Research article Special Issues

A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity


  • Received: 26 June 2023 Revised: 26 July 2023 Accepted: 01 August 2023 Published: 08 August 2023
  • We introduce a two-strain model with asymmetric temporary immunity periods and partial cross-immunity. We derive explicit conditions for competitive exclusion and coexistence of the strains depending on the strain-specific basic reproduction numbers, temporary immunity periods, and degree of cross-immunity. The results of our bifurcation analysis suggest that, even when two strains share similar basic reproduction numbers and other epidemiological parameters, a disparity in temporary immunity periods and partial or complete cross-immunity can provide a significant competitive advantage. To analyze the dynamics, we introduce a quasi-steady state reduced model which assumes the original strain remains at its endemic steady state. We completely analyze the resulting reduced planar hybrid switching system using linear stability analysis, planar phase-plane analysis, and the Bendixson-Dulac criterion. We validate both the full and reduced models with COVID-19 incidence data, focusing on the Delta (B.1.617.2), Omicron (B.1.1.529), and Kraken (XBB.1.5) variants. These numerical studies suggest that, while early novel strains of COVID-19 had a tendency toward dramatic takeovers and extinction of ancestral strains, more recent strains have the capacity for co-existence.

    Citation: Matthew D. Johnston, Bruce Pell, David A. Rubel. A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718

    Related Papers:

  • We introduce a two-strain model with asymmetric temporary immunity periods and partial cross-immunity. We derive explicit conditions for competitive exclusion and coexistence of the strains depending on the strain-specific basic reproduction numbers, temporary immunity periods, and degree of cross-immunity. The results of our bifurcation analysis suggest that, even when two strains share similar basic reproduction numbers and other epidemiological parameters, a disparity in temporary immunity periods and partial or complete cross-immunity can provide a significant competitive advantage. To analyze the dynamics, we introduce a quasi-steady state reduced model which assumes the original strain remains at its endemic steady state. We completely analyze the resulting reduced planar hybrid switching system using linear stability analysis, planar phase-plane analysis, and the Bendixson-Dulac criterion. We validate both the full and reduced models with COVID-19 incidence data, focusing on the Delta (B.1.617.2), Omicron (B.1.1.529), and Kraken (XBB.1.5) variants. These numerical studies suggest that, while early novel strains of COVID-19 had a tendency toward dramatic takeovers and extinction of ancestral strains, more recent strains have the capacity for co-existence.



    加载中


    [1] I. A. Baba, A. Yusuf, K. S. Nisar, A. H. Abdel-Aty, T. A. Nofal, Mathematical model to assess the imposition of lockdown during COVID-19 pandemic, Results Phys., 20 (2021), 103716. https://doi.org/10.1016/j.rinp.2020.103716 doi: 10.1016/j.rinp.2020.103716
    [2] T. Sardar, S. K. Nadim, J. Chattopadhyay, Assessment of lockdown effect in some states and overall India: A predictive mathematical study on COVID-19 outbreak, Chaos Solitons Fractals, 139 (2020), 110078. https://doi.org/10.1016/j.chaos.2020.110078 doi: 10.1016/j.chaos.2020.110078
    [3] N. Wang, Y. Fu, H. Zhang, H. Shi, An evaluation of mathematical models for the outbreak of COVID-19, Precis. Clin. Med., 3 (2020), 85–93. https://doi.org/10.1093/pcmedi/pbaa016 doi: 10.1093/pcmedi/pbaa016
    [4] J. T. Wu, S. Mei, S. Luo, K. Leung, D. Liu, Q. Lv, et al., A global assessment of the impact of school closure in reducing COVID-19 spread, Philos. Trans. Royal Soc. A, 380 (2022), 20210124. https://doi.org/10.1098/rsta.2021.0124 doi: 10.1098/rsta.2021.0124
    [5] T. A. Biala, Y. O. Afolabi, A. Q. M. Khaliq, How efficient is contact tracing in mitigating the spread of COVID-19? A mathematical modeling approach, Appl. Math. Model., 103 (2022), 714–730. https://doi.org/10.1016/j.apm.2021.11.011 doi: 10.1016/j.apm.2021.11.011
    [6] A. Bilinski, F. Mostashari, J. A. Salomon, Modeling contact tracing strategies for COVID-19 in the context of relaxed physical distancing measures, JAMA Netw. Open, 3 (2020), e2019217–e2019217. https://doi.org/10.1001/jamanetworkopen.2020.19217 doi: 10.1001/jamanetworkopen.2020.19217
    [7] S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, et al., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic, Infect. Dis. Model., 5 (2020), 293–308. https://doi.org/10.1016/j.idm.2020.04.001 doi: 10.1016/j.idm.2020.04.001
    [8] C. N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C. R. MacIntyre, M. H. Bonds, et al., Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus, Math. Biosci., 325 (2020), 108364. https://doi.org/10.1016/j.mbs.2020.108364 doi: 10.1016/j.mbs.2020.108364
    [9] B. H. Foy, B. Wahl, K. Mehta, A. Shet, G. I. Menon, C. Britto, Comparing COVID-19 vaccine allocation strategies in India: A mathematical modelling study, Int. J. Infect. Dis., 103 (2021), 431–438. https://doi.org/10.1016/j.ijid.2020.12.075 doi: 10.1016/j.ijid.2020.12.075
    [10] K. Liu, Y. Lou, Optimizing COVID-19 vaccination programs during vaccine shortages: A review of mathematical models, Infect. Dis. Model., 7 (2022), 286–298. https://doi.org/10.1016/j.idm.2022.02.002 doi: 10.1016/j.idm.2022.02.002
    [11] M. D. Johnston, B. Pell, P. Nelson, A mathematical study of COVID-19 spread by vaccination status in Virginia, Appl. Sci., 12 (2022), 1723. https://doi.org/10.3390/app12031723 doi: 10.3390/app12031723
    [12] L. Lin, Y. Zhao, B. Chen, D. He, Multiple COVID-19 waves and vaccination effectiveness in the united states, Int. J. Environ. Res. Public Health, 19 (2022), 2282. https://doi.org/10.3390/ijerph19042282 doi: 10.3390/ijerph19042282
    [13] B. Pell, S. Brozak, T. Phan, F. Wu, Y. Kuang, The emergence of a virus variant: dynamics of a competition model with cross-immunity time-delay validated by wastewater surveillance data for COVID-19, J. Math. Biol., 86 (2023), 63. https://doi.org/10.1007/s00285-023-01900-0 doi: 10.1007/s00285-023-01900-0
    [14] M. Fudolig, R. Howard, The local stability of a modified multi-strain sir model for emerging viral strains, PLoS One, 15 (2020), e0243408. https://doi.org/10.1371/journal.pone.0243408 doi: 10.1371/journal.pone.0243408
    [15] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700–721. https://doi.org/10.1016/S0092-8240(05)80040-0 doi: 10.1016/S0092-8240(05)80040-0
    [16] V. Andreasen, J. Lin, S. A. Levin, The dynamics of cocirculating influenza strains conferring partial cross-immunity, J. Math. Biol., 35 (1997), 825–842. https://doi.org/10.1007/s002850050079 doi: 10.1007/s002850050079
    [17] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev. Soc. Ind. Appl. Math., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [18] J. Lin, V. Andreasen, S. A. Levin, Dynamics of influenza a drift: the linear three-strain model, Math. Biosci., 162 (1999), 33–51. https://doi.org/10.1016/S0025-5564(99)00042-5 doi: 10.1016/S0025-5564(99)00042-5
    [19] L. J. White, M. J. Cox, G. F. Medley, Cross immunity and vaccination against multiple microparasite strains, Math. Med. Biol., 15 (1998), 211–233. https://doi.org/10.1093/imammb/15.3.211 doi: 10.1093/imammb/15.3.211
    [20] A. S. Ciupeanu, M. Varughese, W. C. Roda, D. Han, Q. Cheng, M. Y. Li, Mathematical modeling of the dynamics of COVID-19 variants of concern: Asymptotic and finite-time perspectives, Infect. Dis. Model., 7 (2022), 581–596. https://doi.org/10.1016/j.idm.2022.08.004 doi: 10.1016/j.idm.2022.08.004
    [21] W. Wang, Competitive exclusion of two viral strains of COVID-19, Infect. Dis. Model., 7 (2022), 637–644. https://doi.org/10.1016/j.idm.2022.10.001 doi: 10.1016/j.idm.2022.10.001
    [22] Y. Wang, J. Ma, J. Cao, Basic reproduction number for the SIR epidemic in degree correlated networks, Physica D, 433 (2022), 133183. https://doi.org/10.1016/j.physd.2022.133183 doi: 10.1016/j.physd.2022.133183
    [23] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 61 (2015), 9–31.
    [24] O. Khyar, K. Allali, Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to COVID-19 pandemic, Nonlinear Dyn., 102 (2020), 489–509. https://doi.org/10.1007/s11071-020-05929-4 doi: 10.1007/s11071-020-05929-4
    [25] X. Wang, J. Yang, X. Luo, Competitive exclusion and coexistence phenomena of a two-strain SIS model on complex networks from global perspectives, J. Appl. Math. Comput., 68 (2022), 1–19. https://doi.org/10.1007/s12190-022-01712-3 doi: 10.1007/s12190-022-01712-3
    [26] B. P. Ingalls, Mathematical Modeling in Systems Biology: An Introduction, MIT press, 2013.
    [27] L. Michaelis, M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z, 49 (1913), 333–369.
    [28] A. V. Hill, The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves, J. Physiol., 40 (1910), iv–vⅡ.
    [29] C. Castillo-Chavez, Z. Feng, To treat or not to treat: the case of tuberculosis, J. Math. Biol., 35 (1997), 629–656. https://doi.org/10.1007/s002850050069 doi: 10.1007/s002850050069
    [30] K. Wang, Y. Kuang, Novel dynamics of a simple daphnia-microparasite model with dose-dependent infection, Discrete Contin. Dyn. Syst. Ser. A, 4 (2011), 1599–1610. https://doi.org/10.3934/dcdss.2011.4.1599 doi: 10.3934/dcdss.2011.4.1599
    [31] E. M. Rutter, Y. Kuang, Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer, Discrete Contin. Dyn. Syst. Ser. A, 22 (2017), 1001. https://doi.org/10.3934/dcdsb.2017050 doi: 10.3934/dcdsb.2017050
    [32] P. Rashkov, E. Venturino, M. Aguiar, N. Stollenwerk, B. W. Kooi, On the role of vector modeling in a minimalistic epidemic model, Math. Biosci. Eng., 16 (2019), 4314–4338. https://doi.org/10.3934/mbe.2019215 doi: 10.3934/mbe.2019215
    [33] P. Rashkov, B. W. Kooi, Complexity of host-vector dynamics in a two-strain dengue model, J. Biol. Dyn., 15 (2021), 35–72. https://doi.org/10.1080/17513758.2020.1864038 doi: 10.1080/17513758.2020.1864038
    [34] O. Diekmann, J. A. P. Heesterbeek, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382.
    [35] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [36] O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2009), rsif20090386. https://doi.org/10.1098/rsif.2009.0386 doi: 10.1098/rsif.2009.0386
    [37] J. M. Heffernan, R. J. Smith, L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface, 2 (2005), 281–293. https://doi.org/10.1098/rsif.2005.0042 doi: 10.1098/rsif.2005.0042
    [38] P. van den Driessche, J. Watmough, Further notes on the basic reproduction number, in Mathematical Epidemiology (eds. F. Brauer, P. Driessche and J. Wu), (2008), 159–178. https://doi.org/10.1007/978-3-540-78911-6
    [39] P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2 (2017), 288–303. https://doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
    [40] X. Liu, H. Lin, B. M. Chen, Structural controllability of switched linear systems, Automatica, 49 (2013), 3531–3537. https://doi.org/10.1016/j.automatica.2013.09.015 doi: 10.1016/j.automatica.2013.09.015
    [41] M. Egerstedt, Y. Wardi, F. Delmotte, Optimal control of switching times in switched dynamical systems, in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03ch37475), IEEE, 3 (2003), 2138–2143. https://doi.org/10.1109/CDC.2003.1272934
    [42] C. Sun, W. Yang, J. Arino, K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 230 (2011), 87–95. https://doi.org/10.1016/j.mbs.2011.01.005 doi: 10.1016/j.mbs.2011.01.005
    [43] F. Zhu, P. J. Antsaklis, Optimal control of hybrid switched systems: A brief survey, Discrete Event Dyn. Syst., 25 (2015), 345–364. https://doi.org/10.1007/s10626-014-0187-5 doi: 10.1007/s10626-014-0187-5
    [44] T. A. Burton, Volterra Integral and Differential Equations, Elsevier, 2005.
    [45] E. Feliu, C. Wiuf, Simplifying biochemical models with intermediate species, J. R. Soc. Interface, 10 (2013), 20130484. https://doi.org/10.1098/rsif.2013.0484 doi: 10.1098/rsif.2013.0484
    [46] E. Feliu, D. Lax, S. Walcher, C. Wiuf, Quasi-Steady-State and singular perturbation reduction for reaction networks with noninteracting species, SIAM J. Appl. Dyn. Syst., 21 (2022), 782–816. https://doi.org/10.1137/20M1364503 doi: 10.1137/20M1364503
    [47] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. https://doi.org/10.1007/BF00173267 doi: 10.1007/BF00173267
    [48] L. Gardner, E. Dong, H. Du, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis., 20 (2023), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1 doi: 10.1016/S1473-3099(20)30120-1
    [49] E. Mathieu, H. Ritchie, L. Rodés-Guirao, C. Appel, C. Giattino, J. Hasell, et al., Coronavirus pandemic (COVID-19), Our World Data, 2020.
    [50] Y. Shu, J. McCauley, GISAID: Global initiative on sharing all influenza data–from vision to reality, Eurosurveillance, 22 (2017), 30494. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494 doi: 10.2807/1560-7917.ES.2017.22.13.30494
    [51] L. Boyle, S. Hletko, H. Huang, J. Lee, G. Pallod, H. R. Tung, et al., Selective sweeps in SARS-CoV-2 variant competition, Proc. Natl. Acad. Sci., 119 (2002), e2213879119. https://doi.org/10.1073/pnas.2213879119 doi: 10.1073/pnas.2213879119
    [52] Y. H. Kao, M. C. Eisenberg, Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment, Epidemics, 25 (2018), 89–100. https://doi.org/10.1016/j.epidem.2018.05.010 doi: 10.1016/j.epidem.2018.05.010
    [53] G. Massonis, J. R. Banga, A. F. Villaverde, Structural identifiability and observability of compartmental models of the COVID-19 pandemic, Annu. Rev. Control, 51 (2021), 441–459. https://doi.org/10.1016/j.arcontrol.2020.12.001 doi: 10.1016/j.arcontrol.2020.12.001
    [54] N. Tuncer, A. Timsina, M. Nuno, G. Chowell, M. Martcheva, Parameter identifiability and optimal control of an SARS-CoV-2 model early in the pandemic, J. Biol. Dyn., 16 (2022), 412–438. https://doi.org/10.1080/17513758.2022.2078899 doi: 10.1080/17513758.2022.2078899
    [55] M. O. Adewole, T. S. Faniran, F. A. Abdullah, M. K. Ali, COVID-19 dynamics and immune response: Linking within-host and between-host dynamics, Chaos Solitons Fractals, 2023 (2023), 113722. https://doi.org/10.1016/j.chaos.2023.113722 doi: 10.1016/j.chaos.2023.113722
    [56] X. Wang, S. Wang, J. Wang, L. Rong, A multiscale model of COVID-19 dynamics, Bull. Math. Biol., 84 (2022), 99. https://doi.org/10.1007/s11538-022-01058-8 doi: 10.1007/s11538-022-01058-8
    [57] Y. Xue, D. Chen, S. R. Smith, X. Ruan, S. Tang, Coupling the within-host process and between-host transmission of COVID-19 suggests vaccination and school closures are critical, Bull. Math. Biol., 85 (2023), 6. https://doi.org/10.1007/s11538-023-01132-9 doi: 10.1007/s11538-023-01132-9
    [58] S. Wiggins, M. Golubitsky, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New Delhi, 2003.
    [59] D. M. Grobman, Homeomorphism of systems of differential equations, Dokl. Akad. Nauk SSSR, 128 (1959), 880–881.
    [60] P. Hartman, A lemma in the theory of structural stability of differential equations, Proc. Am. Math. Soc., 11 (1960), 610–620. https://doi.org/10.1090/S0002-9939-1960-0121542-7 doi: 10.1090/S0002-9939-1960-0121542-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1651) PDF downloads(199) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog