The aim of this short note is twofold. First, we formulate the general Kermack-McKendrick epidemic model incorporating static heterogeneity and show how it simplifies to a scalar Renewal Equation (RE) when separable mixing is assumed. A key general feature is that all information about the heterogeneity is encoded in one nonlinear real valued function of a real variable. Next, we specialize the model ingredients so that we can study the efficiency of mask wearing as a non-pharmaceutical intervention to reduce the spread of an infectious disease. Our main result affirms that the best way to protect the population as a whole is to protect yourself. This qualitative insight was recently derived in the context of an SIR network model. Here, we extend the conclusion to proportionate mixing models incorporating a general function describing expected infectiousness as a function of time since infection.
Citation: M. C. J. Bootsma, K. M. D. Chan, O. Diekmann, H. Inaba. Separable mixing: The general formulation and a particular example focusing on mask efficiency[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 17661-17671. doi: 10.3934/mbe.2023785
The aim of this short note is twofold. First, we formulate the general Kermack-McKendrick epidemic model incorporating static heterogeneity and show how it simplifies to a scalar Renewal Equation (RE) when separable mixing is assumed. A key general feature is that all information about the heterogeneity is encoded in one nonlinear real valued function of a real variable. Next, we specialize the model ingredients so that we can study the efficiency of mask wearing as a non-pharmaceutical intervention to reduce the spread of an infectious disease. Our main result affirms that the best way to protect the population as a whole is to protect yourself. This qualitative insight was recently derived in the context of an SIR network model. Here, we extend the conclusion to proportionate mixing models incorporating a general function describing expected infectiousness as a function of time since infection.
[1] | R. Pastor-Satorras, C. Castellano, The advantage of self-protecting interventions in mitigating epidemic circulation at the community level, Sci. Rep., 12 (2022). https://doi.org/10.1038/s41598-022-20152-4 doi: 10.1038/s41598-022-20152-4 |
[2] | M. C. J. Bootsma, K. M. D. Chan, O. Diekmann, H. Inaba, The effect of host population heterogeneity on epidemic outbreaks, (2023), submitted for publication. |
[3] | O. Diekmann, J. A. P. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, (2013). |
[4] | W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London, 115 (1927), 700–721. http://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118 |
[5] | D. Breda, O. Diekmann, W. F. de Graaf, A. Pugliese, R. Vermiglio, On the formulation of epidemic models (an appraisal of Kermack and McKendrick), J. Biol. Dyn., 6 (2012), 103–117. https://doi.org/10.1080/17513758.2012.716454 doi: 10.1080/17513758.2012.716454 |
[6] | O. Diekmann, M. Gyllenberg, Abstract delay equations inspired by population dynamics, in Functional Analysis and Evolution Equations. The Günter Lumer Volume, Birkhauser Basel, 2007,187–200. https://doi.org/10.1007/978-3-7643-7794-6_12 |
[7] | O. Diekmann, P. Getto, M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2008), 1023–1069. https://doi.org/10.1137/060659211 doi: 10.1137/060659211 |
[8] | O. Diekmann, M. Gyllenberg, Equations with infinite delay: Blending the abstract and the concrete, J. Differ. Equ., 252 (2011), 819–851. https://doi.org/10.1016/j.jde.2011.09.038 doi: 10.1016/j.jde.2011.09.038 |
[9] | F. Brauer, C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, in Texts Appl. Math., Springer New York, 40 (2012). https://doi.org/10.1007/978-1-4614-1686-9 |
[10] | D. Breda, T. Kuniya, J. Ripoll, R. Vermiglio, Collocation of next-generation operators for computing the basic reproduction number of structured populations, J. Sci. Comput., 85 (2020). https://doi.org/10.1007/s10915-020-01339-1 doi: 10.1007/s10915-020-01339-1 |
[11] | D. Breda, F. Florian, J. Ripoll, R. Vermiglio, Efficient numerical computation of the basic reproduction number for structured populations, J. Comput. Appl. Math., 384 (2021). https://doi.org/10.1016/j.cam.2020.113165 doi: 10.1016/j.cam.2020.113165 |
[12] | O. Diekmann, H.G. Othmer, R. Planqué, M. C. J. Bootsma, The discrete-time Kermack-McKendrick model: A versatile and computationally attractive framework for modeling epidemics, PNAS, (2021). https://doi.org/10.1073/pnas.2106332118 doi: 10.1073/pnas.2106332118 |
[13] | E. Messina, M. Pezzella, A. Vecchio, Positive numerical approximation of an integro-differential epidemic model, Axioms, 11 (2022). https://doi.org/10.3390/axioms11020069 doi: 10.3390/axioms11020069 |
[14] | E. Messina, M. Pezzella, A. Vecchio, A non-standard numerical scheme for an age-of-infection epidemic model, J. Comput. Dyn., 9 (2022), 239–252. https://doi.org/10.3934/jcd.2021029 doi: 10.3934/jcd.2021029 |
[15] | E. Messina, M. Pezzella, A. Vecchio, Asymptotic solutions of non-linear implicit Volterra discrete equations, J. Comput. Appl. Math., 425 (2023). https://doi.org/10.1016/j.cam.2023.115068 doi: 10.1016/j.cam.2023.115068 |
[16] | O. Diekmann, H. Inaba, A systematic procedure for incorporating separable static heterogeneity into compartmental epidemic models, J. Math. Biol., 86 (2023). https://doi.org/10.1007/s00285-023-01865-0 doi: 10.1007/s00285-023-01865-0 |
[17] | O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324 |
[18] | S.E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, et al., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic, Infect. Dis. Model., 2020. https://doi.org/10.1016/j.idm.2020.04.001v doi: 10.1016/j.idm.2020.04.001v |
[19] | C. N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C. R. MacIntyre, M. H. Bonds, et al., Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus, Math. Biosci., 325 (2020). https://doi.org/10.1016/j.mbs.2020.108364 doi: 10.1016/j.mbs.2020.108364 |