optimization techniques are harnessed within the 
ensemble-ALL model to enhance its performance. 

6) Cross-Validation (Step 6): A five-fold cross-validation strategy is employed to rigorously assess 
the model’s performance. 

7) Performance Evaluation (Step 7): Performance metrics including accuracy, precision, recall, F1-
score, and kappa are recorded and evaluated for all models. 
This structured approach shown in Figure 1 ensures the creation of a robust and optimized 

ensemble-ALL model for the task of medical image classification. 

 

Figure 1. Flowchart of the study. 
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2.3. Squeeze-and-excitation 

Squeeze-and-Excitation Networks, known as SE Networks, secured the championship in the 
ImageNet 2017 classification competition. The SE module’s concept is straightforward, easy to 
implement, and can be seamlessly integrated into existing network model frameworks [29]. 
Consequently, SE modules have been incorporated into models in numerous academic works [29–34]. 
It’s evident that the addition of SE attention modules consistently leads to improved accuracy results 
in the studies, outperforming the original models. For instance, you can find examples such as SE-
MobileNet [30], SE-ResNext [31], SE-ResNet-18 [32], and SE-DenseNet [33], all of which have 
demonstrated enhanced performance thanks to the inclusion of SE attention modules.  

The decision to employ the SE module to enhance InceptionV3 in this study is rooted in the 
observation that many existing studies primarily focus on the SE-ResNet model, with only a limited 
number exploring SE-InceptionV3. Additionally, deeper network structures, such as the one in 
InceptionV3, are susceptible to feature distortion. To mitigate this, many studies have introduced 
attention modules into deeper network models [30,33,34]. Consequently, in this study, the SE module 
is introduced after the global average pooling layer of InceptionV3 to address these considerations. 
Figures 2–5. provide a visual representation of the architectures of the SE-InceptionV3, SE-
CONV_POOL-CNN, SE-ALL-CNN, and SE-NIN-CNN models employed in the study. 

 

Figure 2. Architecture of SE-InceptionV3. 

 

Figure 3. Architecture of SE-CONV_POOL-CNN. 
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Figure 4. Architecture of SE-ALL-CNN. 

 

Figure 5. Architecture of SE-NIN-CNN. 

2.4. Region of interest 

To streamline the feature extraction process and remove extraneous elements, the study employs 
a region of interest (ROI) feature extraction method within image processing. Specifically, the black 
background has a different proportion in each image, we can directly outline the ROI area through the 
pixel matrix [100:350, 200:400] from the images. Figure 6(a). is an example of original image. The 
proportion of black background is greatly reduced in Figure 6(b). It’s important to note that, given the 
variability in feature sizes in each picture, the elimination of the black background may not be entirely 
comprehensive in all cases. 

  
(a) (b) 

Figure 6. (a) Original image, (b) ROI. 
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2.5. Bayesian optimization 

Bayesian optimization is a frequently employed technique for optimizing highly complex or non-
differentiable functions, often referred to as black-box functions [35]. Bayesian optimization 
algorithms have extensive application in areas such as automated hyperparameter tuning, machine 
learning, and deep learning. In the context of this study, Bayesian optimization is utilized to determine 
appropriate hyperparameters, including the number of epochs (ranging from 10 to 100), batch size 
(ranging from 8 to 32), and learning rate (ranging from 1 × 10−5 to 1 × 10−2). This approach enables 
the automatic selection of optimal hyperparameters for the task at hand. Due to the limitation of 
computer equipment, the execution of hyperparameter optimization is time consuming. It is not applied 
foron the training for seven individual CNN models in Section 2.2 Step 2, and is solely used for 
training the ensemble model in Section 2.2 Step 4 in this study. 

2.6. Five-fold cross-validation 

The initial step involves partitioning all the available data into two distinct sets: a training set and 
a test set. Subsequently, the training set is further divided into five approximately equal and non-
overlapping validation folds. During each iteration of the process, one of these folds is designated as 
the validation set, while the remaining folds are combined to form the training set. To illustrate, in 
Fold1, the training set is composed of the validation sets from Folds 2–5. The model’s performance is 
assessed using the validation set (Val) in each iteration, and this process is repeated until every fold 
has been used as the validation set. This method, known as five-fold cross-validation, is visually 
depicted in Figure 7. to provide a clear overview of the process. 

 

Figure 7. The process of five-fold cross-validation. 

2.7. Computational environment 

The equipment used in the experiment is an Intel(R) Core(TM) i7-10700 3.80GHz 32GB CPU, 
NVIDIA GeForce RTX 3060 GPU. The whole experiment process is performed using Python 3.8 
[Python Software Foundation, Fredericksburg, Virginia, USA], which contains Keras 2.6 and 
Tensorflow GPU 2.6.0. 
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3. Results 

3.1. Performance of individual models 

The results of individual models are recorded in Table 3. The top four highest accuracies are 90.78, 
90.35, 89.21, and 84.82%, which are from CONV_POOL-CNN, ALL-CNN, NIN-CNN, and 
InceptionV3 models. The four best-performing models are chosen for further enhancement. These 
models are combined with the SE module to create four modified models, denoted as SE-
InceptionV3, SE-CONV_POOL-CNN, SE-ALL-CNN, and SE-NIN-CNN. This integration with 
the SE module is intended to improve their performance and effectiveness. 

Table 3. Results of individual models. 

Model Accuracy Precision Recall F1-score kappa 
ResNet50 82.83% 84.96% 82.84% 83.27% 63.22% 
InceptionV3 84.82% 85.63% 84.82% 85.06% 66.37% 
EfficientnetB4 83.26% 83.57% 83.26% 82.22% 57.93% 
CONV_POOL-CNN 90.78% 90.70% 90.78% 90.69% 78.45% 
ALL-CNN 90.35% 90.33% 90.35% 90.34% 77.80% 
NIN-CNN 89.21% 89.97% 89.22% 88.69% 73.31% 
AlexNet 84.11% 83.83% 84.11% 83.86% 62.47% 

3.2. Performance of selected SE models 

Performance of SE-InceptionV3, SE-CONV_POOL-CNN, SE-ALL-CNN, and SE-NIN-CNN 
models are listed in Table 4. Compared with Table 3, The SE module has a significant improvement 
on InceptionV3 model, but has less improvement on the other three models. The top two accuracies, 
precisions, recalls, F1-scores and kappas are from SE-InceptionV3 and SE-CONV_POOL-CNN 
models. The accuracy 84.82% and kappa 66.37% from InceptionV3 model were greatly increased 
to 95.03 and 88.69% for SE-InceptionV3 model. The accuracy 90.78% from CONV_POOL-CNN 
model was slightly increased to 91.34% for SE- CONV_POOL-CNN model. 

Table 4. Results of individual SE models. 

Model Accuracy Precision Recall F1-score Kappa 

SE- InceptionV3 95.03% 95.10% 95.04% 95.06% 88.69% 

SE-CONV_POOL-CNN 91.34% 91.41% 91.35% 91.16% 79.39% 

SE- ALL-CNN 89.07% 89.34% 89.08% 89.17% 75.35% 

SE- NIN-CNN 87.51% 87.36% 87.52% 87.34% 70.58% 

3.3. Performance of the proposed ensemble-ALL model 

The two best-performing SE models, SE-InceptionV3 and SE-CONV_POOL-CNN, are 
carefully chosen and integrated into the proposed ensemble-ALL model, as depicted in Figure 8. 
In this architecture, the convolutional layer replaces the traditional fully connected layer to serve 
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as the output of a single model. Subsequently, these outputs are merged and fed into the fully 
connected layer, effectively increasing the number of features. Following this, three fully 
connected layers are employed, and an SE module is introduced to preserve critical features. 
Finally, the output of the fully connected layer serves as the output of the ensemble model. This 
approach optimizes the model’s architecture for the task of medical image classification. 

 

Figure 8. The proposed ensemble-ALL model. 

In the study, the Bayesian optimization method is employed to identify the optimal 
hyperparameter combinations. Specifically, the chosen parameter values are as follows: Epoch = 50, 
Batch size = 15, and learning rate at 1.11 × 10−05. The results of the five-fold cross-validation for the 
SE-InceptionV3, SE-CONV_POOL-CNN, and the proposed ensemble-ALL models are presented in 
Tables 5–7, respectively. These tables likely provide valuable insights into the performance and 
efficacy of these models in the context of medical image classification. The average of accuracy, 
precision, recall, F1-score and kappa from SE-InceptionV3 were 94.893, 95.054, 94.894, 94.877, 
and 88.229%, respectively. The accuracy, precision, recall, F1-score and kappa from SE-
CONV_POOL-CNN were 89.985, 90.178, 89.986, 89.987, and 77.066%, respectively. The best 
accuracy, precision, recall, F1-score and kappa come from the proposed ensemble-ALL at 96.255, 
96.259, 96.255, 96.246, and 91.362%, respectively. Figure 9 illustrates the performance of the 
three models, and it’s clear that the proposed ensemble-ALL model outperforms the other two SE 
models across all major metrics. This highlights the effectiveness of the ensemble-ALL model in 
achieving superior results in the context of medical image classification. 

The training curves for accuracy, loss, and the confusion matrix for SE-InceptionV3, SE-
CONV_POOL-CNN, and the proposed ensemble-ALL models are presented in Figures 10–12. A 
comparison of these curves reveals that the proposed ensemble-ALL model exhibits higher accuracy, 
more stable and converged loss, and smoother training patterns in comparison to the two SE models. 
These observations further reinforce the superior performance of the ensemble-ALL model in the 
context of medical image classification. 
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Table 5. Results of SE-InceptionV3 model. 

SE-InceptionV3 Accuracy Precision Recall F1-score Kappa 

fold1 95.319% 95.306% 95.319% 95.311% 89.216% 

fold2 95.319% 95.357% 95.319% 95.332% 89.316% 

fold3 94.893% 95.126% 94.894% 94.943% 88.519% 

fold4 94.042% 94.460% 94.043% 93.873% 85.653% 

fold5 94.893% 95.022% 94.894% 94.927% 88.439% 

AVG 94.893% 95.054% 94.894% 94.877% 88.229% 

SD 0.00521 0.00359 0.00521 0.00594 0.01493 

Confidence interval 94.25–95.54% 94.61–95.50% 94.25–95.54% 94.14–95.61% 86.37–90.08% 

Table 6. Results of SE-CONV_POOL-CNN model. 

SE-CONV-CNN Accuracy Precision Recall F1-score Kappa 

fold1 89.219% 89.307% 89.220% 89.256% 75.424% 

fold2 90.780% 90.978% 90.780% 90.846% 79.151% 

fold3 90.212% 90.308% 90.213% 89.958% 76.516% 

fold4 90.496% 90.533% 90.496% 90.513% 78.259% 

fold5 89.219% 89.763% 89.220% 89.363% 75.982% 

AVG 89.985% 90.178% 89.986% 89.987% 77.066% 

SD 0.00728 0.00655 0.00727 0.00696 0.01577 

Confidence interval 89.08–90.89% 89.36–90.99% 89.08–90.89% 89.12–90.85% 75.11–79.02% 

Table 7. Results of ensemble-ALL model. 

Ensemble-ALL Accuracy Precision Recall F1-score Kappa 

fold1 95.744% 95.732% 95.745% 95.724% 90.139% 

fold2 96.453% 96.473% 96.454% 96.425% 91.733% 

fold3 96.595% 96.589% 96.596% 96.592% 92.166% 

fold4 96.312% 96.336% 96.312% 96.321% 91.573% 

fold5 96.170% 96.166% 96.170% 96.168% 91.197% 

AVG 96.255% 96.259% 96.255% 96.246% 91.362% 

SD 0.00326 0.00334 0.00327 0.00330 0.00767 

Confidence interval 95.85–96.66% 95.84–96.67% 95.85–96.66% 95.84–96.66% 90.41–92.31% 

 

  

Figure 9. Performance of three models. 
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Figure 10. The accuracy, loss and confusion matrix for SE-InceptionV3 model. 



1971 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 1959–1978. 

 

Figure 11. The accuracy, loss and confusion matrix for SE-CONV_POOL-CNN model. 
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Figure 12. The accuracy, loss and confusion matrix for ensemble-ALL model. 
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4. Discussion 

4.1. Selection process of the proposed ensemble-ALL model 

The top-performing four out of seven individual models are selected and integrated with the SE 
module. Then, the two most promising SE-embedded models are combined to create the proposed 
ensemble-ALL model in this study. Definitely, the proposed model is not the only solution. We have 
completed many different selections among models in the experimental processes, and finally the 
proposed model stood out all combinations. Some of the results are presented in Table 8 as follows: 

Table 8. Results of Different Ensemble models. 

Model Accuracy Precision Recall F1-score kappa 

InceptionV3 + NIN + ALL 94.89% 96.33% 92.15% 93.88% 87.79% 

InceptionV3 + ALL + CONV 93.19% 93.07% 91.13% 92.01% 84.03% 

InceptionV3 + NIN + ALL + CONV 94.18% 92.59% 94.67% 93.49% 86.99% 

NIN + ALL + CONV 92.19% 91.52% 90.40% 90.93% 81.85% 

NIN + ALL + AlexNet 90.78% 90.98% 90.78% 90.85% 79.15% 

ALL + CONV + AlexNet 91.48% 91.70% 91.49% 91.55% 80.77% 

NIN + CONV + AlexNet 90.35% 90.54% 90.36% 90.42% 78.16% 

In addition, due to limitations of computer equipment, the author also needs to consider the 
amount of computer calculations. This is part of the reason that only two models are selected in the 
ensemble stage. 

4.2. Comparison with SOTA 

Table 9 offers a comparative analysis of the results achieved by the proposed ensemble-ALL 
model with those obtained in related studies that used the same dataset. The comparison includes 
findings from Duggal et al. [18] and Mondal et al. [7], where some ensemble models were employed. 
Notably, the results highlight that the proposed ensemble-ALL model outperforms all other models 
considered in this analysis on the C-NMC 2019 dataset. This underscores the model’s effectiveness 
and its capacity to yield superior performance in the domain of medical image classification. 

5. Conclusions 

The ensemble-ALL model developed in this study represents a significant advancement in the 
field of medical image classification, particularly in the context of ALL. This ensemble model is 
designed to improve the early diagnosis and classification of ALL, enhancing the efficiency of medical 
professionals in the diagnostic and treatment process. When compared to related state-of-the-art 
studies, the proposed ensemble-ALL model stands out by achieving remarkable performance metrics, 
including accuracy, precision, recall, F1-score, and kappa, with values of 96.26, 96.26, 96.26, 96.25, 
and 91.36%, respectively. These results underscore the efficacy of the ensemble model in the accurate 
classification of ALL images. Key highlights and components of the ensemble-ALL model include: 
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1). Data Splitting: The original dataset is divided into training, validation, and test sets. 
2). Individual Models: Several deep learning models, including InceptionV3, EfficientNetB4, 

ResNet50, ALL-CNN, CONV_POOL-CNN, Network in Network (NIN-CNN), and AlexNet, are 
individually applied to the C-NMC 2019 dataset. 

3). Model Selection and Enhancement: The top-performing individual models are selected and 
enhanced with the SE module to boost performance. 

4). Ensemble Formation: The two best-performing SE models, SE-InceptionV3 and SE-
CONV_POOL-CNN, are combined to create the ensemble-ALL model. 

5). Feature Extraction and Optimization: Feature extraction from ROI and Bayesian optimization 
techniques are utilized within the ensemble-ALL model to enhance its performance. 

6). Cross-Validation: A five-fold cross-validation strategy is employed to rigorously assess the 
model’s performance. 

7). Performance Metrics: Performance indices, including accuracy, precision, recall, F1-score, 
and kappa, are recorded for evaluation. 

Table 9. Performance comparison of the proposed method with state-of-the-art methods 
on C-NMC 2019 dataset. 

Literatures Class Methods Accuracy Recall F1-score Precision 

Mondal et al. [7] 2 

VGG-16 84.20% － － － 

Xception 85.30% － － － 

MobileNet 84.10% － － － 

InceptionResNetV2 84.30% － － － 

DenseNet-121 82.10% － － － 

Ensemble models (WEN-auc) 88.60% － － － 

Ensemble models (WEN-f1) 88.70% － － － 

Ensemble models (WEN-kappa) 88.80% － － － 

Duggal et al. [18] 2 
AlexNet 88.50% － － － 

Texture-CNN 93.20% － － － 

This study 2 

ResNet50 82.83% 82.84% 83.27% 84.96% 

InceptionV3 84.82% 84.82% 85.06% 85.63% 

EfficientnetB4 83.26% 83.26% 82.22% 83.57% 

CONV_POOL-CNN 90.78% 90.78% 90.69% 90.70% 

ALL-CNN 90.35% 90.35% 90.34% 90.33% 

NIN-CNN 89.21% 89.22% 88.69% 89.97% 

AlexNet 84.11% 84.11% 83.86% 83.83% 

SE-CONV_POOL-CNN 89.99% 89.99% 89.99% 90.18% 

SE-InceptionV3 94.89% 94.89% 94.88% 95.05% 

ensemble-ALL 96.26% 96.26% 96.25% 96.26% 

The ensemble-ALL model, as demonstrated in the study, has shown remarkable results, 
outperforming existing state-of-the-art models in image classification for ALL. 
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While the proposed ensemble-ALL model demonstrates notable performance, there are several 
limitations to the study that should be acknowledged: 
1) Limited datasets for ALL: Public datasets specifically tailored for ALL are relatively scarce 

compared to datasets for other diseases. Consequently, the ensemble-ALL model in this study is 
exclusively applied to a single ALL dataset, which may not capture the full spectrum of variability 
that exists across different datasets. 

2) Hardware limitations: The study is constrained by hardware limitations, particularly in terms of 
graphics card capabilities and memory. Large datasets, extensive training times, and models with 
substantial parameters (e.g., EfficientNetB5 to EfficientNetB7, ConvNeXt, etc.) can strain 
hardware resources. This limitation may hinder the exploration of larger and more complex models. 

3) Model parameter size vs. accuracy: Our focus of this study centers on optimizing model accuracy. 
However, the trade-off between model accuracy and the size of model parameters is not deeply 
explored. Future research could consider achieving high accuracy while minimizing the size of 
model parameters, which is crucial for real-world applications where resource constraints may be 
a concern. 
These limitations provide valuable insights for future research endeavors, and they underscore 

the need for ongoing exploration and development in the field of medical image classification. 
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