The massive emission of greenhouse gases poses a serious threat to the ecological environment. In this context, the relevant effects of the carbon emission trading (CET) market, which promotes greenhouse gas emission reduction by market means, have been widely investigated. Taking the China's CET pilot as a research target, the heterogeneity and spillover effects of CET on green innovation are explored by using the sample data of 279 prefecture-level cities in China from 2008 to 2019. The results are as follows. First, on the whole, CET significantly promotes strategic green innovation, but it has no significant effect on substantive green innovation. Second, the green innovation effect of CET varies with the level of green innovation, and the heterogeneous effects of green innovation are also reflected in different degrees of marketization, fiscal decentralization and government environmental concern. Third, CET has a positive spillover effect on green innovation, and the spillover effect is more significant than the direct effect, accounting for 74.8% of the total effect. Finally, some corresponding policy suggestions are put forward according to the above research conclusions.
Citation: Yanhong Feng, Qingqing Hu. Heterogeneity and spillover effects of carbon emission trading on green innovation[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6468-6497. doi: 10.3934/mbe.2023279
[1] |
Linglong Du, Min Yang .
Pointwise long time behavior for the mixed damped nonlinear wave equation in |
[2] |
Linglong Du .
Long time behavior for the visco-elastic damped wave equation in |
[3] | Hantaek Bae . On the local and global existence of the Hall equations with fractional Laplacian and related equations. Networks and Heterogeneous Media, 2022, 17(4): 645-663. doi: 10.3934/nhm.2022021 |
[4] | Günter Leugering, Sergei A. Nazarov, Jari Taskinen . The band-gap structure of the spectrum in a periodic medium of masonry type. Networks and Heterogeneous Media, 2020, 15(4): 555-580. doi: 10.3934/nhm.2020014 |
[5] | Seung-Yeal Ha, Gyuyoung Hwang, Hansol Park . Emergent behaviors of Lohe Hermitian sphere particles under time-delayed interactions. Networks and Heterogeneous Media, 2021, 16(3): 459-492. doi: 10.3934/nhm.2021013 |
[6] | Arianna Giunti . Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16(3): 341-375. doi: 10.3934/nhm.2021009 |
[7] | Francesca Alessio, Piero Montecchiari, Andrea Sfecci . Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks and Heterogeneous Media, 2019, 14(3): 567-587. doi: 10.3934/nhm.2019022 |
[8] | Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo . On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13(4): 585-607. doi: 10.3934/nhm.2018027 |
[9] | María Anguiano, Francisco Javier Suárez-Grau . Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks and Heterogeneous Media, 2019, 14(2): 289-316. doi: 10.3934/nhm.2019012 |
[10] | Wen Shen . Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14(4): 709-732. doi: 10.3934/nhm.2019028 |
The massive emission of greenhouse gases poses a serious threat to the ecological environment. In this context, the relevant effects of the carbon emission trading (CET) market, which promotes greenhouse gas emission reduction by market means, have been widely investigated. Taking the China's CET pilot as a research target, the heterogeneity and spillover effects of CET on green innovation are explored by using the sample data of 279 prefecture-level cities in China from 2008 to 2019. The results are as follows. First, on the whole, CET significantly promotes strategic green innovation, but it has no significant effect on substantive green innovation. Second, the green innovation effect of CET varies with the level of green innovation, and the heterogeneous effects of green innovation are also reflected in different degrees of marketization, fiscal decentralization and government environmental concern. Third, CET has a positive spillover effect on green innovation, and the spillover effect is more significant than the direct effect, accounting for 74.8% of the total effect. Finally, some corresponding policy suggestions are put forward according to the above research conclusions.
In this paper, we study the pointwise long time behavior of the solution for the nonlinear wave equation with frictional and visco-elastic damping terms
{∂2tu−c2Δu+ν1∂tu−ν2∂tΔu=f(u),u|t=0=u0(x),ut|t=0=u1(x), | (1) |
in multi-dimensional half space
(a1∂x1u+a2u)(x1=0,x′,t)=0. | (2) |
Over the past few decades, many mathematicians have concentrated on solving different kinds of damped nonlinear wave equations. The first kind is called the frictional damped wave equation, which is given as follows
{∂2tu−c2Δu+ν∂tu=f(u),u|t=0=u0(x),ut|t=0=u1(x), | (3) |
see [9,19,20,23] for the references. It is showed that for the long time, the fundamental solution for the linear system of (3) behaves like the Gauss kernel
{∂2tu−c2Δu−ν∂tΔu=f(u),u|t=0=u0(x),ut|t=0=u1(x). | (4) |
One can refer to [22] for the decaying rate of the linear solution, [11,12] for the asymptotic profiles of the linear problem, [4,21] for the nonlinear equation, etc. In [9], the authors studied the fundamental solution for the linear system of (4). The results show that the hyperbolic wave transport mechanism and the visco-elastic damped mechanism interact with each other so that the solution behaves like the convented heat kernel, i.e.,
For the initial-boundary value problem of the different damped wave equations, many authors studied the global well-posedness existence, long time behaviors, global attractors and decaying rate estimates of some elementary wave by using delicate energy estimate method, for example [1,13,25,26,28,29]. In this paper, we will use the pointwise estimate technique to give the long time behavior of the solution for system (1) with boundary condition (2). The main part of this technique is the construction and estimation of the Green's functions for the following linear systems:
{∂2tG1−c2ΔG1+ν1∂tG1−ν2∂tΔG1=0,x1,y1>0,x′∈Rn−1,t>0,G1(x1,x′,0;y1)=δ(x1−y1)δ(x′),G1t(x1,x′,0;y1)=0,a1∂x1G1(0,x′,t;y1)+a2G1(0,x′,t;y1)=0; | (5) |
{∂2tG2−c2ΔG2+ν1∂tG2−ν2∂tΔG2=0,x1,y1>0,x′∈Rn−1,t>0,G2(x1,x′,0;y1)=0,G2t(x1,x′,0;y1)=δ(x1−y1)δ(x′),a1∂x1G2(0,x′,t;y1)+a2G2(0,x′,t;y1)=0. | (6) |
The way of estimating the Green's functions
With the help of the accurate expression of Green's functions for the linear half space problem and the Duhamel's principle, we get the pointwise long time behavior for the nonlinear solution
Theorem 1.1. Let
|∂αxu0,∂αxu1|≤O(1)ε(1+|x|2)−r, r>n2, |α|≤1, |
|∂αxu(x,t)|≤O(1)ε(1+t)−|α|/2(1+t+|x|2)−n2. |
Moreover, we get the following optimal
‖∂αxu(⋅,t)‖Lp(Rn+)≤O(1)ε(1+t)−n2(1−1p)−|α|2, p∈(1,∞]. |
Remark 1. We can develop a similar theorem for the case of higher space dimension with a suitable choice of
Notations. Let
f(ξ,t):=F[f](ξ,t)=∫Rne−iξ⋅xf(x,t)dx,f(x,s):=L[f](x,s)=∫∞0e−stf(x,t)dt. |
The rest of paper is arranged as follows: in Section 2, we study the fundamental solutions for the linear Cauchy problem and give a pointwise description of the fundamental solutions in
The fundamental solutions for the linear damped wave equations are defined by
{∂2tG1−c2ΔG1+ν1∂tG1−ν2∂tΔG1=0G1(x,0)=δ(x),G1t(x,0)=0, | (7) |
{∂2tG2−c2ΔG2+ν1∂tG2−ν2∂tΔG2=0G2(x,0)=0,G2t(x,0)=δ(x). | (8) |
Applying the Fourier transform to (7) and (8) in the space variable
G1(ξ,t)=σ+eσ−t−σ−eσ+tσ+−σ−, G2(ξ,t)=eσ+t−eσ−tσ+−σ−,σ±=−ν1+ν2|ξ|22±12√ν21+(2ν1ν2−4c2)|ξ|2+ν22|ξ|4. |
In [16], authors have studied the pointwise estimates of the fundamental solutions by long wave-short wave decomposition in the Fourier space. Here we will use the local analysis and inverse Fourier transform to get the pointwise structures of the fundamental solutions in the physical variables
f(x,t)=fL(x,t)+fS(x,t),F[fL]=H(1−|ξ|ε0)F[f](ξ,t),F[fS]=(1−H(1−|ξ|ε0))F[f](ξ,t), |
with the parameter
H(x)={1, x>0,0, x<0. |
Long wave component. When
{σ+=−c2|ξ|2ν1+o(|ξ|2),σ−=−ν1+(−ν2+c2ν1)|ξ|2+o(|ξ|2), |
σ+−σ−=ν1+(ν1ν2−2c2)|ξ|2ν1+o(|ξ|2). |
Then
σ+eσ−t=(−c2|ξ|2ν1+o(|ξ|2))e(−ν1+(−ν2+c2ν1)|ξ|2+o(|ξ|2))t=−c2ν1|ξ|2e−ν1t+o(|ξ|2)e−Ct,σ−eσ+t=(−ν1+(−ν2+c2ν1)|ξ|2+o(|ξ|2))e(−c2|ξ|2ν1+o(|ξ|2))t=−ν1e−c2ν1|ξ|2t+O(|ξ|2)e−C|ξ|2t,1σ+−σ−=1ν1+O(|ξ|2). |
So we can approximate the fundamental solutions as follows
σ+eσ−t−σ−eσ+tσ+−σ−=−c2|ξ|2ν21e−ν1t+e−c2ν1|ξ|2t+o(|ξ|2)e−Ct+O(|ξ|2)e−C|ξ|2t,eσ+t−eσ−tσ+−σ−=1ν1e−c2ν1|ξ|2t−1ν1e−ν1t+O(|ξ|2)e−Ct+o(|ξ|2)e−C|ξ|2t. |
Using Lemma 5.1 in Appendix, for
|DαxGL1(x,t)|≤O(1)(e−|x|2C(t+1)(1+t)n+|α|2+e−|x|+tC),|DαxGL2(x,t)|≤O(1)(e−|x|2C(t+1)(1+t)n+|α|2+e−|x|+tC). |
Short wave component. We adopt the local analysis method to give a description about all types of singular functions for the short wave component of the fundamental solutions. When
{σ+=−c2ν2+c2(ν1ν2−c2)ν321|ξ|2+O(|ξ|−4),σ−=−σ+−(ν1+ν2|ξ|2). |
This non-decaying property results in the singularities of the fundamental solution
{σ∗+=−c2ν2+c2(ν1ν2−c2)ν32(11+|ξ|2+1(1+|ξ|2)2)+c2(ν1ν2−c2)ν32O((1+|ξ|2)−3),σ∗−=−σ∗+−(ν1+ν2|ξ|2), |
infξ∈Dε0|σ∗−(ξ)−σ∗+(ξ)|>0,supξ∈Dε0Re(σ∗±(ξ))≤−J0, supξ∈Dε0|ξ|8|σ±(ξ)−σ∗±(ξ)|<∞ as |ξ|→∞. |
Therefore, the approximated analytic spectra
|σ+eσ−t−σ−eσ+tσ+−σ−−σ∗+eσ∗−t−σ∗−eσ∗+tσ∗+−σ∗−, eσ+t−eσ−tσ+−σ−−eσ∗+t−eσ∗−tσ∗+−σ∗−|≤O(1)(1+|ξ|2)4. |
By Lemma 5.4 in the Appendix, we have
‖F−1[σ+eσ−t−σ−eσ+tσ+−σ−−σ∗+eσ∗−t−σ∗−eσ∗+tσ∗+−σ∗−](⋅,t)‖L∞(Rn)=O(1),‖F−1[eσ+t−eσ−tσ+−σ−−eσ∗+t−eσ∗−tσ∗+−σ∗−](⋅,t)‖L∞(Rn)=O(1), |
which asserts that all singularities are contained in
Now we seek out all the singularities. For the short wave part of
σ∗+eσ∗−t−σ∗−eσ∗+tσ∗+−σ∗−=eσ∗+t−σ∗+eσ∗+tσ∗+−σ∗−+σ∗+eσ∗−tσ∗+−σ∗−. |
The first term is
eσ∗+t=e−c2tν2ec2(ν1ν2−c2)tν3211+|ξ|2+c2(ν1ν2−c2)tν321(1+|ξ|2)2+c2(ν1ν2−c2)tν32O(1(1+|ξ|2)3)=e−c2tν2(1+c2(ν1ν2−c2)tν3211+|ξ|2+c2(ν1ν2−c2)tν321(1+|ξ|2)2)+e−c2tν2c2(ν1ν2−c2)tν32O(1(1+|ξ|2)3)=e−c2tν2+c2(ν1ν2−c2)ν32te−c2tν21+|ξ|2+c2(ν1ν2−c2)ν32te−c2tν2(1+|ξ|2)2+te−c2tν2c2(ν1ν2−c2)ν32O(1(1+|ξ|2)3). |
It can be estimated as follows
|F−1[eσ∗+t]−e−c2t/ν2δ(x)−tc2(ν1ν2−c2)ν−32e−c2t/ν2Yn(x)|≤Ce−|x|+tC. |
The second term contains no singularities and we have
σ∗+eσ∗+tσ∗+−σ∗−=−c2ν−22e−c2t/ν21+|ξ|2+e−c2tν2O(1(1+|ξ|2)2), |
so
|F−1[σ∗+eσ∗+tσ∗+−σ∗−]+c2v−22e−c2t/v2Yn(x)|≤Ce−|x|+tC. |
For the third term, the function
|σ∗+eσ∗−tσ∗+−σ∗−|≤K0e−|ξ|2t/C1−J∗0t1+|ξ|2, |
∫Im(ξk)=δ1≤k≤n|σ∗+eσ∗−tσ∗+−σ∗−|dξ≤C∫Rne−|ξ|2t/C−J∗0t(1+|ξ|)2dξ=CΓ(n)∫∞0e−r2t/C−J∗0t(1+r)2rn−1dr≤Ce−t/CLn(t), | (9) |
where
Ln(t)≡{1,n=1,log(t),n=2,t−n−22,n≥3. |
We denote
j1(x,t):=F−1[σ∗+eσ∗−tσ∗+−σ∗−], |
following the way of proof for Lemma 5.4, we get
|j1(x,t)|≤Ce−(|x|+t)/CLn(t) |
from (9). So the following estimate for
|GS1(x,t)−j1(x,t)−e−c2t/ν2δn(x)−(tc2ν−32(ν1ν2−c2)+c2ν−22)e−c2t/ν2Yn(x)|≤e−|x|+tC. |
For the short wave part of
eσ∗+t−eσ∗−tσ∗+−σ∗−=eσ∗+tσ∗+−σ∗−−eσ∗−tσ∗+−σ∗−. |
The first term is
eσ∗+tσ∗+−σ∗−=ν−12e−c2t/ν21+|ξ|2+e−c2tν2O(1(1+|ξ|2)2), |
and we have
|F−1[eσ∗+tσ∗+−σ∗−]−ν−12e−c2t/ν2Yn(x)|≤Ce−|x|+tC. |
The second term contains no singularities. If denoting
j2(x,t)≡−F−1(eσ∗−tσ∗+−σ∗−), |
then there exists
|j2(x,t)|≤Ce−(|x|+t)/CLn(t), |
and we have the following estimate for
|GS2(x,t)−j2(x,t)−ν−12e−c2t/ν2Yn(x)|≤Ce−|x|+tC. |
Hence the short wave components have the following estimates in the finite Mach number region
|GS1(x,t)−j1(x,t)−e−c2tν2δn(x)−(tc2(ν1ν2−c2)ν32+c2ν22)e−c2tν2Yn(x)|≤Ce−|x|+tC.|GS2(x,t)−j2(x,t)−ν−12e−c2tν2Yn(x)|≤Ce−|x|+tC. |
Outside the finite Mach number region
We choose the weighted function
wt=−aMw,∇w=xM|x|w,Δw=wM2. |
Consider the linear damped wave equation outside the finite Mach number region:
{∂2tui−c2Δui+ν1∂tui−ν2∂tΔui=0,|x|≥3(t+1),ui|t=0=0,uit|t=0=0,ui||x|=3(t+1)=Gi||x|=3(t+1). | (10) |
Denote the outside finite Mach number region
c2∫∂Dtw∂tui∇ui⋅d→Sx+ν2∫∂Dtw∂tui∂t∇ui⋅d→Sx=12ddt∫Dtw((∂tui)2+c2|∇ui|2)dx+∫Dt(ν1w−12wt−12ν2Δw)(∂tui)2dx+c2∫Dt∂tui∇w⋅∇uidx+ac22M∫Dtw|∇ui|2dx+ν2∫Dtw|∂t∇ui|2dx=12ddt∫Dtw((∂tui)2+c2|∇ui|2)dx+∫Dt(ν1+a2M−ν22M2)w(∂tui)2dx+c2∫Dtw∂tuixM|x|⋅∇uidx+ac22M∫Dtw|∇ui|2dx+ν2∫Dtw|∂t∇ui|2dx≥12ddt∫Dtw((∂tui)2+c2|∇ui|2)dx+∫Dtw(ac24M|∇ui|2+(ν12+a2M−ν22M2)(∂tui)2+ν2|∂t∇ui|2)dx. |
On the boundary
|∂tui|,|∇ui|,|∂t∇ui|≤Ce−Ct, x∈∂Dt. |
So
ddt∫Dtw((∂tui)2+c2|∇ui|2)dx+2δ0∫Dtw((∂tui)2+c2|∇ui|2)dx≤Ce−Ct, | (11) |
One can also get similar estimates for any higher order derivatives
l∑|α|=1(ddt∫Rnw((∂t∂αxui)2+c2|∇∂αxui|2)dx) +δ|α|∫Rnw((∂t∂αxui)2+c2|∇∂αxui|2)dx)≤Ce−Ct. | (12) |
Integrating (11) and (12) over
sup(x,t)∈Dt((∂t∂αxui)2+c2|∇∂αxui|2)≤Ce−(|x|−at)/C≤Ce−(|x|+t)/C, for |α|<l−n2, |
since
|DαxGi(x,t)|≤Ce−(|x|+t)/C, for |α|<l−n2. |
To summarize, we have the following pointwise estimates for the fundamental solutions:
Lemma 2.1. The fundamental solutions have the following estimates for all
|Dαx(G1(x,t)−j1(x,t)−e−c2t/ν2δn(x)−(tc2ν−32(ν1ν2−c2)+c2ν−22)e−c2t/ν2Yn(x))|≤O(1)(e−|x|2C(t+1)(t+1)n+|α|2+e−(|x|+t)/C),|Dαx(G2(x,t)−j2(x,t)−ν−12e−c2t/ν2Yn(x))|≤O(1)(e−|x|2C(t+1)(t+1)n+|α|2+e−(|x|+t)/C). |
Here
|j1(x,t),j2(x,t)|≤O(1)Ln(t)e−(|x|+t)/C,L2(t)=log(t), Ln(t)=t−n−22 for n≥3,Y2(x)=O(1)12πBesselK0(|x|), Yn(x)=O(1)e−|x||x|n−2 for n≥3. |
Applying Laplace transform in
G1(ξ,s)=s+ν1+ν2|ξ|2s2+ν1s+(c2+ν2s)|ξ|2, G2(ξ,s)=1s2+ν1s+(c2+ν2s)|ξ|2. |
Now we give a lemma:
Lemma 2.2.
12π∫Reiξ1x1s2+ν1s+ν2s|ξ|2+c2|ξ|2dξ1=1ν2s+c2e−λ|x1|2λ, |
where
Proof. We prove it by using the contour integral and the residue theorem. Note that
12π∫Reiξ1x1s2+ν1s+ν2s|ξ|2+c2|ξ|2dξ1=12π1ν2s+c2∫Reiξ1x1ξ21+|ξ′|2+s2+ν1sν2s+c2dξ1=12π1ν2s+c2∫Reiξ1x1(ξ1−λi)(ξ1+λi)dξ1. |
Define a closed path
If
12π1ν2s+c2∫Reiξ1x1(ξ1−λi)(ξ1+λi)dξ1=12π1ν2s+c22πiRes(eiξ1x1(ξ1−λi)(ξ1+λi)|ξ1=λi)=e−λx12(ν2s+c2)λ. |
The computation for the case
12π1ν2s+c2∫Reiξ1x1(ξ1−λi)(ξ1+λi)dξ1=−12π1ν2s+c22πiRes(eiξ1x1(ξ1−λi)(ξ1+λi)|ξ1=−λi)=eλx12(ν2s+c2)λ. |
Hence we prove this lemma.
With the help of Lemma 2.2, we get the expression of fundamental solutions
G1(x1,ξ′,s)=1ν2s+c2(ν2δ(x1)+c2(s+ν1)ν2s+c2e−λ|x1|2λ),G2(x1,ξ′,s)=e−λ|x1|2λ(ν2s+c2). |
In particular, when
G1(−ˉx1,ξ′,s)=c2(s+ν1)(ν2s+c2)2e−λˉx12λ, G2(−ˉx1,ξ′,s)=e−λˉx12λ(ν2s+c2). |
In this section, we will give the pointwise estimates of the Green's functions for the initial boundary value problem. Firstly, we compute the transformed Green's functions in the partial-Fourier and Laplace transformed space. Then by comparing the symbols of the fundamental solutions and the Green's functions in this transformed space, we get the simplified expressions of Green's functions for the initial-boundary value problem. With the help of the pointwise estimates of the fundamental solutions and boundary operator, we finally get the sharp estimates of Green functions for the half space linear problem.
Before computing, we make the initial value zero by considering the error function
{∂2tRi−c2ΔRi+ν1∂tRi−ν2∂tΔRi=0,x∈Rn+,t>0,Ri|t=0=0,Rit|t=0=0,(a1∂x1+a2)Ri(0,x′,t;y1)=−(a1∂x1+a2)Gi(x1−y1,x′,t)|x1=0. |
Taking Fourier transform only with respect to the tangential spatial variable
{(s2+ν1s)Ri−(c2+ν2s)Rix1x1+(c2+ν2s)|ξ′|2Ri=0,(a1∂x1+a2)Ri(0,ξ′,s;y1)=(a1∂y1−a2)Gi(−y1,ξ′,s)=−(a1λ+a2)Gi(−y1,ξ′,s). |
Solving it and dropping out the divergent mode as
Ri(x1,ξ′,s;y1)=−a1λ+a2a2−a1λe−λx1Gi(−y1,ξ′,s)=−a1λ+a2a2−a1λGi(x1+y1,ξ′,s), |
where
Therefore the transformed Green's functions
Gi(x1,ξ′,s;y1)=Gi(x1−y1,ξ′,s)−a1λ+a2a2−a1λGi(x1+y1,ξ′,s)=Gi(x1−y1,ξ′,s)+Gi(x1+y1,ξ′,s)−2a2a2−a1λGi(x1+y1,ξ′,s), |
which reveal the connection between fundamental solutions and the Green's functions.
Hence,
Gi(x1,x′,t;y1)=Gi(x1−y1,x′,t)+Gi(x1+y1,x′,t)−F−1ξ′→x′L−1s→t[2a2a2−a1λ]∗x′,tGi(x1+y1,x′,t). |
Now we estimate the boundary operator
Instead of inverting the boundary symbol, we follow the differential equation method. Notice that
F−1ξ′→x′L−1s→t[2a2a2−a1λGi(x1+y1,ξ′,s)]=2a2a1∂x1+a2Gi(x1+y1,x′,t), |
setting
g(x1,x′,t)≡2a2a1∂x1+a2Gi(x1,x′,t), |
then the function
(a2+a1∂x1)g=2a2Gi(x1,x′,t). |
Solving this ODE gives
g(x1,x′,t)=2γ∫∞x1e−γ(z−x1)Gi(z,x′,t)dz=2γ∫∞0e−γzGi(x1+z,x′,t)dz. | (13) |
Summarizing previous results we obtain
Lemma 3.1. The Green's functions
Gi(x1,x′,t;y1)=GLi(x1,x′,t;y1)+GSi(x1,x′,t;y1). |
Meanwhile, the following estimates hold:
|DαxGLi(x1,x′,t;y1)|≤O(1)(e−(x1−y1)2+(x′−y′)2C(t+1)(t+1)n+|α|2+e−(x1+y1)2+(x′−y′)2C(t+1)(t+1)n+|α|2),|α|≥0; |
|GS1(x1,x′,t;y1)|≤O(1)(j1(x1−y1,x′,t)+j1(x1+y1,x′,t)+e−c2tν2(δn(x1−y1,x′)+δn(x1+y1,x′))+e−c2tν2(tc2ν−32(ν1ν2−c2)+c2ν−22)(Yn(x1−y1,x′)+Yn(x1+y1,x′))) |
and
|GS2(x1,x′,t;y1)|≤O(1)(j1(x1−y1,x′,t)+j2(x1+y1,x′,t)+ν−12e−c2tν2(Yn(x1−y1,x′)+Yn(x1+y1,x′))). |
Proof. Note that
Gi(x1,x′,t;y1)=Gi(x1−y1,x′,t)+Gi(x1+y1,x′,t)−g(x1+y1,x′,t), |
based on the long-wave short-wave decomposition of the fundamental solutions
Gi(x,t)=GLi(x,t)+GSi(x,t), |
we can write
GLi(x1,x′,t;y1)=O(1)(GLi(x1−y1,x′,t)+GLi(x1+y1,x′,t)),GSi(x1,x′,t;y1)=O(1)(GSi(x1−y1,x′,t)+GSi(x1+y1,x′,t)), |
and get the estimates directly from Lemma 2.1 and (13).
The study of boundary operator in the last section suggests that we can only consider the case
Now we give the pointwise long time behavior of the solution for the nonlinear problem and prove the Theorem 1.1. The Green's functions
∂αxu(x,t)=∂αx∫Rn+(G1(x1,x′−y′,t;y1)u0(y)+G2(x1,x′−y′,t;y1)u1(y))dy+∂αx∫t0∫Rn+G2(x1,x′−y′,t−τ;y1)f(u)(y,τ)dydτ≡∂αxI(x,t)+∂αxN(x,t). | (14) |
The initial part
\begin{align*} \begin{aligned} &\partial_{{\bf{x}}}^\alpha\mathcal{I}({\bf{x}},t) = \partial_{{\bf{x}}}^\alpha\mathcal{I}^L({\bf{x}},t)+\partial_{{\bf{x}}}^\alpha\mathcal{I}^S({\bf{x}},t), \end{aligned} \end{align*} |
where
\begin{align*} \begin{aligned} &\partial_{{\bf{x}}}^\alpha\mathcal{I}^L({\bf{x}},t) = \partial_{{\bf{x}}}^\alpha\int_{\mathbb{R}^n_+}\left(\mathbb{G}_1^L(x_1,{\bf{x'-y'}},t;y_1)u_0({\bf{y}})+\mathbb{G}_2^L(x_1,{\bf{x'-y'}},t;y_1)u_1({\bf{y}})\right)d{\bf{y}}\\ &\partial_{{\bf{x}}}^\alpha\mathcal{I}^S({\bf{x}},t) = \partial_{{\bf{x}}}^\alpha\int_{\mathbb{R}^n_+}\left(\mathbb{G}_1^S(x_1,{\bf{x'-y'}},t;y_1)u_0({\bf{y}})+\mathbb{G}_2^S(x_1,{\bf{x'-y'}},t;y_1)u_1({\bf{y}})\right)d{\bf{y}}. \end{aligned} \end{align*} |
By lemma 5.2, we have the following estimates in the finite Mach number region
\begin{align} \label{{4.3a}} \begin{aligned} &|\mathcal{I}^L({\bf{x}},t)|\le O(1)\varepsilon\int_{\mathbb{R}^n_+}\frac{e^{-\frac{(\bf{x-y})^2}{C(t+1)}}}{(t+1)^{\frac{n}{2}}}\left(1+|{\bf{y}}|^2\right)^{-r}d{\bf{y}}\\ \le& O(1)\varepsilon\left(\frac{e^{-\frac{{\bf{x}}^2}{C(t+1)}}}{(t+1)^{\frac{n}{2}}}+\left(1+t+\left|{\bf{x}}\right|^2\right)^{-\frac{n}{2}}\right), \end{aligned} \end{align} | (15) |
\begin{align} \label{{4.3b}} \begin{aligned} &|\mathcal{I}^S({\bf{x}},t)|\\ \le& O(1)\varepsilon e^{-\frac{(|{\bf{x}}|+t)}{C}}\Bigg|\int_{\mathbb{R}^n}\Big(L_n(t) +\delta_n(\bf{x-y})\\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\left[\frac{tc^2}{\nu_2^{3}}(\nu_1\nu_2-c^2)+\frac{c^2}{\nu_2^{2}}\right]Y_n(\bf{x-y})\Big)\left(1+|{\bf{y}}|^2\right)^{-r}d{\bf{y}} \Bigg|\\ &+O(1)\varepsilon e^{-\frac{(|{\bf{x}}|+t)}{C}}\left|\int_{\mathbb{R}^n}\left(L_n(t)+\nu_2^{-1}Y_n(\bf{x-y})\right)\left(1+|{\bf{y}}|^2\right)^{-r}d{\bf{y}}\right|\\ \le &O(1)\varepsilon\left(\frac{e^{-\frac{{\bf{x}}^2}{C(t+1)}}}{(t+1)^{\frac{n}{2}}}+\left(1+t+\left|{\bf{x}}\right|^2\right)^{-\frac{n}{2}}\right). \end{aligned} \end{align} | (16) |
Hence we combine (15) and (16) to get the estimate of the first part in (14) when
\begin{align} \begin{aligned} \label{{4.3}} \left|\mathcal{I}({\bf{x}},t)\right| \le O(1)\varepsilon\left(\frac{e^{-\frac{{\bf{x}}^2}{C(t+1)}}}{(t+1)^{\frac{n}{2}}}+\left(1+t+\left|{\bf{x}}\right|^2\right)^{-\frac{n}{2}}\right). \end{aligned} \end{align} | (17) |
Similarly, when
\begin{align*} \begin{aligned} &\left|\partial_{{\bf{x}}}^\alpha\mathcal{I}({\bf{x}},t)\right| = \left|\partial_{{\bf{x}}}^\alpha\mathcal{I}^L({\bf{x}},t)+\partial_{{\bf{x}}}^\alpha\mathcal{I}^S({\bf{x}},t)\right|\\ \le&O(1)\varepsilon\int_{ \mathbb{R}^n_+}\left(\frac{e^{-\frac{(x_1-y_1)^2+({\bf{x'-y'}})^2}{C(t+1)}}}{(t+1)^{\frac{n}{2}+\frac{1}{2}}}+\frac{e^{-\frac{(x_1+y_1)^2+({\bf{x'-y'}})^2}{C(t+1)}}}{(t+1)^{\frac{n}{2}+\frac{1}{2}}}\right)\left(1+|{\bf{y}}|^2\right)^{-r}d{\bf{y}}\\ &+1_{\{\partial^\alpha_{{\bf{x}}} = \partial_{x_1}\}}O(1)\varepsilon e^{-\frac{(|{\bf{x}}|+t)}{C}}\Bigg|\int_{\mathbb{R}^{n-1}}L_n(t)+\delta_n(x_1-y_1,{\bf{x'-y'}},t)\\ & \ \ \ \ \ \ +\delta_n(x_1+y_1,{\bf{x'-y'}},t)+\left(tc^2\nu_2^{-3}(\nu_1\nu_2-c^2)+c^2\nu_2^{-2}\right)\\ &\ \ \ \ \ \left(Y_n(x_1-y_1,{\bf{x'-y'}})+Y_n(x_1+y_1,{\bf{x'-y'}})\right)\left(1+|{\bf{y}}|^2\right)^{-r}d\bf{y'}|_{y_1 = 0}\Bigg|\\ &+O(1)\varepsilon e^{-\frac{(|{\bf{x}}|+t)}{C}}\Bigg|\int_{\mathbb{R}_+^n}L_n(t)+\delta_n(x_1-y_1,{\bf{x'-y'}},t)+\delta_n(x_1+y_1,{\bf{x'-y'}},t)\\ & \ \ \ \ \ +\left(tc^2\nu_2^{-3}(\nu_1\nu_2-c^2)+c^2\nu_2^{-2}\right)\\ & \ \ \ \ \ \ \left(Y_n(x_1-y_1,{\bf{x'-y'}})+Y_n(x_1+y_1,{\bf{x'-y'}})\right)\left(1+|{\bf{y}}|^2\right)^{-r}d{\bf{y}}\Bigg|\\ &+1_{\{\partial^\alpha_{{\bf{x}}} = \partial_{x_1}\}}O(1)\varepsilon e^{-\frac{(|{\bf{x}}|+t)}{C}}\Bigg|\int_{\mathbb{R}^{n-1}}(L_n(t)+\nu_1^{-1}Y_n(x_1-y_1,{\bf{x'-y'}})\\ & \ \ \ \ +\nu_1^{-1}Y_n(x_1+y_1,{\bf{x'-y'}}))\left(1+|{\bf{y}}|^2\right)^{-r}d\bf{y'}|_{y_1 = 0}\Bigg|\\ &+O(1)\varepsilon e^{-\frac{(|{\bf{x}}|+t)}{C}}\Bigg|\int_{\mathbb{R}^{n-1}}(L_n(t)+\nu_1^{-1}Y_n(x_1-y_1,{\bf{x'-y'}})\\ & \ \ \ \ +\nu_1^{-1}Y_n(x_1+y_1,{\bf{x'-y'}}))\left(1+|{\bf{y}}|^2\right)^{-r}d{\bf{y}}\Bigg|\\ \le&O(1)\varepsilon(1+t)^{-\frac{|\alpha|}{2}}\left(\frac{e^{-\frac{{\bf{x}}^2}{2C(t+1)}}}{(t+1)^{\frac{n}{2}}}+\left(1+t+\left|{\bf{x}}\right|^2\right)^{-r}\right)+O(1)\varepsilon e^{-(|{\bf{x}}|+t)/C}. \end{aligned} \end{align*} |
where
\begin{align*} \begin{aligned} 1_{\{\partial^\alpha_{{\bf{x}}} = \partial_{x_1}\}} = \left\{\begin{array}{lll} 1,\ if\ \partial^\alpha_{{\bf{x}}} = \partial_{x_1},\\ 0,\ otherwise.\end{array}\right. \end{aligned} \end{align*} |
Here we use the integration by parts to estimate the short wave component part. Outside the finite Mach number region, we have
\begin{align} \label{{4.5}} \begin{aligned} &\left|\partial_{{\bf{x}}}^\alpha\mathcal{I}({\bf{x}},t)\right|\le O(1)\varepsilon e^{-\nu_1t}\int_{ \mathbb{R}_+^n}e^{-|\bf{x-y}|}(1+{\bf{y}}^2)^{-r}d{\bf{y}}\\ \le& O(1)\varepsilon e^{-\nu_1t}(1+|{\bf{x}}|^2)^{-r},\quad|\alpha|\le1. \end{aligned} \end{align} | (18) |
Based on the estimates of (17)-(18), the ansatz is posed for the solution as follows:
\begin{align*} \begin{aligned} \left|\partial_{{\bf{x}}}^\alpha u({\bf{x}},t)\right| \le O(1)\varepsilon (1+t)^{-\frac{|\alpha|}{2}}(1+t+|{\bf{x}}|^2)^{-\frac{n}{2}}, \quad |\alpha|\le1. \end{aligned} \end{align*} |
Straightforward computations show that
\begin{eqnarray*} \left|f(u)({\bf{x}},t)\right|\le O(1)\varepsilon^k(1+t+|{\bf{x}}|^2)^{-\frac{nk}{2}}. \end{eqnarray*} |
Now we justify the ansatz for the nonlinear term. For
\begin{align*} \begin{aligned} \left|\mathcal{N}({\bf{x}},t)\right| = &\left|\int_{0}^{t}\int_{ \mathbb{R}^n_+}\mathbb{G}_2(x_1,{\bf{x'-y'}},t-\tau;y_1)f(u)({\bf{y}},\tau)d{\bf{y}}d\tau\right|\\ \le&\left|\int_{0}^{t}\int_{\mathbb{R}^n_+}\mathbb{G}_2^L(x_1,{\bf{x'-y'}},t-\tau;y_1)f(u)({\bf{y}},\tau)d{\bf{y}}d\tau\right|\\&+\left|\int_{0}^{t}\int_{\mathbb{R}^n_+}\mathbb{G}_2^S(x_1,{\bf{x'-y'}},t-\tau;y_1)f(u)({\bf{y}},\tau)d{\bf{y}}d\tau\right|\\ = &\mathcal{N}_1+\mathcal{N}_2. \end{aligned} \end{align*} |
Using Lemma 5.3, one gets
\begin{align*} \begin{aligned} \mathcal{N}_1&\le O(1)\varepsilon^k\Bigg|\int^t_0\int^\infty_0\int_{\mathbb{R}^{n-1}}\left(\frac{e^{-\frac{(x_1-y_1)^2+({\bf{x'-y'}})^2}{C(t-\tau+1)}}}{(t-\tau+1)^{\frac{n}{2}}}+\frac{e^{-\frac{(x_1+y_1)^2+({\bf{x'-y'}})^2}{C(t-\tau+1)}}}{(t-\tau+1)^{\frac{n}{2}}}\right)\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1+\tau+|{\bf{y}}|^2)^{-\frac{nk}{2}}d{\bf{y}}'dy_1d\tau\Bigg|\\ &\le O(1)\varepsilon^k\left|\int^t_0\int_{ \mathbb{R}^n}\frac{e^{-\frac{(x_1-y_1)^2+({\bf{x'-y'}})^2}{C(t-\tau+1)}}}{(t-\tau+1)^{\frac{n}{2}}}(1+\tau+|{\bf{y}}|^2)^{-\frac{nk}{2}}d{\bf{y}}d\tau\right|\\ &\le O(1)\varepsilon^k(1+t+|{\bf{x}}|^2)^{-\frac{n}{2}}, \end{aligned} \end{align*} |
\begin{align*} \begin{aligned} \mathcal{N}_2&\le O(1)\varepsilon^k\Bigg|\int^t_0\int_{ \mathbb{R}^n_+}e^{-\frac{c^2(t-\tau)}{\nu_2}}\left(L_n(t-\tau)+\nu_2^{-1}Y_n(x_1,{\bf{x'-y'}};y_1)\right)\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1+\tau+|{\bf{y}}|^2)^{-\frac{nk}{2}}d{\bf{y}}d\tau\Bigg|\\ &\le O(1)\varepsilon^k(1+t+|{\bf{x}}|^2)^{-\frac{n}{2}}. \end{aligned} \end{align*} |
Now we compute the estimate of
\begin{align*} \begin{aligned} \left|\partial_{{\bf{x}}}^\alpha\mathcal{N}({\bf{x}},t)\right| = &\left|\partial_{{\bf{x}}}^\alpha\int_{0}^{t}\int_{ \mathbb{R}^n_+}\mathbb{G}_2(x_1,{\bf{x'-y'}},t-\tau;y_1)f(u)({\bf{y}},\tau)d{\bf{y}}d\tau\right|\\ \le&\left|\int_{0}^{t}\int_{\mathbb{R}^n_+}\partial_{{\bf{x}}}^\alpha\mathbb{G}_2^L(x_1,{\bf{x'-y'}},t-\tau;y_1)f(u)({\bf{y}},\tau)d{\bf{y}}d\tau\right|\\ &+\left|\int_{0}^{t}\int_{\mathbb{R}^n_+}\partial_{{\bf{x}}}^\alpha\mathbb{G}_2^S(x_1,{\bf{x'-y'}},t-\tau;y_1)f(u)({\bf{y}},\tau)d{\bf{y}}d\tau\right|\\ = &\partial_{{\bf{x}}}^\alpha\mathcal{N}_1+\partial_{{\bf{x}}}^\alpha\mathcal{N}_2. \end{aligned} \end{align*} |
Similarly we have
\begin{align*} \begin{aligned} \partial_{{\bf{x}}}^\alpha\mathcal{N}_1 = &\Bigg|O(1)\varepsilon^k\int^t_0\int^\infty_0\int_{\mathbb{R}^{n-1}}\left(\frac{e^{-\frac{(x_1-y_1)^2+({\bf{x'-y'}})^2}{C(t-\tau+1)}}}{(t-\tau+1)^{\frac{n}{2}+\frac{|\alpha|}{2}}}+\frac{e^{-\frac{(x_1+y_1)^2+({\bf{x'-y'}})^2}{C(t-\tau+1)}}}{(t-\tau+1)^{\frac{n}{2}+\frac{|\alpha|}{2}}}\right)\\ &\ \ \ \ \ (1+\tau+|{\bf{y}}|^2)^{-\frac{nk}{2}}d{\bf{y}}'dy_1d\tau\Bigg|\\ \le&\left|O(1)\varepsilon^k\int^t_0\int_{ \mathbb{R}^n}\frac{e^{-\frac{(x_1-y_1)^2+({\bf{x'-y'}})^2}{C(t-\tau+1)}}}{(t-\tau+1)^{\frac{n}{2}+\frac{|\alpha|}{2}}}(1+\tau+|{\bf{y}}|^2)^{-\frac{nk}{2}}d{\bf{y}}d\tau\right|\\ \le&O(1)\varepsilon^k(1+t)^{-\frac{|\alpha|}{2}}(1+t+|{\bf{x}}|^2)^{-\frac{n}{2}}, \end{aligned} \end{align*} |
\begin{align} \label{{10.0}} \begin{aligned} \partial_{{\bf{x}}}^\alpha\mathcal{N}_2 = &\left|\int_{0}^{t}\int_{\mathbb{R}^n_+}\partial_{{\bf{x}}}^\alpha\mathbb{G}_2^S(x_1,{\bf{x'-y'}},t-\tau;y_1)f(u)({\bf{y}},\tau)d{\bf{y}}d\tau\right|\\ = &1_{\{\partial_{{\bf{x}}}^\alpha = \partial_{x_1}\}}\left|\int_{0}^{t}\int_{\mathbb{R}^{n-1}}\mathbb{G}_2^S(x_1,{\bf{x'-y'}},t-\tau;y_1) f(u)({\bf{y}},\tau)d{\bf{y}}'|_{y_1 = 0}d\tau\right|\\ &+\left|\int_{0}^{t}\int_{\mathbb{R}^n_+}\mathbb{G}_2^S(x_1,{\bf{x'-y'}},t-\tau;y_1)\partial_{{\bf{y}}}^\alpha f(u)({\bf{y}},\tau)d{\bf{y}}d\tau\right|. \end{aligned} \end{align} | (19) |
The boundary term in (19) has the following estimates:
\begin{align*} \begin{aligned} &\left|\int_{0}^{t}\int_{\mathbb{R}^{n-1}}\mathbb{G}_2^S(x_1,{\bf{x'-y'}},t-\tau;y_1)f(u)({\bf{y}},\tau)d{\bf{y}}'|_{y_1 = 0}d\tau\right|\\ \le& \left|\left(\int_{0}^{t/2}+\int_{t/2}^t\right)\int_{\mathbb{R}^{n-1}}\mathbb{G}_2^S(x_1,{\bf{x'-y'}},t-\tau;y_1)f(u)({\bf{y}},\tau)d{\bf{y}}'|_{y_1 = 0}d\tau\right|\\ \le&O(1)\varepsilon^k(1+t)^{-\frac{|\alpha|}{2}}(1+t+|{\bf{x}}|^2)^{-\frac{n}{2}}. \end{aligned} \end{align*} |
The second term in (19) satisfies
\begin{align*} \begin{aligned} &\left|\int_{0}^{t}\int_{\mathbb{R}^n_+}\mathbb{G}_2^S(x_1,{\bf{x'-y'}},t-\tau;y_1)\partial_{{\bf{y}}}^\alpha f(u)({\bf{y}},\tau)d{\bf{y}}d\tau\right|\\ \le&\Bigg|O(1)\varepsilon^k\int^t_0\int_{ \mathbb{R}^n_+}e^{-\frac{c^2(t-\tau)}{\nu_2}}\left(L_n(t-\tau)+\nu_2^{-1}Y_n(x_1,{\bf{x'-y'}};y_1)\right)\\ \le& (1+\tau)^{-\frac{|\alpha|}{2}}(1+\tau+|{\bf{y}}|^2)^{-\frac{nk}{2}}d{\bf{y}}d\tau\Bigg|\\ \le& O(1)\varepsilon^k(1+t)^{-\frac{|\alpha|}{2}}(1+t+|{\bf{x}}|^2)^{-\frac{n}{2}}. \end{aligned} \end{align*} |
Therefore one has the following estimate for the nonlinear term
\begin{align*} \begin{aligned} \left|\partial_{{\bf{x}}}^\alpha\mathcal{N}\right|\le O(1)\varepsilon^k(1+t)^{-\frac{|\alpha|}{2}}(1+t+|{\bf{x}}|^2)^{-\frac{n}{2}}, \quad|\alpha|\le1. \end{aligned} \end{align*} |
Outside the finite Mach number region,
\begin{align*} \begin{aligned} \left|\partial_{{\bf{x}}}^\alpha\mathcal{N}\right|\le& O(1)\varepsilon^k\left|\int^t_0\int_{ \mathbb{R}^n_+}e^{-\nu_1(t-\tau)}e^{-|\bf{x-y}|}(1+\tau+|{\bf{y}}^2|)^{-\frac{nk}{2}}d{\bf{y}}d\tau\right|\\ \le&O(1)\varepsilon^k(1+t+|{\bf{x}}|^2)^{-\frac{nk}{2}}, \quad |\alpha|\le1. \end{aligned} \end{align*} |
Thus, we verify the ansatz and finish the proof of pointwise estimates of the solution.
The
\begin{align*} \begin{aligned} &\left(\int_{\mathbb{R}^{n}_+}(1+t+|{\bf{x}}|^2)^{-\frac{n}{2}p} d{\bf{x}}\right)^{\frac{1}{p}} = \left(\int_{\mathbb{R}^{n}_+}(1+t)^{-\frac{n}{2}p}\left(1+\frac{|{\bf{x}}|^2}{1+t}\right)^{-\frac{n}{2}p}d{\bf{x}}\right)^{\frac{1}{p}}\\ = &(1+t)^{-\frac{n}{2}}(1+t)^{\frac{n}{2p}} = (1+t)^{-\frac{n}{2}(1-\frac{1}{p})}. \end{aligned} \end{align*} |
Hence we finish the proof of Theorem 1.1.
Lemma 5.1. [10] In the finite Mach number region
\begin{align*} \begin{aligned} \left|\frac{1}{(2\pi)^n}\int_{|{\boldsymbol{\xi}}|\le\varepsilon_0}(i{\boldsymbol{\xi}})^\alpha e^{i {\boldsymbol{\xi}}\cdot {\bf{x}}}e^{-\frac{1}{\kappa}|{\boldsymbol{\xi}}|^2t}d{\boldsymbol{\xi}}\right| \le O(1)\frac{e^{-\frac{|{\bf{x}}|^2}{C(t+1)}}}{(1+t)^{\frac{n+|\alpha|}{2}}}+O(1)e^{-\frac{|{\bf{x}}|+t}{C}}, |\alpha|\ge 0. \end{aligned} \end{align*} |
Lemma 5.2. [9] We have the follow estimate for
\begin{align*} \begin{aligned} &\int_{\mathbb R^n}\frac{e^{-\frac{({\bf{x}}-{\bf{y}})^2}{C(t+1)}}}{(1+t)^{\frac{n}{2}+\frac{|\alpha|}{2}}}(1+|{\bf{y}}|^2)^{-r}d{\bf{y}}\le O(1)(1+t)^{-\frac{|\alpha|}{2}}\left(\frac{e^{-\frac{{\bf{x}}^2}{2C(t+1)}}}{(t+1)^{\frac{n}{2}}}+(1+t+|{\bf{x}}|^2)^{-r}\right). \end{aligned} \end{align*} |
Lemma 5.3. [9] For
\begin{align*} \begin{aligned} &\int_{0}^{t}\int_{ \mathbb{R}^n}e^{-\frac{\nu(t-\tau)}{2}}Y_n(\bf{x-y})(1+\tau)^{-\frac{|\alpha|}{2}}(1+\tau+|{\bf{y}}|^2)^\frac{nk}{2}d{\bf{y}}d\tau\\ \le& O(1)(1+t)^{-\frac{|\alpha|}{2}}(1+t+|{\bf{x}}|)^{-nk/2}, \end{aligned} \end{align*} |
\begin{align*} \begin{aligned} \int_{0}^{t}\int_{\mathbb{R}^n}\frac{e^{-\frac{({\bf{x}}-{\bf{y}})^2}{C(t-\tau+1)}}}{(1+t)^{\frac{n}{2}+\frac{|\alpha|}{2}}}(1+\tau+|{\bf{y}}|^2)^{-\frac{nk}{2}}d{\bf{y}}d\tau\le O(1)(1+t)^{-\frac{|\alpha|}{2}}(1+t+|{\bf{x}}|^2)^{-\frac{n}{2}}. \end{aligned} \end{align*} |
Lemma 5.4. [7] Suppose a function
\begin{align*} \begin{aligned} |\mathcal{F}[f]({\boldsymbol{\xi}})|\le \frac{E}{(1+|{\boldsymbol{\xi}}|)^{n+1}}, \ \ \mathit{\mbox{for}} \ \ |Im(\xi_i)|\le\delta, \ \ \mathit{\mbox{and}}\ \ i = 1,2,\cdots, n. \end{aligned} \end{align*} |
Then, the function
\begin{eqnarray*} |f({\bf{x}})|\le Ee^{-\delta |{\bf{x}}|/C}, \end{eqnarray*} |
for any positive constant
The authors would like to thank the referees very much for their valuable comments and suggestions which improve the presentation of papersignicantly.
[1] | UNFCCC, Kyoto Protocol to the United Nations Framework Convention on Climate Change, Available from: https://legal.un.org/avl/pdf/ha/kpccc/kpccc_ph_e.pdf. |
[2] |
Q. Weng, H. Xu, A review of China's carbon trading market, Renewable Sustainable Energy Rev., 91 (2018), 613–619. https://doi.org/10.1016/j.rser.2018.04.026 doi: 10.1016/j.rser.2018.04.026
![]() |
[3] |
X. Bing, J. Bloemhof-Ruwaard, A. Chaabane, J. van der Vorst, Global reverse supply chain redesign for household plastic waste under the emission trading scheme. J. Cleaner Prod., 103 (2015), 28–39. https://doi.org/10.1016/j.jclepro.2015.02.019 doi: 10.1016/j.jclepro.2015.02.019
![]() |
[4] |
M. Kanwal, H. Khan, Does carbon asset add value to clean energy market? Evidence from EU, Green Finance, 3 (2021), 495–507. https://doi.org/10.3934/GF.2021023 doi: 10.3934/GF.2021023
![]() |
[5] |
J. Jiang, D. Xie, B. Ye, B. Shen, Z. M. Chen, Research on China's cap-and-trade carbon emission trading scheme: Overview and outlook, Appl. Energy, 178 (2016), 902–917. https://doi.org/10.1016/j.apenergy.2016.06.100 doi: 10.1016/j.apenergy.2016.06.100
![]() |
[6] |
H. Duan, Q. Hu, Local officials' concerns of climate change issues in China: a case from Jiangsu, J. Cleaner Prod., 64 (2014), 545–551. https://doi.org/10.1016/j.jclepro.2013.08.036 doi: 10.1016/j.jclepro.2013.08.036
![]() |
[7] |
Z. Huang, H. Dong, S. Jia, Equilibrium pricing for carbon emission in response to the target of carbon emission peaking, Energy Econ., 112 (2022), 106160. https://doi.org/10.1016/j.eneco.2022.106160 doi: 10.1016/j.eneco.2022.106160
![]() |
[8] |
K. H. Lee, B. Min, Green R&D for eco-innovation and its impact on carbon emissions and firm performance, J. Cleaner Prod., 108 (2015), 534–542. https://doi.org/10.1016/j.jclepro.2015.05.114 doi: 10.1016/j.jclepro.2015.05.114
![]() |
[9] |
W. Zhang, J. Li, G. X. Li, S. C. Guo, Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China, Energy, 196 (2020), 117117. https://doi.org/10.1016/j.energy.2020.117117 doi: 10.1016/j.energy.2020.117117
![]() |
[10] |
W. Z. Xu, The impact and influencing path of the pilot carbon emission trading market—Evidence from China, Front. Environ. Sci., 9 (2021). https://doi.org/10.3389/fenvs.2021.787655 doi: 10.3389/fenvs.2021.787655
![]() |
[11] |
X. Y. Yang, P. Jiang, Y. Pan, Does China's carbon emission trading policy have an employment double dividend and a Porter effect, Energy Policy, 142 (2020), 111492. https://doi.org/10.1016/j.enpol.2020.111492 doi: 10.1016/j.enpol.2020.111492
![]() |
[12] |
W. L. Yu, J. L. Luo, Impact on carbon intensity of carbon emission trading—Evidence from a Pilot Program in 281 Cities in China, Int. J. Environ. Res. Public Health, 19 (2022), 12483. https://doi.org/10.3390/ijerph191912483 doi: 10.3390/ijerph191912483
![]() |
[13] |
J. Y. Mo, Do environmental policy and innovation improve carbon productivity? Evidence from the Korean emission trading scheme, Energy Environ., 2021 (2021). https://doi.org/10.1177/0958305X211064575 doi: 10.1177/0958305X211064575
![]() |
[14] |
J. Chen, W. Gui, Y. Huang, The impact of the establishment of carbon emission trade exchange on carbon emission efficiency, Environ. Sci. Pollut. Res., 2022 (2022). https://doi.org/10.1007/s11356-022-23538-z doi: 10.1007/s11356-022-23538-z
![]() |
[15] |
L. Chen, Y. N. Liu, Y. Gao, J. J. Wang, Carbon emission trading policy and carbon emission efficiency: An empirical analysis of China's prefecture-level cities, Front. Energy Res., 9 (2021). https://doi.org/10.3389/fenrg.2021.793601 doi: 10.3389/fenrg.2021.793601
![]() |
[16] |
X. M. Zhang, F. F. Lu, D. Xue, Does China's carbon emission trading policy improve regional energy efficiency?—an analysis based on quasi-experimental and policy spillover effects, Environ. Sci. Pollut. Res., 29 (2022), 21166–21183. https://doi.org/10.1007/s11356-021-17021-4 doi: 10.1007/s11356-021-17021-4
![]() |
[17] |
W. Zhang, G. X. Li, F. Y. Guo, Does carbon emissions trading promote green technology innovation in China, Appl. Energy, 315 (2022), 119012. https://doi.org/10.1016/j.apenergy.2022.119012 doi: 10.1016/j.apenergy.2022.119012
![]() |
[18] |
F. Qu, L. Xu, Y. F. Chen, Can market-based environmental regulation promote green technology innovation? Evidence from China, Front. Environ. Sci., 9 (2022). https://doi.org/10.3389/fenvs.2021.823536 doi: 10.3389/fenvs.2021.823536
![]() |
[19] |
M. Porter, C. Linde, Green and competitive: ending the stalemate, Long Range Plann., 28 (1995), 128–129. https://doi.org/10.1016/0024-6301(95)99997-E doi: 10.1016/0024-6301(95)99997-E
![]() |
[20] |
S. Ambec, M. Cohen, S. Elgie, P. Lanoie, The porter hypothesis at 20: can environmental regulation enhance innovation and competitiveness, Rev. Environ. Econ. Policy, 7 (2010), 2–22. https://doi.org/10.1093/reep/res016 doi: 10.1093/reep/res016
![]() |
[21] |
M. Greenstone, J. A. List, C. Syverson, The effects of environmental regulation on the competitiveness of US Manufacturing, NBER Working Paper, 2012. https://doi.org/10.3386/w18392 doi: 10.3386/w18392
![]() |
[22] |
W. Gray, R. Shadbegian, Plant vintage, technology, and environmental regulation, J. Environ. Econ. Manage., 46 (2003), 384–402. https://doi.org/10.1016/S0095-0696(03)00031-7 doi: 10.1016/S0095-0696(03)00031-7
![]() |
[23] |
P. Lanoie, M. Patry, R. Lajeunesse, Environmental regulation and productivity: Testing the porter hypothesis, J. Prod. Anal., 30 (2008), 121–128. https://doi.org/10.1007/s11123-008-0108-4 doi: 10.1007/s11123-008-0108-4
![]() |
[24] |
X. Zhao, Y. P. Shang, X. W. Ma, P. F. Xia, U. Shahzad, Does carbon trading lead to green technology innovation: Recent evidence from Chinese companies in resource-based industries, IEEE Trans. Eng. Manage., 2022 (2022), 1–18. https://doi.org/10.1109/tem.2022.3186905 doi: 10.1109/tem.2022.3186905
![]() |
[25] |
L. Fu, Y. Yi, T. Wu, R. Cheng, Z. Zhang, Do carbon emission trading scheme policies induce green technology innovation? New evidence from provincial green patents in China, Environ. Sci. Pollut. Res., 2022 (2022). https://doi.org/10.1007/s11356-022-22877-1 doi: 10.1007/s11356-022-22877-1
![]() |
[26] |
G. W. Imbens, J. M. Wooldridge, Recent developments in the econometrics of program evaluation, J. Econ. Lit., 47 (2009), 5–86. https://doi.org/10.1257/jel.47.1.5 doi: 10.1257/jel.47.1.5
![]() |
[27] |
N. Baum-Snow, F. Ferreira, Causal inference in urban and regional economics, Handb. Reg. Urban Econ., 5 (2015), 3–68. https://doi.org/10.1016/B978-0-444-59517-1.00001-5 doi: 10.1016/B978-0-444-59517-1.00001-5
![]() |
[28] |
Y. Q. Liu, S. Liu, X. Y. Shao, Y. Q. He, Policy spillover effect and action mechanism for environmental rights trading on green innovation: Evidence from China's carbon emissions trading policy, Renewable Sustainable Energy Rev., 153 (2022), 111779. https://doi.org/10.1016/j.rser.2021.111779 doi: 10.1016/j.rser.2021.111779
![]() |
[29] |
C. Wang, Y. Shi, L. Zhang, X. Zhao, H. X. Chen, The policy effects and influence mechanism of China's carbon emissions trading scheme, Air Qual. Atmos. Health, 14 (2021), 2101–2114. https://doi.org/10.1007/s11869-021-01081-z doi: 10.1007/s11869-021-01081-z
![]() |
[30] |
Z. Y. Z. Dong, C. Y. Xia, K. Fang, W. W. Zhang, Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control, Energy Policy, 165 (2022), 112998. https://doi.org/10.1016/j.enpol.2022.112998 doi: 10.1016/j.enpol.2022.112998
![]() |
[31] |
Y. J. Zhang, T. Liang, Y. L. Jin, B. Shen, The impact of carbon trading on economic output and carbon emissions reduction in China's industrial sectors, Appl. Energy, 260 (2020), 114290. https://doi.org/10.1016/j.apenergy.2019.114290 doi: 10.1016/j.apenergy.2019.114290
![]() |
[32] |
K. K. Zhang, D. Y. Xu, S. R. Li, N. Zhou, J. H. Xiong, Has China's pilot emissions trading scheme influenced the carbon intensity of output, Int. J. Environ. Res. Public Health, 16 (2019), 1854. https://doi.org/10.3390/ijerph16101854 doi: 10.3390/ijerph16101854
![]() |
[33] |
J. Zhou, X. J. Huo, B. L. Jin, X. C. Yu, The efficiency of carbon trading market in China: evidence from variance ratio tests, Environ. Sci. Pollut. Res., 26 (2019), 14362–14372. https://doi.org/10.1007/s11356-019-04778-y doi: 10.1007/s11356-019-04778-y
![]() |
[34] |
A. B. Jaffe, K. Palmer, Environmental regulation and innovation: a panel data study, Rev. Econ. Statis., 79 (1997), 610–619. https://doi.org/10.1162/003465397557196 doi: 10.1162/003465397557196
![]() |
[35] |
A. Bitat, Environmental regulation and eco-innovation: the Porter hypothesis refined, Eurasian Bus. Rev., 8 (2018), 299–321. https://doi.org/10.1007/s40821-017-0084-6 doi: 10.1007/s40821-017-0084-6
![]() |
[36] |
J. Hu, X. Pan, Q. Huang, Quantity or quality? The impacts of environmental regulation on firms' innovation—Quasi-natural experiment based on China's carbon emissions trading pilot, Technol. Forecasting Social Change, 158 (2020), 120122. https://doi.org/10.1016/j.techfore.2020.120122 doi: 10.1016/j.techfore.2020.120122
![]() |
[37] |
M. C. Lv, M. Y. Bai, Evaluation of China's carbon emission trading policy from corporate innovation, Finance Res. Lett., 39 (2021), 101565. https://doi.org/10.1016/j.frl.2020.101565 doi: 10.1016/j.frl.2020.101565
![]() |
[38] |
H. Tian, J. E. Lin, C. Y. Jiang, The impact of carbon emission trading policies on enterprises' green technology innovation-evidence from listed companies in China, Sustainability, 14 (2022), 7207. https://doi.org/10.3390/su14127207 doi: 10.3390/su14127207
![]() |
[39] |
J. M. Zhu, Y. C. Fan, X. H. Deng, L. Xue, Low-carbon innovation induced by emissions trading in China, Nat. Commun., 10 (2019). https://doi.org/10.1038/s41467-019-12213-6 doi: 10.1038/s41467-019-12213-6
![]() |
[40] |
S. W. Yang, T. S. Lu, T. C. Huang, C. Wang, Re-examining the effect of carbon emission trading policy on improving the green innovation of China's enterprises, Environ. Sci. Pollut. Res., 2022 (2022). https://doi.org/10.1007/s11356-022-22621-9 doi: 10.1007/s11356-022-22621-9
![]() |
[41] |
L. Zhang, C. C. Cao, F. Tang, J. X. He, D. Y. Li, Does China's emissions trading system foster corporate green innovation? Evidence from regulating listed companies, Technol. Anal. Strategic Manage., 31 (2019), 199–212. https://doi.org/10.1080/09537325.2018.1493189 doi: 10.1080/09537325.2018.1493189
![]() |
[42] |
M. Liu, Y. F. Shan, Y. M. Li, Study on the effect of carbon trading regulation on green innovation and heterogeneity analysis from China, Energy Policy, 171 (2022), 113290. https://doi.org/10.1016/j.enpol.2022.113290 doi: 10.1016/j.enpol.2022.113290
![]() |
[43] |
M. H. Liu, Y. X. Li, Environmental regulation and green innovation: Evidence from China?s carbon emissions trading policy, Finance Res. Lett., 48 (2022), 103051. https://doi.org/10.1016/j.frl.2022.103051 doi: 10.1016/j.frl.2022.103051
![]() |
[44] |
S. Z. Qi, C. B. Zhou, K. Li, S. Y. Tang, Influence of a pilot carbon trading policy on enterprises' low-carbon innovation in China, Clim. Policy, 21 (2021), 318–336. https://doi.org/10.1080/14693062.2020.1864268 doi: 10.1080/14693062.2020.1864268
![]() |
[45] |
H. X. Yu, Y. H. Jiang, Z. W. Zhang, W. L. Shang, C. J. Han, Y. J. Zhao, The impact of carbon emission trading policy on firms' green innovation in China, Financ. Innovation, 8 (2022). https://doi.org/10.1186/s40854-022-00359-0 doi: 10.1186/s40854-022-00359-0
![]() |
[46] |
Z. X. Weng, Z. Ma, Y. Xie, C. Y. Cheng, Effect of China's carbon market on the promotion of green technological innovation, J. Cleaner Prod., 373 (2022). https://doi.org/10.1016/j.jclepro.2022.133820 doi: 10.1016/j.jclepro.2022.133820
![]() |
[47] |
C. Li, X. Li, D. Song, M. Tian, Does a carbon emissions trading scheme spur urban green innovation? Evidence from a quasi-natural experiment in China, Energy Environ., 33 (2021), 640–662. https://doi.org/10.1177/0958305X211015327 doi: 10.1177/0958305X211015327
![]() |
[48] |
F. X. Zhou, X. Y. Wang, The carbon emissions trading scheme and green technology innovation in China: A new structural economics perspective, Econ. Anal. Policy, 74 (2022), 365–381. https://doi.org/10.1016/j.eap.2022.03.007 doi: 10.1016/j.eap.2022.03.007
![]() |
[49] |
Z. F. Chen, X. Zhang, F. L. Chen, Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China, Technol. Forecasting Social Change, 168 (2021). https://doi.org/10.1016/j.techfore.2021.120744 doi: 10.1016/j.techfore.2021.120744
![]() |
[50] |
X. H. Lyu, A. N. Shi, X. Wang, Research on the impact of carbon emission trading system on low-carbon technology innovation, Carbon Manage., 11 (2020), 183–193. https://doi.org/10.1080/17583004.2020.1721977 doi: 10.1080/17583004.2020.1721977
![]() |
[51] |
S. Y. Yao, X. Y. Yu, S. Yan, S. Y. Wen, Heterogeneous emission trading schemes and green innovation, Energy Policy, 155 (2021), 112367. https://doi.org/10.1016/j.enpol.2021.112367 doi: 10.1016/j.enpol.2021.112367
![]() |
[52] |
Y. G. Wei, R. Q. Zhu, L. Y. Tan, Emission trading scheme, technological innovation, and competitiveness: Evidence from China's thermal power enterprises, J. Environ. Manage., 320 (2022), 115874. https://doi.org/10.1016/j.jenvman.2022.115874 doi: 10.1016/j.jenvman.2022.115874
![]() |
[53] |
Y. Zhang, Y. Peng, C. Ma, B. Shen, Can environmental innovation facilitate carbon emissions reduction? Evidence from China, Energy Policy, 100 (2017), 18–28. https://doi.org/10.1016/j.enpol.2016.10.005 doi: 10.1016/j.enpol.2016.10.005
![]() |
[54] |
B. H. Hall, C. Helmers, Innovation and diffusion of clean/green technology: Can patent commons help, J. Environ. Econ. Manage., 66 (2013), 33–51. https://doi.org/10.1016/j.jeem.2012.12.008 doi: 10.1016/j.jeem.2012.12.008
![]() |
[55] |
D. Popp, The role of technological change in green growth, NBER Working Paper No. 18506, 2012. https://doi.org/10.3386/w18506 doi: 10.3386/w18506
![]() |
[56] |
G. W. Hua, T. C. E. Cheng, S. Y. Wang, Managing carbon footprints in inventory management, Int. J. Prod. Econ., 132 (2011), 178–185. https://doi.org/10.1016/j.ijpe.2011.03.024 doi: 10.1016/j.ijpe.2011.03.024
![]() |
[57] |
K. S. Rogge, M. Schneider, V. H. Hoffmann, The innovation impact of the EU emission trading system—Findings of company case studies in the German power sector, Ecol. Econ., 70 (2011), 513–523. https://doi.org/10.1016/j.ecolecon.2010.09.032 doi: 10.1016/j.ecolecon.2010.09.032
![]() |
[58] | Z. Li, G. Liao, K. Albitar, Does corporate environmental responsibility engagement affect firm value? The mediating role of corporate innovation, Bus. Strategy Environ., 29 (2020), 1045–1055. |
[59] |
Y. Liu, P. Failler, Y. Ding, Enterprise financialization and technological innovation: Mechanism and heterogeneity, PloS One, 17 (2022), e0275461. https://doi.org/10.1371/journal.pone.0275461 doi: 10.1371/journal.pone.0275461
![]() |
[60] |
Y. Guo, X. Xia, S. Zhang, D. Zhang, Environmental regulation, government R&D funding and green technology innovation: Evidence from China provincial data, Sustainability, 10 (2018), 940. https://doi.org/10.3390/su10040940 doi: 10.3390/su10040940
![]() |
[61] |
M. Islam, A. Fremeth, A. Marcus, Signaling by early stage startups: US government research grants and venture capital funding, J. Bus. Venturing, 33 (2018), 35–51. https://doi.org/10.1016/j.jbusvent.2017.10.001 doi: 10.1016/j.jbusvent.2017.10.001
![]() |
[62] | G. Garau, Total Factor Productivity and Relative Prices: The case of Italy, 2019. |
[63] |
Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity, Econ. Res. Ekonomska Istraživanja, 35 (2021), 4902–4921. https://doi.org/10.1080/1331677X.2021.2019596 doi: 10.1080/1331677X.2021.2019596
![]() |
[64] |
G. I. J. Wooldridge, Recent developments in the econometrics of program evaluation, J. Econ. Lit., 47 (2009), 5–48. https://doi.org/10.1111/j.0042-7092.2007.00700.x doi: 10.1111/j.0042-7092.2007.00700.x
![]() |
[65] |
T. Beck, R. Levine, A. Levkov, Big bad banks? the winners and losers from bank deregulation in the United States, J. Finance, 65 (2010), 1637–1667. https://doi.org/10.1111/j.1540-6261.2010.01589.x doi: 10.1111/j.1540-6261.2010.01589.x
![]() |
[66] |
T. Li, J. Ma, Does digital finance benefit the income of rural residents? A case study on China, Quant. Finance Econ., 5 (2021), 664–688. https://doi.org/10.3934/QFE.2021030 doi: 10.3934/QFE.2021030
![]() |
[67] |
Q. Hu, X. Wang, M. Xu, Are there heterogeneous impacts of social support on subjective well-being, Natl. Account. Rev., 3 (2021), 360–376. https://doi.org/10.3934/NAR.2021019 doi: 10.3934/NAR.2021019
![]() |
[68] |
Y. H. Feng, S. L. Chen, P. Failler, Productivity effect evaluation on market-type environmental regulation: A case study of SO2 emission trading pilot in China, Int. J. Environ. Res. Public Health, 17 (2020), 8027. https://doi.org/10.3390/ijerph17218027 doi: 10.3390/ijerph17218027
![]() |
[69] |
P. R. Rosenbaum, D. B. Rubin, The central role of the propensity score in observational studies for causal effects, Biometrika, 70 (1983), 41–45. https://doi.org/10.1093/biomet/70.1.41 doi: 10.1093/biomet/70.1.41
![]() |
[70] |
S. Firpo, N. M. Fortin, T. Lemieux, Unconditional quantile regressions, Econometrica, 77 (2009), 953–973. https://doi.org/10.3982/ECTA6822 doi: 10.3982/ECTA6822
![]() |
[71] |
N. T. Borgen, Fixed effects in unconditional quantile regression, Stata J., 16 (2016), 403–415. https://doi.org/10.1177/1536867X1601600208 doi: 10.1177/1536867X1601600208
![]() |
[72] |
Y. Sunak, R. Madlener, The impact of wind farm visibility on property values: A spatial difference-in-differences analysis, Energy Econ., 55 (2016), 79–91. https://doi.org/10.1016/j.eneco.2015.12.025 doi: 10.1016/j.eneco.2015.12.025
![]() |
[73] |
F. Belotti, G. Hughes, A. P. Mortari, Spatial panel-data models using stata, Stata J., 17 (2017), 139–180. https://doi.org/10.1177/1536867X1701700109 doi: 10.1177/1536867X1701700109
![]() |
[74] | J. Lesage, R. Pace, Introduction to spatial econometrics, CRC Press, New York, 2009. https://doi.org/10.1201/9781420064254 |
[75] |
Z. Liao, C. Weng, C. Shen, Can public surveillance promote corporate environmental innovation? The mediating role of environmental law enforcement, Sustainable Dev., 28 (2020), 1519–1527. https://doi.org/10.1002/sd.2101 doi: 10.1002/sd.2101
![]() |
[76] |
G. M. Wang, K. M. Cheng, Y. S. Luo, M. Salman, Heterogeneous environmental regulations and green economic efficiency in China: the mediating role of industrial structure, Environ. Sci. Pollut. Res., 29 (2022), 63423–63443. https://doi.org/10.1007/s11356-022-20112-5 doi: 10.1007/s11356-022-20112-5
![]() |
[77] |
I. S. Farouq, N. U. Sambo, A. U. Ahmad, A. H. Jakada, I. A. Danmaraya, Does financial globalization uncertainty affect CO2 emissions? Empirical evidence from some selected SSA countries, Quant. Finance Econ., 5 (2021), 247–263. https://doi.org/10.3934/QFE.2021011 doi: 10.3934/QFE.2021011
![]() |
[78] |
M. Qamruzzaman, Do international capital flows, institutional quality matter for innovation output: the mediating role of economic policy uncertainty, Green Finance, 3 (2021), 351–382. https://doi.org/10.3934/GF.2021018 doi: 10.3934/GF.2021018
![]() |
[79] |
Y. Feng, S. Chen, W. Xuan, T. Yong, Time-varying impact of U.S. financial conditions on China's inflation: a perspective of different types of events, Quant. Finance Econ., 5 (2021), 604–622. https://doi.org/10.3934/QFE.2021027 doi: 10.3934/QFE.2021027
![]() |
[80] |
M. Wang, L. Li, H. Lan, The measurement and analysis of technological innovation diffusion in China's manufacturing industry, Natl. Account. Rev., 3 (2021), 452–471. https://doi.org/10.3934/NAR.2021024 doi: 10.3934/NAR.2021024
![]() |
[81] |
Z. Li, H. Chen, B. Mo, Can digital finance promote urban innovation? Evidence from China, Borsa Istanbul Rev., 2022 (2022), 11–18. https://doi.org/10.1016/j.bir.2022.10.006 doi: 10.1016/j.bir.2022.10.006
![]() |
[82] |
T. Li, X. Li, G. Liao, Business cycles and energy intensity. Evidence from emerging economies. Borsa Istanbul Rev., 22 (2021), 560–570. https://doi.org/10.1016/j.bir.2021.07.005 doi: 10.1016/j.bir.2021.07.005
![]() |
[83] | F. Gang, X. Wang, G. Ma, The contribution of China's marketization process to economic growth, Econ. Res. J., 46 (2011), 4–16. |
[84] |
Z. Chen, M. E. Kahn, Y. Liu, Z. Wang, The consequences of spatially differentiated water pollution regulation in China, J. Environ. Econ. Manage., 88 (2018), 468–485. https://doi.org/10.1016/j.jeem.2018.01.010 doi: 10.1016/j.jeem.2018.01.010
![]() |
[85] |
Y. Yao, D. Hu, C. Yang, Y. Tan, The impact and mechanism of fintech on green total factor productivity, Green Finance, 3 (2021), 198–221. https://doi.org/10.3934/GF.2021011 doi: 10.3934/GF.2021011
![]() |
[86] |
Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies, Finance Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
![]() |
[87] |
Z. H. Li, J. H. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Finance Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303
![]() |
[88] |
C. X. Zhang, D. Q. Zhou, Q. W. Wang, H. Ding, S. Q. Zhao, Will fiscal decentralization stimulate renewable energy development? Evidence from China, Energy Policy, 164 (2022), 112893. https://doi.org/10.1016/j.enpol.2022.112893 doi: 10.1016/j.enpol.2022.112893
![]() |
[89] |
X. Cai, Y. Lu, M. Wu, L.Yu, Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China, J. Dev. Econ., 123 (2016), 73–85. https://doi.org/10.1016/j.jdeveco.2016.08.003 doi: 10.1016/j.jdeveco.2016.08.003
![]() |
[90] |
S. Firpo, N. M. Fortin, T. Lemieux, Unconditional quantile regressions, Econometrica, 77 (2009), 953–973. https://doi.org/10.3982/ecta6822 doi: 10.3982/ecta6822
![]() |
[91] |
N. Borgen, Fixed effects in unconditional quantile regression, Stata J.: Promot. Commun. Stat. Stata, 16 (2016), 403–415. https://doi.org/10.1177/1536867X1601600208 doi: 10.1177/1536867X1601600208
![]() |