A recent discovery highlighted that mosquitoes infected with Microsporidia MB are unable to transmit the Plasmodium to humans. Microsporidia MB is a symbiont transmitted vertically and horizontally in the mosquito population, and these transmission routes are known to favor the persistence of the parasite in the mosquito population. Despite the dual transmission, data from field experiments reveal a low prevalence of MB-infected mosquitoes in nature. This study proposes a compartmental model to understand the prevalence of MB-infected mosquitoes. The dynamic of the model is obtained through the computation of the basic reproduction number and the analysis of the stability of the MB-free and coexistence equilibria. The model shows that, in spite of the high vertical transmission efficiency of Microsporidia MB, there can still be a low prevalence of MB-infected mosquitoes. Numerical analysis of the model shows that male-to-female horizontal transmission contributes more than female-to-male horizontal transmission to the spread of MB-infected mosquitoes. Moreover, the female-to-male horizontal transmission contributes to the spread of the symbiont only if there are multiple mating occurrences for male mosquitoes. Furthermore, when fixing the efficiencies of vertical transmission, the parameters having the greater influence on the ratio of MB-positive to wild mosquitoes are identified. In addition, by assuming a similar impact of the temperature on wild and MB-infected mosquitoes, our model shows the seasonal fluctuation of MB-infected mosquitoes. This study serves as a reference for further studies, on the release strategies of MB-infected mosquitoes, to avoid overestimating the MB-infection spread.
Citation: Charlène N. T. Mfangnia, Henri E. Z. Tonnang, Berge Tsanou, Jeremy Herren. Mathematical modelling of the interactive dynamics of wild and Microsporidia MB-infected mosquitoes[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 15167-15200. doi: 10.3934/mbe.2023679
A recent discovery highlighted that mosquitoes infected with Microsporidia MB are unable to transmit the Plasmodium to humans. Microsporidia MB is a symbiont transmitted vertically and horizontally in the mosquito population, and these transmission routes are known to favor the persistence of the parasite in the mosquito population. Despite the dual transmission, data from field experiments reveal a low prevalence of MB-infected mosquitoes in nature. This study proposes a compartmental model to understand the prevalence of MB-infected mosquitoes. The dynamic of the model is obtained through the computation of the basic reproduction number and the analysis of the stability of the MB-free and coexistence equilibria. The model shows that, in spite of the high vertical transmission efficiency of Microsporidia MB, there can still be a low prevalence of MB-infected mosquitoes. Numerical analysis of the model shows that male-to-female horizontal transmission contributes more than female-to-male horizontal transmission to the spread of MB-infected mosquitoes. Moreover, the female-to-male horizontal transmission contributes to the spread of the symbiont only if there are multiple mating occurrences for male mosquitoes. Furthermore, when fixing the efficiencies of vertical transmission, the parameters having the greater influence on the ratio of MB-positive to wild mosquitoes are identified. In addition, by assuming a similar impact of the temperature on wild and MB-infected mosquitoes, our model shows the seasonal fluctuation of MB-infected mosquitoes. This study serves as a reference for further studies, on the release strategies of MB-infected mosquitoes, to avoid overestimating the MB-infection spread.
[1] | T. G. Andreadis, Microsporidian parasites of mosquitoes, J. Am. Mosq. Control Assoc., 23 (2007), 3–29. https://doi.org/10.2987/8756-971X(2007)23[3:MPOM]2.0.CO;2 doi: 10.2987/8756-971X(2007)23[3:MPOM]2.0.CO;2 |
[2] | C. Franzen, Microsporidia: A review of 150 years of research, Open Parasitol. J., 2 (2008), 1–34. https://doi.org/10.2174/1874421400802010001 doi: 10.2174/1874421400802010001 |
[3] | G. Nattoh, T. Maina, E. Makhulu, L. Mbaisi, E. Mararo, G. Fidel, et al., Horizontal transmission of the symbiont microsporidia MB in anopheles arabiensis, Front. Microbiol., 12 (2021). https://doi.org/10.3389/fmicb.2021.647183 doi: 10.3389/fmicb.2021.647183 |
[4] | J. Herren, L. Mbaisi, E. Mararo, E. Makhulu, V. Mobegi, H. Butungi, et al., A microsporidian impairs plasmodium falciparum transmission in anopheles arabiensis mosquitoes, Nat. Commun., 11 (2020), 2187. https://doi.org/10.1038/s41467-020-16121-y doi: 10.1038/s41467-020-16121-y |
[5] | J. Akorli, E. A. Akorli, S. N. A. Tetteh, G. K. Amlalo, M. Opoku, R. Pwalia, et al., Microsporidia MB is found predominantly associated with Anopheles gambiae s.s and Anopheles coluzzii in Ghana, Sci. Rep., 11 (2021), 1–5. https://doi.org/10.1038/s41598-021-98268-2 doi: 10.1038/s41598-021-98268-2 |
[6] | K. Haag, J. F. Pombert, Y. Sun, N. De Albuquerque, B. Batliner, P. Fields, et al., Microsporidia with vertical transmission were likely shaped by nonadaptive processes, Genome Biol. Evol., 12 (2020), 3599–3614. https://doi.org/10.1093/gbe/evz270 doi: 10.1093/gbe/evz270 |
[7] | E. Gill, J. Becnel, N. Fast, Ests from the microsporidian, BMC Genomics, 9 (2008), 296. https://doi.org/10.1186/1471-2164-9-296 doi: 10.1186/1471-2164-9-296 |
[8] | G. Zilio, Co-evolution between Mosquitoes and Microsporidian Transmission Strategies, PhD thesis, Université de Neuchâtel, Faculté des Sciences, 2018. |
[9] | B. Zheng, X. Liu, M. Tang, Z. Xi, J. Yu, Use of age-stage structural models to seek optimal wolbachia-infected male mosquito releases for mosquito-borne disease control, J. Theor. Biol., 472 (2019), 95–109. https://doi.org/10.1016/j.jtbi.2019.04.010 doi: 10.1016/j.jtbi.2019.04.010 |
[10] | M. Lipsitch, M. A. Nowak, D. Ebert, R. M. May, The population dynamics of vertically and horizontally transmitted parasites, Proc. R. Soc. London, Ser. B: Biol. Sci., 260 (1995), 321–327. https://doi.org/10.1098/rspb.1995.0099 doi: 10.1098/rspb.1995.0099 |
[11] | M. Z. Ndii, R. I. Hickson, G. N. Mercer, Modelling the introduction of wolbachia into aedes aegypti mosquitoes to reduce dengue transmission, ANZIAM J., 53 (2012), 213–227. https://doi.org/10.1017/S1446181112000132 doi: 10.1017/S1446181112000132 |
[12] | J. Koiller, M. Da Silva, M. Souza, C. Codeço, A. Iggidr, G. Sallet, Aedes, Wolbachia and Dengue, PhD thesis, Inria Nancy-Grand Est (Villers-lès-Nancy, France), 2014. |
[13] | Y. Li, X. Liu, Modeling and control of mosquito-borne diseases with wolbachia and insecticides, Theor. Popul Biol., 132 (2020), 82–91. https://doi.org/10.1016/j.tpb.2019.12.007 doi: 10.1016/j.tpb.2019.12.007 |
[14] | L. Hu, M. Huang, M. Tang, J. Yu, B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul Biol., 106 (2015), 32–44. https://doi.org/10.1016/j.tpb.2015.09.003 doi: 10.1016/j.tpb.2015.09.003 |
[15] | D. E. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, M. Svinin, Optimal control approach for establishing wmelpop wolbachia infection among wild aedes aegypti populations, J. Math. Biol., 76 (2018), 1907–1950. https://doi.org/10.1007/s00285-018-1213-2 doi: 10.1007/s00285-018-1213-2 |
[16] | Y. Li, X. Liu, A sex-structured model with birth pulse and release strategy for the spread of wolbachia in mosquito population, J. Theor. Biol., 448 (2018), 53–65. https://doi.org/10.1016/j.jtbi.2018.04.001 doi: 10.1016/j.jtbi.2018.04.001 |
[17] | L. Hu, M. Huang, M. Tang, J. Yu, B. Zheng, Wolbachia spread dynamics in multi-regimes of environmental conditions, J. Theor. Biol., 462 (2018), 247–258. https://doi.org/10.1016/j.jtbi.2018.11.009 doi: 10.1016/j.jtbi.2018.11.009 |
[18] | P. A. Ryan, A. P. Turley, G. Wilson, T. P. Hurst, K. Retzki, J. Brown-Kenyon, et al., Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia, Gates Open Res., 3 (2020), 1547. |
[19] | S. Andreychuk, L. Yakob, Mathematical modelling to assess the feasibility of wolbachia in malaria vector biocontrol, J. Theor. Biol., 542 (2022), 111110. https://doi.org/10.1016/j.jtbi.2022.111110 doi: 10.1016/j.jtbi.2022.111110 |
[20] | M. Altinli, F. Gunay, B. Alten, M. Weill, M. Sicard, Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey, Parasites Vectors, 11 (2018), 198. https://doi.org/10.1186/s13071-018-2777-9 doi: 10.1186/s13071-018-2777-9 |
[21] | O. Koutou, B. Traoré, B. Sangaré, Mathematical modeling of malaria transmission global dynamics: taking into account the immature stages of the vectors, Adv. Differ. Equations, 2018 (2018), 220. https://doi.org/10.1186/s13662-018-1671-2 doi: 10.1186/s13662-018-1671-2 |
[22] | F. A. Dahalan, T. S. Churcher, N. Windbichler, M. K. N. Lawniczak, The male mosquito contribution towards malaria transmission: mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites, PLoS Pathog., 15 (2019), 1–19. https://doi.org/10.1371/journal.ppat.1008063 doi: 10.1371/journal.ppat.1008063 |
[23] | R. Baeshen, Swarming behavior in Anopheles gambiae (sensu lato): current knowledge and future outlook, J. Med. Entomol., 59 (2021), 56–66. https://doi.org/10.1093/jme/tjab157 doi: 10.1093/jme/tjab157 |
[24] | W. Takken, C. Costantini, G. Dolo, A. Hassanali, N. Sagnon, E. Osir, Mosquito Mating Behaviour, in Bridging Laboratory and Field Research for Genetic Control of Disease Vectors, 11 (2006), 183–188. |
[25] | F. Tripet, T. Thiemann, G. C. Lanzaro, Effect of seminal fluids in mating Between M and S forms of Anopheles gambiae, J. Med. Entomol., 42 (2005), 596–603. https://doi.org/10.1093/jmedent/42.4.596 doi: 10.1093/jmedent/42.4.596 |
[26] | C. L. Lyons, M. Coetzee, S. L. Chown, Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, anopheles arabiensis and anopheles funestus, Parasites Vectors, 6 (2013), 104. https://doi.org/10.1186/1756-3305-6-104 doi: 10.1186/1756-3305-6-104 |
[27] | Y. Afrane, G. Zhou, B. Lawson, A. Githeko, G. Yan, Life-table analysis of anopheles arabiensis in western kenya highlands: effects of land covers on larval and adult survivorship, Am. J. Trop. Med. Hyg., 77 (2007), 660–666. https://doi.org/10.4269/ajtmh.2007.77.660 doi: 10.4269/ajtmh.2007.77.660 |
[28] | C. Oliva, M. Benedict, G. Lemperiere, J. Gilles, Laboratory selection for an accelerated mosquito sexual development rate, Malar. J., 10 (2011), 135. https://doi.org/10.1186/1475-2875-10-135 doi: 10.1186/1475-2875-10-135 |
[29] | R. Maharaj, Life table characteristics of Anopheles arabiensis (Diptera: Culicidae) under simulated seasonal conditions, J. Med. Entomol., 40 (2003), 737–742. https://doi.org/10.1603/0022-2585-40.6.737 doi: 10.1603/0022-2585-40.6.737 |
[30] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48, https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[31] | M. A. Lewis, Z. Shuai, P. van den Driessche, A general theory for target reproduction numbers with applications to ecology and epidemiology, J. Math. Biol., 78 (2019), 2317–2339. https://doi.org/10.1007/s00285-019-01345-4 doi: 10.1007/s00285-019-01345-4 |
[32] | H. R. Thieme, Local stability in epidemic models for heterogeneous populations, in Mathematics in Biology and Medicine, Springer, (1985), 185–189. https://doi.org/10.1007/978-3-642-93287-8_26 |
[33] | J. C. Kamgang, G. Sallet, Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE), Math. Biosci., 213 (2008), 1–12. https://doi.org/10.1016/j.mbs.2008.02.005 doi: 10.1016/j.mbs.2008.02.005 |
[34] | H. W. Hethcote, H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations, Math. Biosci., 75 (1985), 205–227. https://doi.org/10.1016/0025-5564(85)90038-0 doi: 10.1016/0025-5564(85)90038-0 |
[35] | C. Tadmon, S. Foko, A transmission dynamics model of COVID-19: Case of Cameroon, Infect. Dis. Modell., 7 (2022), 211–249. https://doi.org/10.1016/j.idm.2022.05.002 doi: 10.1016/j.idm.2022.05.002 |
[36] | S. Lamichhane, Y. Chen, Global asymptotic stability of a compartmental model for a pandemic, J. Egypt. Math. Soc., 23 (2015), 251–255. https://doi.org/10.1016/j.joems.2014.04.001 doi: 10.1016/j.joems.2014.04.001 |
[37] | J. D. Meiss, Differential Dynamical Systems, SIAM, 2007. |
[38] | R. M. Okara, M. E. Sinka, N. Minakawa, C. M. Mbogo, S. I. Hay, R. W. Snow, Distribution of the main malaria vectors in kenya, Malar. J., 9 (2010), 69. https://doi.org/10.1186/1475-2875-9-69 doi: 10.1186/1475-2875-9-69 |
[39] | C. Antonio-Nkondjio, F. Simard, Highlights on anopheles nili and anopheles moucheti, malaria vectors in Africa, in Anopheles Mosquitoes: New Insights into Malaria Vectors, InTech, Rijeka (HR), 2013. |
[40] | G. Chandra, D. Mukherjee, Chapter 35 - Effect of climate change on mosquito population and changing pattern of some diseases transmitted by them, in Advances in Animal Experimentation and Modeling, Academic Press, (2022), 455–460. https://doi.org/10.1016/B978-0-323-90583-1.00030-1. |
[41] | B. Zheng, L. Chen, Q. Sun, Analyzing the control of dengue by releasing wolbachia-infected male mosquitoes through a delay differential equation model, Math. Biosci. Eng., 16 (2019), 5531–5550. https://doi.org/10.3934/mbe.2019275 doi: 10.3934/mbe.2019275 |
[42] | D. Cardona-Salgado, D. E. Campo-Duarte, L. S. Sepulveda-Salcedo, O. Vasilieva, M. Svinin, Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains, Math. Biosci. Eng., 18 (2021), 2952–2990. https://doi.org/10.3934/mbe.2021149 doi: 10.3934/mbe.2021149 |