Vision transmission systems (VTS) manages to achieve the optimal information propagation effect given reasonable strategies. How to automatically generate the optimal planning strategies for VTS under specific conditions is always facing challenges. Currently, related research studies have dealt with this problem with assistance of single-modal vision features. However, there are also some other information from different modalities that can make contributions to this issue. Thus, in the paper, we propose a data-driven optimal planning scheme for multimodal VTS. For one thing, the vision features are employed as the basic mechanism foundation for mathematical modeling. For another, the data from other modalities, such as numerical and semantic information, are also introduced to improve robustness for the modeling process. On such basis, optimal planning strategies can be generated, so that proper communication effect can be obtained. Finally, some simulation experiments are conducted on real-world VTS scenes in simulative platforms, and the observed simulation results can well prove efficiency and proactivity of the proposal.
Citation: Jia Yong, Kai Liu. A knowledge and data-driven optimal planning scheme for multi-modal vision transmission systems[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 11939-11956. doi: 10.3934/mbe.2023530
Vision transmission systems (VTS) manages to achieve the optimal information propagation effect given reasonable strategies. How to automatically generate the optimal planning strategies for VTS under specific conditions is always facing challenges. Currently, related research studies have dealt with this problem with assistance of single-modal vision features. However, there are also some other information from different modalities that can make contributions to this issue. Thus, in the paper, we propose a data-driven optimal planning scheme for multimodal VTS. For one thing, the vision features are employed as the basic mechanism foundation for mathematical modeling. For another, the data from other modalities, such as numerical and semantic information, are also introduced to improve robustness for the modeling process. On such basis, optimal planning strategies can be generated, so that proper communication effect can be obtained. Finally, some simulation experiments are conducted on real-world VTS scenes in simulative platforms, and the observed simulation results can well prove efficiency and proactivity of the proposal.
[1] | T. Du, Y. H. Zeng, J. Yang, C. Z. Tian, P. F. Bai, Multi-sensor fusion slam approach for the mobile robot with a bio-inspired polarised skylight sensor. IET Radar Sonar Navig., 14 (2020), 1950–1957. |
[2] | Z. Guo, K. Yu, A. Jolfaei, G. Li, F. Ding, A. Beheshti, Mixed graph neural network-based fake news detection for sustainable vehicular social networks, IEEE Trans. Intell. Transp. Syst., 2022 (2022), forthcoming. https://doi.org/10.1109/TITS.2022.3185013 doi: 10.1109/TITS.2022.3185013 |
[3] | Q. Li, L. Liu, Z. Guo, P. Vijayakumar, F. Taghizadeh-Hesary, K. Yu, Smart assessment and forecasting framework for healthy development index in urban cities, Cities, 131 (2022), 103971. https://doi.org/10.1016/j.cities.2022.103971 doi: 10.1016/j.cities.2022.103971 |
[4] | Z. Guo, K. Yu, N. Kumar, W. Wei, S. Mumtaz, M. Guizani, Deep distributed learning-based poi recommendation under mobile edge networks, IEEE Int. Things J., 10 (2023), 303–317. https://doi.org/10.1109/JIOT.2022.3202628 doi: 10.1109/JIOT.2022.3202628 |
[5] | L. Yang, Y. Li, S. X. Yang, Y. Lu, T. Guo, K. Yu, Generative adversarial learning for intelligent trust management in 6G wireless networks, IEEE Network, 36 (2022), 134–140. https://doi.org/10.1109/MNET.003.2100672 doi: 10.1109/MNET.003.2100672 |
[6] | V. L. Popov, N. G. Shakev, A. V. Topalov, S. A. Ahmed, Detection and following of moving target by an indoor mobile robot using multi-sensor information, IFAC-PapersOnLine, 54 (2021), 357–362. https://doi.org/10.1016/j.ifacol.2021.10.473 doi: 10.1016/j.ifacol.2021.10.473 |
[7] | Z. Guo, K. Yu, K. Konstantin, S. Mumtaz, W. Wei, P. Shi, et al., Deep collaborative intelligence-driven traffic forecasting in green internet of vehicles, IEEE Trans. Green Commun. Networking, 2022 (2022), forthcoming. |
[8] | Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized content caching and user association for edge computing in densely deployed heterogeneous networks, IEEE Trans. Mobile Comput., 21 (2022), 2130–2142. |
[9] | Z. Zhou, Y. Su, J. Li, K. Yu, Q. M. J. Wu, et al., Secret-to-image reversible transformation for generative steganography, IEEE Trans. Dependable Sec. Comput., 2022 (2022), forthcoming. |
[10] | J. Zhang, Q. Yan, X. Zhu, K. Yu, Smart industrial iot empowered crowd sensing for safety monitoring in coal mine, Dig. Commun. Networks, 2022 (2022), forthcoming. |
[11] | S. Xia, Z. Yao, G. Wu, Y. Li, Distributed offloading for cooperative intelligent transportation under heterogeneous networks, IEEE Trans. Intell. Trans. Syst., 23 (2022), 16701–16714. https://doi.org/10.1109/TITS.2022.3190280 doi: 10.1109/TITS.2022.3190280 |
[12] | X. Meng, D. Duan, T. Feng, Multi-vehicle multi-sensor occupancy grid map fusion in vehicular networks, IET Commun., 16 (2022), 67–74. https://doi.org/10.1049/cmu2.12314 doi: 10.1049/cmu2.12314 |
[13] | L. Zhao, Z. Bi, A. Hawbani, K. Yu, Y. Zhang, M. Guizani, Elite: An intelligent digital twin-based hierarchical routing scheme for softwarized vehicular networks, IEEE Trans. Mobile Comput., 2022 (2022), forthcoming. |
[14] | L. Zhao, Z. Yin, K. Yu, X. Tang, L. Xu, Z. Guo, et al., A fuzzy logic based intelligent multi-attribute routing scheme for two-layered sdvns, IEEE Trans. Network Service Manage., 2022 (2022), forthcoming. https://doi.org/10.1109/TNSM.2022.3202741 doi: 10.1109/TNSM.2022.3202741 |
[15] | J. Li, X. Liu, Z. Wang, T. Zhang, S. Qiu, H. Zhao, et al., Real-time hand gesture tracking for human–computer interface based on multi-sensor data fusion. IEEE Sensors J., 21 (2021), 26642–26654. https://doi.org/10.1109/JSEN.2021.3122236 |
[16] | C. Chen, Z. Liao, Y. Ju, C. He, K. Yu, S. Wan, Hierarchical domain-based multi-controller deployment strategy in sdn-enabled space-air-ground integrated network, IEEE Trans. Aerosp. Electron. Syst., 58 (2022), 4864–4879. https://doi.org/10.1109/TAES.2022.3199191 doi: 10.1109/TAES.2022.3199191 |
[17] | Z. Zhou, Y. Li, J. Li, K. Yu, G. Kou, M. Wang, et al., Gan-siamese network for cross-domain vehicle re-identification in intelligent transport systems, IEEE Trans. Network Sci. Eng., 2022 (2022). |
[18] | Y. Lu, L. Yang, S. X. Yang, Q. Hua, A. K. Sangaiah, T. Guo, et al., An intelligent deterministic scheduling method for ultra-low latency communication in edge enabled industrial internet of things, IEEE Trans. Ind. Inf., 2022 (2022), forthcoming. |
[19] | Q. Zhang, Z. Guo, Y. Zhu, P. Vijayakumar, A. Castiglione, B. B. Gupta, A deep learning-based fast fake news detection model for cyber-physical social services, Pattern Recognit. Lett., 168 (2023), 31–38. |
[20] | S. Wang, Application of internet of things framework in physical education system, J. Int. Technol., 23 (2022), 307–320. |
[21] | A. Manivannan, E. J. Willemse, W. C. B. Chin, Y. Zhou, B. Tunçer, A. Barrat, et al., A framework for the identification of human vertical displacement activity based on multi-sensor data, IEEE Sensors J., 22 (2022), 8011–8029. https://doi.org/10.1109/JSEN.2022.3157806 doi: 10.1109/JSEN.2022.3157806 |
[22] | J. Liu, J. Liu, Intelligent and connected vehicles: Current situation, future directions, and challenges, IEEE Commun. Stand. Mag., 2 (2018), 59–65. https://doi.org/10.1109/MCOMSTD.2018.1700087 doi: 10.1109/MCOMSTD.2018.1700087 |
[23] | F. Li, A. Shankar, B. S. Kumar, Fog-internet of things-assisted multi-sensor intelligent monitoring model to analyze the physical health condition, Technol. Health Care, 29 (2021), 1319–1337. https://doi.org/10.3233/THC-213009 doi: 10.3233/THC-213009 |
[24] | S. Majumder, M. J. Deen, Wearable imu-based system for real-time monitoring of lower-limb joints, IEEE Sensors J., 21 (2020), 8267–8275. https://doi.org/10.1109/JSEN.2020.3044800 doi: 10.1109/JSEN.2020.3044800 |
[25] | Y. Jia, Lora-based wsns construction and low-power data collection strategy for wetland environmental monitoring, Wireless Pers. Commun., 114 (2020), 1533–1555. https://doi.org/10.1007/s11277-020-07437-5 doi: 10.1007/s11277-020-07437-5 |
[26] | H. Zhou, H. Wang, W. Zeng, Smart construction site in mega construction projects: A case study on island tunneling project of hong kong-zhuhai-macao bridge, Front. Eng. Manage., 5 (2018), 78–87. |
[27] | W. Lin, X. Gao, Feature fusion for inverse synthetic aperture radar image classification via learning shared hidden space, Electron. Lett., 57 (2021), 986–988. https://doi.org/10.1049/ell2.12311 doi: 10.1049/ell2.12311 |
[28] | W. M. Alenazy, Wayfinding techniques at common first year king saud university-an indoor localization approach for navigation, Turk. J. Comput. Math. Edu., 12 (2021), 3966–3975. https://doi.org/10.17762/turcomat.v12i3.1686 doi: 10.17762/turcomat.v12i3.1686 |
[29] | S. Liu, S. Huang, W. Fu, J. C. W. Lin, A descriptive human visual cognitive strategy using graph neural network for facial expression recognition, Int. J. Mach. Learn. Cybern., 2022 (2022). |
[30] | S. Liu, S. Huang, X. Xu, J. Lloret, K. Muhammad, Efficient visual tracking based on fuzzy inference for intelligent transportation systems, IEEE Trans. Intell. Trans. Syst., 2023 (2023), 1–12. https://doi.org/10.1109/TITS.2022.3232242 doi: 10.1109/TITS.2022.3232242 |
[31] | S. Liu, S. Huang, S. Wang, K. Muhammad, P. Bellavista, J. Del Ser, Visual tracking in complex scenes: A location fusion mechanism based on the combination of multiple visual cognition flows, Inf. Fusion, 96 (2023), 281–296. https://doi.org/10.1016/j.inffus.2023.02.005 doi: 10.1016/j.inffus.2023.02.005 |
[32] | H. Li, J. Li, P. Wu, Y. You, N. Zeng, A ranking-system-based switching particle swarm optimizer with dynamic learning strategies, Neurocomputing, 494 (2022), 356–367. https://doi.org/10.1016/j.neucom.2022.04.117 doi: 10.1016/j.neucom.2022.04.117 |
[33] | J. Fang, Z. Wang, W. Liu, S. Lauria, N. Zeng, C. Prieto, et al., A new particle swarm optimization algorithm for outlier detection: Industrial data clustering in wire arc additive manufacturing, IEEE Trans. Autom. Sci. Eng., 2022 (2022), 1–14. https://doi.org/10.1109/TASE.2022.3230080 doi: 10.1109/TASE.2022.3230080 |
[34] | N. Zeng, Z. Wang, W. Liu, H. Zhang, K. Hone, X. Liu, A dynamic neighborhood-based switching particle swarm optimization algorithm, IEEE Trans. Cybern., 52 (2022), 9290–9301. https://doi.org/10.1109/TCYB.2020.3029748 |
[35] | K. Gao, H. Wang, J. Nazarko, G. Chobanov, Indoor trajectory prediction algorithm based on communication analysis of built-in sensors in mobile terminals, IEEE Sensors J., 21 (2021), 25234–25242. https://doi.org/10.1109/JSEN.2021.3058141 doi: 10.1109/JSEN.2021.3058141 |
[36] | Y. Zhao, J. Xu, J. Wu, J. Hao, H. Qian, Enhancing camera-based multimodal indoor localization with device-free movement measurement using wifi, IEEE Int. Things J., 7 (2019), 1024–1038. https://doi.org/10.1109/JIOT.2019.2948605 doi: 10.1109/JIOT.2019.2948605 |
[37] | F. B. Günay, E. Öztürk, T. Çavdar, Y. S. Hanay, A. R. Khan, Vehicular ad hoc network (vanet) localization techniques: a survey, Arch. Comput. Methods Eng., 28 (2021), 3001–3033. https://doi.org/10.1007/s11831-020-09487-1 doi: 10.1007/s11831-020-09487-1 |