Research article

Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data


  • Received: 18 August 2023 Revised: 14 November 2023 Accepted: 22 November 2023 Published: 01 December 2023
  • In this paper, a new generalization of the one parameter Rayleigh distribution called the Power Rayleigh (PRD) was employed to model the life of the tested units in the step-stress accelerated life test. Under progressive Type-I interval censored data, the cumulative exposure distribution was considered to formulate the life model, assuming the scale parameter of PRD has the inverse power function at each stress level. Point estimates of the model parameters were obtained via the maximum likelihood estimation method, while interval estimates were obtained using the asymptotic normality of the derived estimators and the bootstrap resampling method. An extensive simulation study of $ k = 4 $ levels of stress in different combinations of the life test under different progressive censoring schemes was conducted to investigate the performance of the obtained point and interval estimates. Simulation results indicated that point estimates of the model parameters are closest to their initial true values and have relatively small mean squared errors. Accordingly, the interval estimates have small lengths and their coverage probabilities are almost convergent to the 95% significance level. Based on the Fisher information matrix, the D-optimality and the A-optimality criteria are implemented to determine the optimal design of the life test by obtaining the optimum inspection times and optimum stress levels that improve the estimation procedures and give more efficient estimates of the model parameters. Finally, the developed inferential procedures were also applied to a real dataset.

    Citation: Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Omar Meqdadi. Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 21407-21431. doi: 10.3934/mbe.2023947

    Related Papers:

  • In this paper, a new generalization of the one parameter Rayleigh distribution called the Power Rayleigh (PRD) was employed to model the life of the tested units in the step-stress accelerated life test. Under progressive Type-I interval censored data, the cumulative exposure distribution was considered to formulate the life model, assuming the scale parameter of PRD has the inverse power function at each stress level. Point estimates of the model parameters were obtained via the maximum likelihood estimation method, while interval estimates were obtained using the asymptotic normality of the derived estimators and the bootstrap resampling method. An extensive simulation study of $ k = 4 $ levels of stress in different combinations of the life test under different progressive censoring schemes was conducted to investigate the performance of the obtained point and interval estimates. Simulation results indicated that point estimates of the model parameters are closest to their initial true values and have relatively small mean squared errors. Accordingly, the interval estimates have small lengths and their coverage probabilities are almost convergent to the 95% significance level. Based on the Fisher information matrix, the D-optimality and the A-optimality criteria are implemented to determine the optimal design of the life test by obtaining the optimum inspection times and optimum stress levels that improve the estimation procedures and give more efficient estimates of the model parameters. Finally, the developed inferential procedures were also applied to a real dataset.



    加载中


    [1] N. Balakrishnan, D. Han, Exact inference for a simple step-stress model with competing risks for failure from exponential distribution under Type-II censoring, J. Stat. Plan. Infer., 138 (2008), 4172–4186. https://doi.org/10.1016/j.jspi.2008.03.036 doi: 10.1016/j.jspi.2008.03.036
    [2] N. Balakrishnan, D. Han, Optimal step-stress testing for progressively Type-I censored data from exponential distribution, J. Stat. Plan. Infer., 139 (2009), 1782–1798. https://doi.org/10.1016/j.jspi.2008.05.030 doi: 10.1016/j.jspi.2008.05.030
    [3] F. Haghighi, Optimal design of accelerated life tests for an extension of the exponential distribution, Reliab. Eng. Syst. Safe., 131 (2014), 251–256. https://doi.org/10.1016/j.ress.2014.04.017 doi: 10.1016/j.ress.2014.04.017
    [4] M. W. Lu, R. J. Rudy, Step-stress accelerated test, Int. J. Mater. Prod. Tech., 17 (2002), 425–434. https://doi.org/10.1504/ijmpt.2002.005468 doi: 10.1504/ijmpt.2002.005468
    [5] E. O. McSorley, J. C. Lu, C. S. Li, Performance of parameter-estimates in step-stress accelerated life-tests with various sample-sizes, IEEE Trans. Reliab., 51 (2002), 271–277. https://doi.org/10.1109/tr.2002.802888 doi: 10.1109/tr.2002.802888
    [6] Y. Komori, Properties of the Weibull cumulative exposure model, J. Appl. Stat., 33 (2006), 17–34. https://doi.org/10.1080/02664760500389475 doi: 10.1080/02664760500389475
    [7] W. Chung, D. S. Bai, Optimal designs of simple step-stress accelerated life tests for lognormal lifetime distributions, Int. J. Reliab. Quality Safety Eng., 5 (1998), 315–336. https://doi.org/10.1142/s0218539398000285 doi: 10.1142/s0218539398000285
    [8] M. A. H. Ebrahem, A. Q. Al-Masri, Optimum simple step-stress plan for log-logistic cumulative exposure model, Metron-Int. J. Stat., 65 (2007), 23–34.
    [9] S. O. Bleed, H. M. A. Hasan, Estimating and planning step stress accelerated life test for generalized Logistic distribution under type-I censoring, Int. J. Appl. Math. Stat. Sci., 2 (2013), 1–16.
    [10] S.Saxena, S. Zarrin, M. Kamal, A. Ul-Islam, Optimum step stress accelerated life testing for Rayleigh distribution, Int. J. Stat. Appl., 2 (2012), 120–125. https://doi.org/10.5923/j.statistics.20120206.05 doi: 10.5923/j.statistics.20120206.05
    [11] K. Ahmadi, M. Rezaei, F. Yousefzadeh, , Estimation for the generalized half-normal distribution based on progressive type-II censoring, J. Stat. Comput. Sim., 85 (2015), 1128–1150. https://doi.org/10.1080/00949655.2013.867494 doi: 10.1080/00949655.2013.867494
    [12] S. J. Wu, Y. P. Lin, S. T. Chen, Optimal step-stress test under type I progressive group-censoring with random removals, J. Stat. Plan. Infer., 138 (2008), 817–826. https://doi.org/10.1016/j.jspi.2007.02.004 doi: 10.1016/j.jspi.2007.02.004
    [13] N. Balakrishnan, L. Zhang, Q. Xie, Inference for a simple step-stress model with Type-I censoring and lognormally distributed lifetimes, Commun. Stat.–Theor. Methods, 38 (2009), 1690–1709. https://doi.org/10.1080/03610920902866966 doi: 10.1080/03610920902866966
    [14] C. T. Lin, N. Balakrishnan, S. J. Wu, planning life tests based on progressively type-I grouped censored data from the Weibull distribution, Commun. Stat.–Simul. Comput., 40 (2011), 574–595. https://doi.org/10.1080/03610918.2010.549278 doi: 10.1080/03610918.2010.549278
    [15] K. U. S. Coşkun, Y. Akdogan, S. J. Wu, Planning life tests for burr XII distributed products under progressive group-censoring with cost considerations, Gazi Univer. J. Sci., 25 (2012), 425–434.
    [16] C. Kuş, Y. Akdoğan, S. J. Wu, Optimal progressive group censoring scheme under cost considerations for Pareto distribution, J. Appl. Stat., 40 (2013), 2437–2450. https://doi.org/10.1080/02664763.2013.818107 doi: 10.1080/02664763.2013.818107
    [17] A. S. Hassan, S. M. Assar, A. Shelbaia, Multiple-step stress accelerated life for Weibull Poisson distribution with type I censoring, Int. J. Basic Appl. Sci., 3 (2014), 180. https://doi.org/10.14419/ijbas.v3i3.2533 doi: 10.14419/ijbas.v3i3.2533
    [18] A. A. Ismail, Corrigendum to "Estimating the parameters of Weibull distribution and the acceleration factor from hybrid partially accelerated life test"[Appl. Math. Modell. 36 (2012) 2920–2925], Appl. Math. Model., 39 (2015), 2743. https://doi.org/10.1016/j.apm.2015.07.008 doi: 10.1016/j.apm.2015.07.008
    [19] S. Budhiraja, B. Pradhan, Computing optimum design parameters of a progressive type I interval censored life test from a cost model, Appl. Stoch. Models Bus. Ind., 35 (2017), 494–506. https://doi.org/10.1002/asmb.2251 doi: 10.1002/asmb.2251
    [20] S. Roy, B. Pradhan, Bayesian C-optimal life testing plans under progressive type-I interval censoring scheme, Appl. Math. Model., 70 (2019), 299–314. https://doi.org/10.1016/j.apm.2019.01.023 doi: 10.1016/j.apm.2019.01.023
    [21] J. Wang, Data analysis of step-stress accelerated life test with random group effects under Weibull distribution, Math. Probl. Eng., 2020 (2020), 1–11. https://doi.org/10.1155/2020/4898123 doi: 10.1155/2020/4898123
    [22] R. M. EL-Sagheer, M. A. Khder, Estimation in K-stage step-stress partially accelerated life tests for generalized Pareto distribution with progressive type-I censoring, Appl. Math. Inf. Sci., 15 (2021), 299–305. https://doi.org/10.18576/amis/150307 doi: 10.18576/amis/150307
    [23] M. Kamal, S. A. Siddiqui, A. Rahman, H. Alsuhabi, I. Alkhairy, T. S. Barry, Parameter estimation in step stress partially accelerated life testing under different types of censored data, Comput. Intel. Neurosc., 2022 (2022). https://doi.org/10.1155/2022/3491732
    [24] L. Zhuang, A. Xu, B. Wang, Y. Xue, S. Zhange, Data analysis of progressive-stress accelerated life tests with group effects, Qual. Technol. Quant. Manage., 20 (2023). https://doi.org/10.1080/16843703.2022.2147690
    [25] R. Alotaibi, A. A. Mutairi, E. M. Almetwally, C. Park, H. Rezk, Optimal design for a bivariate step-stress accelerated life test with alpha power exponential distribution based on type-I progressive censored samples, Symmetry, 14 (2022). https://doi.org/10.3390/sym14040830
    [26] X. Bai, Y. Shi, H. K. T. Ng, Statistical inference of Type-I progressively censored step-stress accelerated life test with dependent competing risks, Commun. Stat.-Theor. Methods, 10 (2022), 3077–3103. https://doi.org/10.1080/03610926.2020.1788081 doi: 10.1080/03610926.2020.1788081
    [27] A. M. Almarashi, Inferences of generalized inverted exponential distribution based on partially constant-stress accelerated life testing under progressive Type-II censoring, Alexandria Eng. J., 63 (2023), 223–232. https://doi.org/10.1016/j.aej.2022.07.063 doi: 10.1016/j.aej.2022.07.063
    [28] M. Nassar, A. Elshahhat, statistical analysis of inverse Weibull constant-stress partially accelerated life tests with adaptive progressively type I censored data, Mathematics, 11 (2023). https://doi.org/10.3390/math11020370
    [29] I. Alam, A. Haq, L. K. Sharma, S. Sharma, Ritika, Warranty costs analysis under accelerated life test for power Ishita distribution with type-I censored data, Int. J. Qual. Reliab. Manage., 40 (2023), 1983–1998. https://doi.org/10.1108/IJQRM-08-2022-0251 doi: 10.1108/IJQRM-08-2022-0251
    [30] A. A. Bhat, S. P. Ahmad, A new generalization of Rayleigh distribution: Properties and applications, Pak. J. Statist., 36 (2020), 225–250.
    [31] K. Ateeq, T. B. Qasim, A. R. Alvi, An extension of Rayleigh distribution and applications, Cogent Math. Stat., 6 (2019), 1622191. https://doi.org/10.1080/25742558.2019.1622191 doi: 10.1080/25742558.2019.1622191
    [32] D. Kundu, M. Z. Raqab, Generalized Rayleigh distribution: different methods of estimations, Comput. Stat. Data Anal., 49 (2005), 187–200. https://doi.org/10.1016/j.csda.2004.05.008 doi: 10.1016/j.csda.2004.05.008
    [33] A. H. Tolba, T. A. Abushal, D. A. Ramadan, Statistical inference with joint progressive censoring for two populations using power Rayleigh lifetime distribution, Sci. Rep., 13 (2023), 3832.
    [34] H. S. Migdadi, N. M. Al-Olaimat, M. Mohiuddin, O. Meqdadi, , Statistical inference for the Power Rayleigh distribution based on adaptive progressive Type-II censored data, AIMS Math., 8 (2023), 22553–22576. http://dx.doi.org/10.3934/math.20231149 doi: 10.3934/math.20231149
    [35] W. Nelson, Accelerated life testing-step-stress models and data analyses, IEEE Trans. Reliab., 29 (1980), 103–108. https://doi.org/10.1109/tr.1980.5220742 doi: 10.1109/tr.1980.5220742
    [36] S. J. Wu, Y. P. Lin, Y. J. Chen, Planning step-stress life test with progressively type I group-censored exponential data, Stat. Neerl., 60 (2006), 46–56. https://doi.org/10.1111/j.1467-9574.2006.00309.x doi: 10.1111/j.1467-9574.2006.00309.x
    [37] H. M. Aly, Planning step stress accelerated life test for log logistic distribution under progressive type I group censoring, in Proceedings of the 20th Annual Conference on Statistics and Modeling in Human and Social Science, Cairo University, (2008), 107–125.
    [38] J. F. Lawless, Statistical models and methods for lifetime data, John Wiley & Sons, 2003.
    [39] P. Hall, Theoretical comparison of bootstrap confidence intervals, Ann. Stat., 16 (1988), 927–935. https://doi.org/10.1214/aos/1176350933 doi: 10.1214/aos/1176350933
    [40] B. Efron, R. J. Tibshirani, An introduction to the bootstrap, CRC press, 1994.
    [41] E. Gouno, A. Sen, N. Balakrishnan, Optimal step-stress test under progressive Type-I censoring, IEEE Trans. Reliab., 53 (2004), 388–393. https://doi.org/10.1109/tr.2004.833320 doi: 10.1109/tr.2004.833320
    [42] R. Al-Aqtash, C. Lee, F. Famoye, Gumbel-Weibull distribution: Properties and applications, J. Modern Appl. Stat. Methods, 13 (2014), 201–255. http://dx.doi.org/10.22237/jmasm/1414815000 doi: 10.22237/jmasm/1414815000
    [43] H. Alkasasbeh, F. M. Al Faqih, A. S. Shoul, Computational Simulation of Magneto Convection Flow of Williamson Hybrid Nanofluid with Thermal Radiation Effect, CFD Letters, 15 (2023), 92–105. https://doi.org/10.37934/cfdl.15.4.92105 doi: 10.37934/cfdl.15.4.92105
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1064) PDF downloads(72) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog