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Abstract: The massive emission of greenhouse gases poses a serious threat to the ecological 
environment. In this context, the relevant effects of the carbon emission trading (CET) market, which 
promotes greenhouse gas emission reduction by market means, have been widely investigated. Taking 
the China’s CET pilot as a research target, the heterogeneity and spillover effects of CET on green 
innovation are explored by using the sample data of 279 prefecture-level cities in China from 2008 to 2019. 
The results are as follows. First, on the whole, CET significantly promotes strategic green innovation, 
but it has no significant effect on substantive green innovation. Second, the green innovation effect of 
CET varies with the level of green innovation, and the heterogeneous effects of green innovation are 
also reflected in different degrees of marketization, fiscal decentralization and government 
environmental concern. Third, CET has a positive spillover effect on green innovation, and the spillover 
effect is more significant than the direct effect, accounting for 74.8% of the total effect. Finally, some 
corresponding policy suggestions are put forward according to the above research conclusions. 
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1. Introduction  

The continuing global warming caused by the dramatic increase in carbon emissions poses a 
serious challenge to the natural ecosystems on which humanity depends for its survival and 
development. Along with the formal entry into force of the Kyoto Protocol [1], the carbon emissions 
trading (CET) market, which promotes greenhouse gas emission reduction by market-based means, 



6469 

Mathematical Biosciences and Engineering  Volume 20, Issue 4, 6468–6497. 

has entered a phase of rapid development [2]. Among them, the European Union Emissions Trading 
System (ETS), launched in 2005, is currently the largest market in the world and has become an 
important tool for managing carbon emission reductions [3,4]. CET is the trading of carbon dioxide 
emission rights as a commodity through the market mechanism. Specifically, the government 
determines the cap on the total amount of carbon emissions and the initial amount of carbon emission 
allowances for market participants [5–7].  

As a main carbon emission country, a series of measures and policies on energy efficiency and 
emissions reduction have been implemented in China. Initially, local governments in China mainly 
adopted some command-and-control carbon emission reduction measures, such as “power rationing”. 
Although such measures were effective, they seriously disrupted the normal operation of the market. 
In the face of the dual pressure of carbon emission reduction and the upgrade of industrial structures, 
the Chinese government began to actively explore the establishment of a CET system. In October 2011, 
China promulgated “the notice of carbon emission permits trading”, approving seven provinces and 
municipalities—Beijing, Tianjin, Shanghai, Chongqing, Guangdong, Hubei and Shenzhen—to start 
piloting CET. Since 2013, the above seven provinces and cities, plus Fujian Province, have officially 
launched the CET pilot. From the real data, the CET system has achieved obvious results. For example, 
in 2020, the volume of transactions of pilot markets reached 130 million tonnes, with a transaction value 
of approximately RMB 2 billion. As of December 31, 2020, the cumulative volume of carbon market 
quotas traded was 445 million tonnes, with a transaction value of RMB 10.431 billion. It can be seen that 
the carbon market in the pilot areas has acted as a disincentive for carbon emission reduction. 

At present, much attention has been paid to the carbon emission reduction effects and green 
innovation effects of CET policies. Most of the literature recognizes that a market-based CET can not 
only significantly reduce carbon emissions [8–12], but it can also increase carbon efficiency [13–15] 
and raise energy utilization efficiency [16]. However, research on the impact of CET on green 
innovation is still controversial. Some studies indicate restraining effects of CET on green technology 
innovation. An empirical study by Zhang et al. [17] at the provincial level suggests that CET inhibits 
green technology innovation at this stage, but significantly reduces carbon emissions. In addition, there 
is no relationship between CET policies and green innovation [18]. Generally speaking, the 
controversial findings on the impact of CET on green innovation could be explained by relevant 
theories. On the one hand, according to the Porter hypothesis, reasonable environmental regulations 
can stimulate firms to implement green innovation and thus improve their competitiveness, which 
means that the CET can induce a green innovation compensation effect [19–21]. On the other hand, it 
has also been argued that environmental regulation can reduce green innovation by increasing firms’ 
environmental management costs, reducing profit margins and crowding out R&D investments [21–23]. 
It can be seen that the ultimate impact of environmental regulation on green innovation depends on the 
comparison of the input and output of firms on green innovation. Therefore, there is a need to re-
evaluate the effects of CET implementation by situation or category. 

Although previous studies have mainly explored the effects of CET on green innovation from 
different perspectives, some heterogeneity perspectives need to be addressed. First, in the process of 
implementing green innovation in enterprises or research units, different motivations for innovation 
may produce differentiated forms of green innovation. According to the technical content, difficulty 
degree and R&D cycle, the green innovation can be divided into substantive and strategic green 
innovation. Substantive green innovation generally refers to invention patents, which have a higher 
technological content but are more difficult and have a longer cycle time. In comparison, strategic 
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green innovation generally refers to patented utility model technology, which is at a lower level, but is 
less difficult and has a shorter cycle time. In fact, during the CET pilot period in China, the market-
based mechanisms for environmental protection and regulatory mechanisms, such as carbon 
information disclosure, have been in the exploratory stage of development. Hence, there may be 
asymmetric information on carbon emissions between the government and enterprises, which may lead 
to differences in motivation and, subsequently, to the development of green innovation [24]. It is also 
proved that China’s CET has different degrees of inducing effect on the quantity and quality of green 
innovation [25]. Second, different levels of green innovation usually imply regional differences in the 
inputs, outputs and capabilities of green innovation. In the case of enterprises, when faced with a CET 
policy, the green R&D investment and innovation behavior of enterprises at different levels of green 
innovation may differ significantly, leading to different green innovation effects. Third, the 
heterogeneous effects of the CET on urban green innovation are also reflected in three aspects: the 
level of regional marketization, the degree of government environmental concern and the degree of 
fiscal decentralization. As CET is a market-based environmental regulation instrument, the price 
advantage and bargaining power of regions with different levels of marketization differ, which can 
lead to different measures being taken by different regions in response to CET. At the same time, as 
the operation of CET requires a strong rule of law system and strict environmental regulations, the 
different strengths of environmental enforcement by different governments leads to different 
possibilities for companies to comply with the CET rules. In addition, the degree of fiscal 
decentralization varies between local governments, resulting in different levels of financial investment 
in corporate production and residential emissions management and, hence, different impacts of CET 
on green innovation. Therefore, under the dual background of environmental protection and industrial 
transformation, it is of great significance to re-examine the impact of China’s CET on green innovation 
from the perspective of heterogeneous effects. 

This paper first studies the impact of CET on different types of green innovation through a multi-
period different-in-different (DID) model by taking China’s CET pilot policy as a quasi-natural 
experiment around 2013. On this basis, on the one hand, an unconditional panel quantile DID model 
is used to examine the heterogeneity and evolutionary characteristics of the marginal effect of CET on 
green innovation at different levels of green innovation. On the other hand, the heterogeneous impact 
from the perspective of different external environmental characteristics is discussed from the perspective 
of grouping regression. Then, the spatial DID model is further employed to examine the spatial spillover 
effect of CET on green innovation. The main marginal contributions of this paper are as follows. 

First, the heterogeneous effects of CET on green innovation in China are discussed in terms of 
two dimensions: substantive green innovation and strategic green innovation. In the face of CET, 
different motivations for green innovation lead to different forms of green innovation, but little 
attention has been paid to the differences in the impact of CET on different forms of green innovation 
in cities. Therefore, this paper discusses the heterogeneous impact of the CET on substantive and 
strategic green innovation by taking a sample of prefecture-level cities in China. This helps to reveal 
whether the policy can promote the quality of green innovation, and it is an important guide to the 
future reform and improvement of China’s CET policy. 

Second, this paper further analyzes the effects of heterogeneity of CET on green innovation from 
the perspectives of different levels of green innovation and different external conditions. On one hand, 
there is minimal empirical research that distinguishes between different levels of green innovation. 
However, the drivers of green innovation are multidimensional and dynamic, and discussion without 
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differentiating between levels of innovation is inconsistent with reality and the development of 
innovation activities. Unconditional panel quantile regressions allow for understanding the marginal 
impact of CET on green innovation while ensuring accurate model identification and consistent 
parameter estimation [26,27]. Thus, based on an unconditional panel quantile regression model in this 
empirical study, this technique can effectively uncover the evolutionary characteristics of the 
significance and magnitude of the marginal effect of the CET pilot on green innovation. On the other 
hand, this paper analyzes the heterogeneity effect of CET on green innovation from three new 
perspectives: regional marketization level, government environmental concern and fiscal 
decentralization degree, which is of great significance for the optimization of the implementation effect 
of CET. 

Third, by using a spatial DID model, the spatial spillover effects of CET on green innovation are 
explored. CET has been shown to be a key market-based policy instrument for promoting carbon 
emission reduction and green innovation in pilot regions. However, most studies have ignored the 
spatial spillover effects of CET. In fact, there is a strong spatial correlation between carbon emissions 
and environmental regulation. Based on regional demonstration and competition effects, the policy 
benefits generated by the CET have a spillover effect on green innovation in neighboring provinces. 
Unlike Liu et al. [28], this paper studies the spillover effect of CET on green innovation at the urban 
spatial level, which helps to objectively and comprehensively assess the policy implementation effect 
of CET. 

The structure of the rest of this paper is arranged as follows. Part 2 is a literature review and 
theoretical analysis; Part 3 is the empirical strategy, and it includes model setting, sample and data. 
Part 4 is an analysis of the heterogeneous impact of CET on different types of green innovation, and it 
includes tests of the implementation effect of CET, benchmark regression analysis and robustness tests. 
Part 5 is a further discussion, focusing on the heterogeneity at different quartiles, heterogeneity 
regressions for sub-samples with different external characteristics and spatial spillover effects. Part 6 
contains the conclusions and policy recommendations. 

2. Literature review and theoretical analysis 

2.1. Literature review 

First of all, since the primary goal of CET implementation is to control greenhouse gas emissions, 
a large number of studies have been carried out on the carbon emission reduction assessment of CET. 
Most studies indicate that a CET system can indeed reduce carbon emissions and produce positive 
policy effects. Typically, from a dynamic perspective, Wang et al. [29] pointed out that CET 
significantly reduces carbon emissions, and that the effect is dynamic and cumulative. At the city level, 
Dong et al. [30] believe that China’s CET policies can indirectly affect carbon emissions by changing 
the innovation capacity and the location choice of local industries. At the industry level, through policy 
simulation, it has been found that the interdepartmental CET scheme can reduce 17.17 billion tons of 
carbon dioxide and 19.8% of carbon intensity [31]. However, CET pilot policies are not all effective, 
as its carbon reduction effect is only effective in individual pilot areas [32,33]. 

Second, relevant studies discussed the impact of environmental regulation on technological 
innovation from different aspects. In theory, the narrow “Porter’s hypothesis” holds that flexible 
environmental regulation can better stimulate enterprise innovation than normative environmental 
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regulation [34]. Market-based environmental policy is an indirect and flexible regulation method. In 
order to achieve the regulation goals, enterprises can freely choose to pay pollutant discharge taxes or 
reduce pollutant discharge through innovation and other ways [35]. Hu et al. [36] support that the CET 
policy can promote both the quantity and quality of innovation, and that the impact on the former is 
greater than the latter. In addition, the empirical study, based on trading data from seven CET pilot 
markets in China, has found that both high carbon trading price and high carbon trading price volatility 
can promote enterprise innovation, which confirms the effectiveness of carbon trading policies in 
promoting enterprise carbon emission reduction innovation [37]. 

In addition, a lot of studies have focused on the influence of CET on green innovation. From the 
perspective of micro enterprises, Tian et al. [38] pointed out that China’s CET can effectively stimulate 
green technology innovation, and that CET, under different environmental strategies, has a positive 
impact on enterprise green innovation. Zhu et al. [39] found that China’s CET pilot increases its 
low-carbon innovation by 5–10% without crowding out other technological innovations of 
enterprises. Yang et al. [40] pointed out that the CET policy has significantly promoted enterprise 
green innovation, and that the proportion of enterprise green innovation had increased by 13.43%. 
Zhang et al. [41] showed that China’s CET system is effective in terms of green innovation, and that 
it is better in the market with less competition. Other studies based on the data of China’s A-share listed 
companies also indicate that the implementation of CET pilot projects significantly improve the green 
innovation output of enterprises in pilot areas [42–45]. At the city level, China’s CET plays a significant 
role in promoting green technology innovation in pilot cities. Weng et al. [46] holds that CET policy 
significantly promotes urban green technology innovation, and with every 1 million yuan increase in 
carbon trading turnover, the number of green invention patents authorized would increase by 119.4. Li 
et al. [47] considered that China’s CET pilot has a positive impact on urban green innovation and 
greatly stimulates urban green innovation closely related to energy conservation and emission 
reduction, including alternative energy production, transportation, energy conservation, etc. Zhou and 
Wang [48] found that China’s ETS policy can significantly promote green technology innovation in 
pilot cities, and that environmental regulation and development strategies can greatly enhance this 
positive effect. 

However, some studies have also found that CET can inhibit green innovation. Zhang et al. [17] 
showed the CET system to inhibit green innovation at the present stage, although it significantly 
reduced carbon emissions. Based on the research results of listed companies, Chen et al. [49] found 
that the CET pilot policy significantly reduces the proportion of green patents by about 9.26%. 
Similarly, Lyu et al. [50] found that the CET system will inhibit the development of low-carbon 
technology innovation in the short term. In addition, the effect of CET on green innovation is not 
always significant [18]. For example, Zhao et al. [24] found that CET did not produce a green 
innovation effect on the whole industry or all manufacturing industries, but it could significantly 
improve the green innovation of some resource-based industrial enterprises. Yao et al. [51] showed 
that, except Hubei Province, other CET pilots could not promote low-carbon innovation because of 
the lack of an auction mechanism in the initial quota allocation and a strong regulatory mechanism. 
Wei et al. [52] created a virtual decision-making and trading mechanism. Through the empirical 
research of 351 thermal power companies, they found that green innovation effects could not be 
realized in the early stages of China’s ETS. 

In general, abundant research on the impact of CET on carbon emission and green innovation has 
been conducted. However, it has not been discussed specifically from the perspective of the 
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heterogeneity of green innovation forms and green innovation levels. In addition, it has also not 
examined the heterogeneity from the perspective of the external environment, like the level of regional 
marketization, the degree of government environmental concern and the degree of fiscal decentralization. 

2.2. Theoretical analysis 

As a market-based environmental regulation, the CET policy essentially introduces market-based 
instruments to externalize and make tradable the costs associated with pollution emissions, which 
promotes corporate autonomy in choosing the costs and benefits of environmental pollution 
management [53]. On one hand, CET helps to improve the expected benefits of green innovation and 
correct environmental externalities, thus encouraging enterprises’ green innovation activities [54]. On 
the other hand, green innovation significantly reduces carbon reduction, as well as the cost of 
emission reduction, by developing more affordable energy-efficient and emission-reducing 
technologies [55]. Therefore, green innovation is an important way to respond to CET policy and 
achieve sustainable development. 

First, for inefficient companies, if they choose to reduce their production in the face of a 
market-oriented CET policy, they will lose profits; if they do not, they will have to pay for emission 
rights [56]. In other words, a CET policy not only limits the production activities of less efficient 
emission control firms, but it also increases their production costs [5,57]. This is undoubtedly 
inconsistent with firms’ goal of maximizing profits. Hence, in order to ease the cost pressure of CET, 
low-efficiency enterprises will carry out green innovation activities. Second, for high-efficiency 
enterprises that exceed their emission allowances, they need to purchase additional allowances in the 
carbon trading market to emit the carbon dioxide in the production process. Thus, it increases their 
costs to a certain extent, thus threatening their product competitiveness and profitability [58]. Due to 
cost-benefit considerations, companies will implement green innovations that not only build cost-
saving advantages, but also generate revenue through the sale of surplus allowances. Third, the 
government often implements complementary policies and measures to incentivize emission-
controlled companies to innovate while implementing a CET policy. For example, it offers tax breaks 
to companies who actively engage in green innovation activities, or subsidies for green innovation 
activities. In this way, the risk costs for emission-controlling enterprises to carry out relevant 
innovation activities is reduced [59], which in turn promotes R&D investment in green and low-carbon 
technology innovation for the whole society [60]. Fourth, the development and implementation of the 
CET policy sends an important signal to the market. The signal theory suggests that observability and 
costliness are two key characteristics of effective signals [61,62]. Based on the theory of signaling, the 
promotion of the CET policy implies that the high-carbon assets of a company are likely to become 
“liabilities”, while the low-carbon assets can only become “expensive” resources for a company’s 
sustainable development. As a result, the expectations of companies regarding the CET policy will 
influence the implementation of their green innovation activities. 

However, the impact of a CET policy on green innovation is qualitatively and quantitatively 
heterogeneous [36], which is reflected in the different types of green innovation. On the one hand, 
different types of green innovations differ in terms of technology content, difficulty factor and R&D 
cycle. Compared to substantive green innovations, strategic green innovations are less difficult and 
have shorter cycles. Therefore, when faced with a CET policy, companies tend to increase their green 
strategic innovations first. On the other hand, there may be problems such as asymmetric information 
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on carbon emissions between government and enterprises [63]. As the cost of environmental regulation 
rises, companies will prefer strategic innovation in order to obtain government subsidies and tax 
incentives for environmental protection, while responding to people’s call for environmental protection. 
Therefore, the CET policy has a significant contribution to strategic green innovation, while the impact 
on substantive green innovation is not significant. 

3. Empirical strategy 

3.1. Empirical model 

3.1.1. Typical DID model 

The DID model has been widely used in policy effect evaluation in various fields because it 
overcomes the endogeneity problem to some extent. The general form of its benchmark model is 

𝑌 𝛼 𝛼 𝑑𝑢 𝛼 𝑑𝑡 𝛼 𝑑𝑢 ∗ 𝑑𝑡 𝜀                                   (1) 

where  is the dummy variable of the experimental group and the control group. Generally, it mainly 
has a 0 or 1 value. Particularly,  = 1 indicates the policy influence for an individual, that is, the 
experimental group;   = 0 refers to the control group, which indicates that an individual is not 
affected by the policy implementation.  is the dummy variable of time, which is directly affected 
by the implementation of the policy; its value is 0 or 1 before or after the policy implementation, 
respectively. Therefore, 𝑑𝑢 ∗ 𝑑𝑡  is the interaction term. reflects the net effect of the policy 

implementation [64]. The principle of the DID model is shown in Table 1. 

Table 1. Principle of double-difference method. 

 
Before policy 

implementation  

After policy 

implementation  
Difference 

Treatment group    

Control group    

Difference    

In order to accurately identify the causality between CET and green innovation, the CET pilots 
in Beijing, Tianjin, Shanghai, Chongqing, Guangdong, Hubei and Shenzhen since 2013 were 
selected as exogenous policy shocks. Among them, Shenzhen, Guangdong and Tianjin launched CET 
markets in 2013; Beijing, Shanghai, Hubei and Chongqing were officially launched in 2014; 
additionally, Fujian Province was launched in 2016. Considering the above three batches of these pilot 
provinces and cities, the multi-period differential model was constructed. Referring to Beck et al. [65], 
the control group covers the cities in the provinces without the pilot, while the experimental group 
covers the cities with the pilot. Generally, individual effects and time effects are correlated with 
explanatory variables [66,67], so the following two-way fixed effects multi-period DID regression 
model was also constructed: 
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                               (2) 

𝑑𝑖𝑑 𝑇𝑖𝑚𝑒 𝐺𝑟𝑜𝑢𝑝                                                     (3) 

where 𝑔𝑖  represents the green innovation level of city i in year t. The value of the time dummy 
variable (Time) was set to 1, which is mainly based on the beginning year and subsequent years of the 
pilot city with CET; the value of the remaining years was set to 0. The value of the group dummy 
variable (Group) was 1 for the city in a CET pilot area, otherwise, the value was 0. The dummy 
variable did is directly generated, that is, if a city i is listed as the pilot city of CET in year t, the 
value of did is 1, otherwise, it is 0. If the CET pilot can promote green innovation, the coefficient 
should be significantly positive. represents a collection of control variables, 𝜇  represents the 
individual fixed effect, 𝜂  represents the time fixed effect and 𝜀  denotes the random error term. 

The ordinary least square (OLS) estimators are inconsistent in the estimation because the 
individual fixed effects  are correlated with an explanatory variable. Therefore, it is necessary to 

eliminate the individual fixed effects   through model transformation. Given an individual i, the 

average result about time on both sides of Eq (2) is 

                        (4) 

Considering Eq (2) minus Eq (4), the deviation form of the model can be obtained as follows: 

        (5) 

In Eq (5),  is canceled; that is, the OLS method can be used to consistently estimate and 

as long as  is uncorrelated with the explanatory variables after transformation. Considering the 

possibility of intra-group autocorrelation, each individual was considered as the cluster robust standard 
error in the estimation. 

3.1.2. PSM-DID model  

China’s CET pilot areas were determined by local economic development level, environmental 
pollution and treatment status, which it may lead to heterogeneity bias. In other words, regional 
objective difference may lead to the non-randomness of the CET policy pilot (quasi-natural 
experiment), which will make the DID model violate the assumption of a random experiment, thus 
causing the deviation of the benchmark results. The control group obtained by the propensity score 
matching (PSM) model tends to be comparable and stable, which makes the identification result of a 
PSM-DID model more robust [68]. Therefore, the PSM method proposed by Rosenbaum and Rubin [69] 
was adopted to solve the problem of the robustness of the conclusion from the DID model. 

Take the balance panel data as an example, first, the match variables are divided into ordinary 

match variables  and special class variables . It no longer takes the propensity score ( ) value 

as a single criterion for matching, but as a double criterion for special class variables   and  

values. The specific formula is as follows: 

                                            (6) 
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where  is an individual in the treatment group of the  class, and  is any individual in the control 

group. Its essence is to find the individual with the nearest  value as the matching object under the 

same category, so as to ensure that both matching parties have the same category. 

In order to prevent the control group from changing before and after the impact, the matching 
relationship between   (treated individuals) and   (matching object) should be ensured to be the same 
once it matched successfully. For that, all of the matched variables in each section of panel data should 
conduct logit regression, and the value  of each individual in each period should also be calculated. The 
basis for finding the matching object  for the treated individuals  in the control group is as follows: 

               (7) 

where  represents the period and  is the total number of periods. That is, the individual with the 
shortest distance from  to  is the matching object . Accordingly, the validity of the DID model 
analysis can be ensured by obtaining the comparable and stable control group. 

3.1.3. Unconditional quantile regression model 

 

Figure 1. Distribution of total green patents in 2008 (left) and 2019 (right). 

There may be strong spatial heterogeneity in regional green innovation in China, and the impact 
of CET on green innovation may be significantly different among cities. The regions with low green 
innovation levels have limited innovation ability and lack the motivation to carry out green innovation, 
which leads to the weak green innovation effect of CET. Conversely, when the level of green 
innovation in a region increases to a certain extent, the innovation capability and innovation output 
effect are greatly enhanced. In this case, the innovation compensation effect of CET is greater than the 
innovation cost effect. Therefore, in the face of market-oriented environmental regulation, enterprises 
in this region are more inclined to carry out green innovation. In addition, the statistical distribution 
characteristics of the number of green patents lead to the limitation of the mean regression model. 
Figure 1 shows the distribution of the logarithm of green patents (green innovation, gi) in 2008 
and 2019, and the solid line is the fitted probability density function. The total number of green patents 
has an obvious right-skewed distribution, which makes it difficult for the mean regression model to 
accurately reflect the exact relationship between CET and green innovation. 
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Quantile regression models can not only accurately describe the influence of explanatory 
variables on the variation range and conditional distribution shape of explained variables, but they can 
also more comprehensively describe the complete picture of the conditional distribution of the 
explained variables. Moreover, they do not make any assumptions about the distribution of random 
error terms, so the results are not easily affected by extreme values. In addition, unconditional quantile 
regression (UQR) can not only yield the unconditional quantile partial effect (UQPE) of explanatory 
variables on explained variables, but it can also effectively avoid the heteroscedasticity problem of 
data [70]. To further test the heterogeneous impact of CET on green innovation at different green 
innovation levels, UQR was used for verification. The general form of the panel quantile regression 
model is as follows: 

                                 (8) 

where Y is the explained variable (gi), X is the explanatory variable (did) and  represents the 

quantile of Y at , that is, .  donates the individual effect. 

In the area of quantile estimation, Firpo et al. [70] introduced recentered influence functions (RIFs) 
into quantile regression. Then, the centralized influence function corresponding to the unconditional 
quantile is expressed as follows: 

                                       (9) 

where  represents the recentralized influence function of  (the distribution function 

of Y) corresponding to the quantile;  is the unconditional quantile of Y, which satisfies ; 

then,   is the density function of Y. Equation (9) is followed by using the iterative method of 

conditional expectation:  

                   (10) 

The UQPE of unit translation of X on Y can be obtained by subtracting Eqs (10) and (9), then 

dividing by  and letting it approaching 0: 

                         (11) 

On the basis of the work of Firpo et al. [70], a method was proposed to estimate the UQR 
effectively in the presence of high-dimensional fixed effects [71]. First, we determined the outcome 
variable in the specified quantile, then determined the density of Y at the quantile and calculated the 
RIF. Finally, the RIF was used as the explained variable in the panel fixed-effects regression to get the 
panel UQRE estimator. 

3.1.4. Spatial panel DID model 

On the basis of the classical DID model, a spatial expansion form of the differential model was 
constructed, namely, the spatial differential model (SDID) [72]. The general form of the SDID model 
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was constructed as follows in order to explore the spatial spillover effect of CET on green innovation 
in geographically adjoining cities: 

𝑔𝑖 𝛼 𝜌𝑊𝑔𝑖 𝛼 𝑑𝑖𝑑 𝛾𝑊𝑑𝑖𝑑 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝛽 𝑊𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝛿 

               𝜇 𝜂 （𝐼 𝜆𝑊） 𝜀                      (12) 

where W is the spatial weight matrix, which is used to reflect the spatial connections between 
sample individuals. 𝜌 is the spatial self-correlation coefficient for the explained variable; 𝛽 is the 

spillover effect of the other control variables;   is the spatial self-correlation coefficient of 
random error; 𝛼  is the spillover effect of CET. Equation (12) is the general form of the spatial 
differential model, which can be divided into different kinds based on whether different 
coefficients are zero at the same time. The first model can be transformed into a spatial lag model 
(SLM) from the general model when 𝜌 0, 𝛾 0, 𝛿 0, 𝜆 0. The second model is the spatial error 
model (SEM) when 𝜌 0, 𝛾 0, 𝛿 0, 𝜆 0. The third model can be transformed into the spatial Dubin 
model (SDM) from the general model when 𝜌 0, 𝛾 0, 𝛿 0, 𝜆 0.  

Based on the work of Belotti et al. [73], quasi-maximum likelihood (QML) estimators are used 
in the estimation of the spatial models. As its regression coefficient is difficult to explain when 
considering the spatial correlation in the spatial econometric model, the spatial effect was decomposed 
into several different effects by referring to the solution of Lesage and Pace [74]. Among them, the 
spatial direct effect refers to the effect of CET in a certain region on local green innovation. The spatial 
indirect effect is also known as the spatial spillover effect, which is used to measure the impact of CET 
on green innovation in surrounding areas. The decomposition process for the spatial effect for the SDM 
is as follows. 

According to Lesage and Pace [74], the general form of the SDM can be expressed as 

                            (13) 

where, under certain stable conditions, . 

By taking the SLM under the framework of cross-sectional data (only W*Y is considered) as an 
example, the calculation formulas for the direct and indirect effects (spillover effects) can be illustrated as 

                                        (14) 

Suppose that did is denoted by   and green innovation is denoted by Y. While the sample 

observation value of a city is modified to a certain value when keeping other values of  unchanged, 
 is denoted as the modified did: 

                (15) 

Taking the partial derivative of on x, then, 
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           (16) 

The direct effect is the average value of the diagonal elements of the above matrix. The spillover 
effect is the average value of the off-diagonal elements of the above matrix. The total effect equals the 
direct effect plus the spillover effect. 

3.2. Variables and data 

First, the sample period was selected from 2008 to 2019. China’s CET pilot first started in 2013, 
and its Ministry of Ecology and Environment issued the “Carbon Emission Trading Management 
Measures (Trial)” in 2020, which officially started the first implementation cycle of the national carbon 
market. Then, 279 prefecture-level cities in China were selected as research samples due to the 
availability and completeness of the data. The explanation of the measurement indicators and data 
sources of each variable are as follows: 

1) Explained variable: green innovation (gi). Based on the definition of Liao et al. [75], the level 
of green innovation was measured from the perspective of the number of green patents granted in cities. 
The urban green innovation can be divided into two dimensions of substantive green innovation and 
strategic green innovation, which were respectively measured by the number of green invention patents 
granted (ginp) and the number of green utility patents granted (gup). Then, the number of two different 
types of patent grants was increased by 1 and then subjected to logarithmic treatment in order to reduce 
heteroscedasticity. The resources of the data were taken from the comprehensive combing and 
screening of patents by the State Intellectual Property Office and Google Patent. 

2) Explanatory variable: CET. The market-oriented and low-carbon policy was taken as the 
representative of the CET policy. Considering the differences in the starting time of each CET pilot, it 
took the actual pilot year as the standard and set the did value of city i in the year of CET 
implementation, with subsequent years set as as 1 and other values as 0. 

3) Control variables. The first is advanced industrial structure (isa), which focuses on the shift of 
the industrial center of gravity. It affects green innovation through affecting environmental pollution 
emission. Referring to the research [76], the proportion of the added value of the tertiary industry and 
the secondary industry was used to measure the advanced industrial structure. The data were taken 
from the website of the China National Bureau of Statistics. The second one is economic development 
level (ed), which selects the logarithm of per capita gross regional product of each prefecture-level city 
as the proxy variable. The third one is economic openness (open). The impact of economic openness 
on green innovation is uncertain because of the pollution paradise effect with the introduction of 
foreign capital [77], as well as the diffusion of green technology innovation. It applied the proportion 
of foreign direct investment (FDI) in the gross domestic product (GDP), and its data were taken from 
China’s EPS database. The fourth one is investment in scientific research (R&D), which came from the 
logarithm of R&D investment within each region [78–80]. The data were obtained from an EPS database, 
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and some missing data were replaced by scientific expenditure [81]. The fifth one is energy consumption 
intensity (ec), which is expressed as the energy consumption per unit GDP, that is, the total energy 
consumption GDP [82]. The data were taken from the China Energy Statistical Yearbook and China 
Urban Statistical Yearbook. The total energy consumption was calculated based on the natural gas, coal 
gas and electricity consumption of the whole society following conversion into tons of standard coal. 

Table 2. Descriptive statistics of variables. 

Variable Obs Mean Std. Dev. Min Max 

gi 3348 4.466 1.731 0 9.649 

ginp 3348 2.810 1.749 0 8.903 

gup 3348 4.225 1.721 0 9.431 

did 3348 0.084 0.277 0 1 

ec 3348 0.095 0.128 0 4.176 

ed 3348 7.516 1.441 3.554 12.852 

isa 3348 6.474 0.350 5.517 7.836 

open 3348 0.018 0.02 0 0.385 

R$D 3348 11.711 1.892 5.694 16.922 

gec 3348 0.070 0.027 0.001 0.21 

fd 3348 0.186 0.079 0.054 0.739 

mar 3348 10.897 2.492 3.743 19.163 

4) Grouping variables. The first one is marketization level (mar), which was calculated based on 
the relevant data for each prefecture-level city according to the indicators of the Gang et al. marketization 
index [83]. The index was composed of 23 indicators from five aspects, each reflecting a specific aspect 
of marketization, such as the relationship between the government and the market, the development of 
the non-state economy, the development of the product market, the development of the factor market, 
the development of the market intermediary organization and the legal system environment. The second 
one is government environmental concern (gec). Referring to relevant studies [84–87], the urban panel 
data of the government environmental concern was obtained by crawling and summarizing the annual 
government work report using crawler technology. There are three steps for its calculation process. In 
the first step, all sentences containing 44 keywords were selected as “environment-related sentences” 
according to the government work report of a certain city in a certain year. The 44 keywords were 
environmental protection, green development, new energy, fog, haze, pollution, energy consumption, 
pollution, emissions, pollution, ecological environment, ecological protection, ecological damage, water 
ecology, low carbon, sulfur dioxide, carbon dioxide, PM10 and PM2.5, chemical oxygen demand, scattered 
pollution, emission, air, water environment, water security, water quality, green water, black odor, sewage, 
waste gas, waste residue, environmental violations, environmental crimes, environmental cases, 
environmental penalties, environmental governance, environmental quality, blue sky, coal burning, green, 
dust, exhaust gas and volatile organic compounds. The second step was calculating the total numbers in 
the work report and all of the words numbers in the “environment-related sentence”. In the third step, 
environmental attention is equal to the ratio of the total number of words in the “environmental sentence” 
to the total number of words in the work report. The third one is fiscal decentralization (fd). Taking the 
reference of Zhang et al. [88], the calculation formula of fiscal decentralization is fd = fdc / (fdc + fdp + 
fdf); among them, fdc, fdp and fdf represent the per capita fiscal expenditure of the city, provincial and 
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central government, respectively. This index can exclude the impact of population size and the central 
government on local transfer payments, and the data were taken from the EPS database. The descriptive 
statistics of variables are shown in Table 2. 

4. Heterogeneous impact of CET on different types of green innovation 

4.1. Result analysis of the benchmark DID model 

Based on Eq (2), the estimated results are shown in Table 3. Among the following six columns, (1) 
and (2) respectively show the impact of CET on green innovation. The column (1) controls the time 
fixed effects and individual fixed effects, and column (2) adds a series of control variables on the basis 
of column (1). Similarly, (3) and (4) respectively show the impact of CET on substantive green 
innovation, and (5) and (6) respectively show the impact of CET on strategic green innovation under 
different conditions. It can be seen that CET has a significant impact on green innovation. Furthermore, 
from the perspective of different types of green innovation, in the model without and with control 
variables, the regression coefficients for green substantive innovation were not significant, while that 
of strategic innovation were 0.118 and 0.115, which are both significant at 5 and 1% significance levels. 
These indicate that CET has no significant impact on substantive green innovation, but promotes 
strategic green innovation significantly. In other words, the impact of CET on green innovation is 
mainly reflected in strategic innovation. The reason is that enterprises will preferentially choose 
strategic innovation with small R&D difficulty and short cycles in order to obtain environmental 
protection subsidies and tax incentives from the government when they are facing rising costs caused 
by environmental regulations. In addition, the results of the model with and without control variables 
are consistent, indicating that the model has certain robustness. 

Table 3. Baseline estimations of effects of CET on different kinds of green innovation. 

 (1) (2) (3) (4) (5) (6) 

 gi gi ginp ginp gup gup 

did 0.122** 0.110* 0.105 0.092 0.118** 0.115* 

 (0.0598) (0.0592) (0.070) (0.070) (0.060) (0.060) 

_cons 1.205 0.0369 1.830*** -1.550 2.869*** 0.232 

 (0.959) (1.030) (0.036) (1.415) (0.031) (1.089) 

control variables No Yes No Yes No Yes 

time-FE yes yes yes yes yes yes 

Region-FE yes yes yes yes yes yes 

RES yes yes yes yes yes yes 

N 3348 3348 3348 3348 3348 3348 

R2 0.818 0.821 0.528 0.533 0.825 0.828 

Note: RSE means adding the robust standard error; FE means fixed effect. 

4.2. Robustness test 

4.2.1. Common trend test 

In view of the common trend hypothesis being the premise for the establishment of the DID model, 
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the common trend hypothesis should be tested first. The test methods were comparing the trends of 
change of the average number of green patents, green invention patents and green utility patents 
between pilot and non-pilot areas before and after the policy implementation. From Figure 2, the trends 
of the experimental group and the control group were generally consistent before 2013. It can be further 
seen that the growth rate of the number of green patents and green utility patents in the experimental 
group (i.e., CET pilot areas) increased significantly after 2013, while the change is not obvious in the 
non-pilot areas, which provides a condition for a quasi-natural experimental study. In addition, the 
growth rate of green invention patents in the experimental group is basically consistent with those of 
the control group before 2013. This also further supports the conclusion of the baseline regression that 
indicates that CET has no significant impact on practical green innovation, but has a significant impact 
on strategic green innovation. 

 

      (a) average number of green patents             (b) average number of green invention patents 

 

(c) average number of green utility patents 

Figure 2. Trend of the average number of green patents. 

4.2.2. Test of PSM-DID model  

In order to prevent heterogeneity bias in grouping, the samples were re-matched by adopting the 
PSM method. In the process of PSM, all of the above control variables acted as covariates. Meanwhile, 
a series of tests were carried out on the validity of the matching grouping results. First of all, the results 
of covariate testing in Table 4 showed that there was no significant difference in the mean value of 
covariates between the treatment group and the control group, and that all t-tests of covariates become 
insignificant after PSM. This indicates that the PSM-DID method is effective, because the distribution 
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of each variable was balanced between these two groups. Second, the deviation test of covariates before 
and after matching are shown in Figure 3. The matched values all hit 0, indicating that the matching 
results from PSM were good within 10% standard deviation. The final matching result in Figure 4 
reflects that 97 unsuccessful matching samples were deleted and 3251 samples were left. 

Furthermore, based on the samples matched by PSM, an intra-group estimation method with 
robust standard error was adopted to estimate the benchmark DID model. The results are shown in 
Table 5. In terms of significance, CET has no significant effect on green substantive innovation, while 
it has a significant promoting effect on green innovation and green strategic innovation, which is 
consistent with the conclusion of baseline regression. In terms of the regression coefficient size, the 
results of the PSM-DID model show little difference with the benchmark regression, which proves that 
the conclusion of the benchmark regression has certain robustness. 

Table 4. Equilibrium test of covariates before and after matching. 

Variable 

Unmatched Mean % reduct t-test V(T)/V(C) 

Matched Treated Control % bias |bias| t p > |t|  

isa U 6.63 6.46 48.60  7.62 0.00 1.04 

 M 6.63 6.61 3.80 92.20 0.43 0.67 0.98 

ed U 8.48 7.43 71.70  11.91 0.00 1.35* 

 M 8.48 8.52 -2.10 97.10 -0.22 0.83 1.00 

open U 0.02 0.02 -3.70  -0.59 0.56 1.09 

 M 0.02 0.02 8.10 -117.60 1.01 0.31 1.57* 

R&D U 12.66 11.66 51.80  8.29 0.00 1.14 

 M 12.66 12.60 3.10 94.00 0.38 0.70 1.49* 

ec U 0.09 0.09 -4.30  -0.55 0.58 0.24* 

 M 0.09 0.09 -14.90 -244.40 -1.56 0.12 0.19* 

Note: variance ratio outside of [0.78; 1.27] for U and [0.78; 1.27] for M. 

 

Figure 3. Bias tests for covariate matching. 
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Figure 4. Result of PSM. 

Table 5. Estimation results for PSM-DID model. 

 (1) (2) (3) (4) (5) (6) 

 gi gi ginp ginp gup gup 

did 0.114* 0.129** 0.093 0.086 0.121** 0.123** 

 (0.059) (0.059) (0.070) (0.070) (0.060) (0.059) 

_cons 3.148*** 0.443 1.850*** -1.259 2.901*** 0.254 

 (0.031) (1.015) (0.038) (1.471) (0.032) (1.089) 

control variables No Yes No Yes No Yes 

year-FE yes yes yes yes yes yes 

region-FE yes yes yes yes yes yes 

N 3278 3278 3278 3278 3278 3278 

R2 0.818 0.821 0.527 0.533 0.825 0.829 

4.2.3. Placebo test 

In order to further exclude the differences in green innovation between pilot cities and non-pilot 
cities due to other factors, a placebo test was conducted by randomly assigning a treatment group and 
control group [89]. The method of random sampling grouping ensures that the previous construction has 
no impact on green innovation. Specifically, the way of generating random numbers was based on 279 
cities randomly generating a corresponding number of treatment groups and control groups. Then, the 
benchmark regression model of Eq (2) was estimated and repeated 1000 times. The Appendix reports 
the mean of the regression estimate after 1000 random assignments, as well as the kernel density 
function of the estimator and its corresponding P-value. The results in the Appendix show that the 
means of all of the estimated coefficients of  were almost zero, which indicates that the regression 
results are robust. In addition, the vertical line shows that the coefficient estimates for the policy effect 
in the three real benchmark regression models were 0.110, 0.092 and 0.115, respectively. Most of the 
1000 estimated values were on the left of the real benchmark regression coefficient, which also 
indicates that the benchmark regression results are robust. 

did
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5. Further discussion 

5.1. Heterogeneity of CET on green innovation under different quantiles 

Based on the benchmark regression of Eq (7), the unconditional panel quantile fixed-effects 
regression models from Firpo et al. [90] and Borgen [91] were taken as references to test the 
heterogeneous impact of CET on green innovation at different quantile levels. Table 6 shows the 
estimation results at the 10–90% quantile level of green innovation. In Table 6, CET has no significant 
impact on green innovation at the quantile of 10–20%, while it has a significant impact on green innovation 
at the 30–90% quantile. With the increase of quartiles, the effect of CET on green innovation changes 
from insignificant to significant. Theoretically, regions with low green innovation levels have 
insufficient innovation ability and no motivation to carry out green innovation, but are more willing to 
accept the cost of complying with environmental regulations. Therefore, the green innovation effect 
of CET is weak. Conversely, when the level of green innovation in a region increases to a certain 
extent, the innovation capability and innovation output effect will be greatly enhanced. In this case, 
the innovation compensation effect of CET is greater than the innovation cost effect. Therefore, in the 
face of market-oriented environmental regulation, enterprises in this region are more inclined to carry 
out green innovation. At the same time, the government should also take more targeted measures. 

Table 6. Regression results for different quantiles. 

 (1) (2) (3) (5) (7) (9) 

 10% 20% 30% 50% 70% 90% 

did -0.0749 0.347 0.504** 0.732*** 0.578** 0.882* 

 (0.242) (0.224) (0.216) (0.237) (0.256) (0.506) 

_cons -25.45*** -24.97*** -24.97*** -25.82*** -18.42*** -6.981** 

 (2.856) (2.391) (2.391) (2.395) (2.913) (3.413) 

control variables yes yes yes yes yes yes 

region-FE yes yes yes yes yes yes 

N 3348 3348 3348 3348 3348 3348 

R2 0.093 0.163 0.216 0.289 0.219 0.097 

5.2. Heterogeneous impact of CET on green innovation given different external environments 

From the above, the effectiveness of CET in promoting green innovation by benchmark regression 
is proved. However, due to the different external environments in the pilot areas, we questioned 
whether there is a certain degree of difference in the response of green innovation to the impact of 
policies under different degrees of marketization, fiscal decentralization and government 
environmental attention. The analysis of this problem is helpful to further understand the mechanism 
of CET. 

The whole sample was divided according to the level of marketization, the degree of fiscal 
decentralization and the level of environmental concern of the government from low to high. The 
first 50% of samples were low marketization, low decentralization or low government attention, while 
the other 50% of samples were high marketization, high decentralization or high government attention. 
The benchmark DID model was further used to estimate the heterogeneous effect of CET on green 
innovation in different samples. The obtained estimation results are shown in Table 7. 
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Table 7. Heterogeneous effects of CET on green innovation in different external environments. 

 (1) (2) (3) (4) (5) (6) 

 High 

marketization 

Low 

marketization 

High 

decentralization 

Low 

decentralization 

High 

attention 

Low 

attention 

did 0.148*** 0.059 -0.012 0.168*** 0.244*** 0.011 

 (0.052) (0.073) (0.051) (0.055) (0.048) (0.060) 

_cons 2.024*** -0.708 2.062** -0.146 1.959** -1.293 

 (0.717) (1.247) (0.910) (0.939) (0.897) (0.912) 

Control Vars  yes yes yes yes yes yes 

Year-FE yes yes yes yes yes yes 

Region-FE yes yes yes yes yes yes 

N 1674 1674 1674 1674 1674 1674 

R2 0.790 0.708 0.795 0.813 0.838 0.781 

From Table 7, the impact of CET on green innovation is heterogeneous in cities with different 
levels of marketization, fiscal decentralization and government environmental concern. In cities with 
high marketization, the estimated regression coefficient of did was 0.148, which passes the significance 
test of 1%. However, in cities with low marketization, the estimated regression coefficient did not pass 
the significance test. This indicates that CET has a better effect on promoting green innovation in cities 
with high marketization. The reason for this result is that the promoting effect of CET on green 
innovation is based on the innovation compensation effect. The revenue or cost that can be saved 
through green innovation can compensate for the extra cost incurred by environmental regulation; 
additionally, the development of technological innovation depends on the process of regional 
marketization. In regions with low marketization, CET has an insufficient incentive and innovation 
compensation effect on enterprise decision-making. Therefore, CET has no significant impact on green 
innovation in this region, and vice versa.  

Second, in cities with high decentralization, the regression coefficient of did failed to pass the 
coefficient significance test; however, in cities with low decentralization, the estimated regression 
coefficient of did was 0.168, which passes the significance test of 1%. It shows that CET has a better 
effect on promoting green innovation in cities with low fiscal decentralization. The Chinese-style 
decentralization and the performance evaluation system based on GDP theory tends to make local 
governments engage in vicious competition for external resources in order to obtain relative 
competitive advantages. In higher decentralization areas, the efficiency of environmental regulation 
tools is lower, and the impact on green innovation is less significant. The opposite is not true. 

Third, in cities where the government pays high levels of attention to the environment, the 
estimated regression coefficient of did was 0.244, which passes the significance test of 1%; however, 
in cities with low government environmental attention, that is not significant. When the environmental 
concern is low, enterprises with weak social responsibility will not take the initiative to purchase 
emission rights in the carbon market, nor pay attention to improving the proportion of green innovation 
when they face low emission or pollution control costs. Therefore, when the government pays less 
attention to the environment, the impact of CET on green innovation is not significant. When 
governments pay more attention to the environment, the adverse impact of being subject to 
“compliance costs” becomes greater, but the compensation effect of innovation increases even more. 
As a result, companies will increase their share of green innovation. Therefore, when the government 
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pays a high level of attention to the environment, CET can significantly improve green innovation. 

5.3. Spillover effect of CET on green innovation 

Table 8. Spatial econometric estimation results for effects of CET on green innovation. 

 (1) (2) (3) 

 SDM SAR SEM 

did 0.073** 0.010*** 0.094*** 

 (0.035) (0.034) (0.035) 

isa 0.219** 0.245*** 0.237*** 

 (0.087) (0.085) (0.086) 

ed 0.092*** 0.103*** 0.101*** 

 (0.027) (0.026) (0.026) 

open -0.016 0.001 0.056 

 (0.475) (0.473) (0.475) 

R$D 0.044*** 0.046*** 0.044*** 

 (0.015) (0.015) (0.015) 

ec 0.332*** 0.330*** 0.325*** 

 (0.073) (0.073) (0.073) 

W*did 0.184**   

 (0.088)   

W*isa 0.354*   

 (0.194)   

W*ed 0.085   

 (0.060)   

W*open -0.920   

 (1.031)   

W*R$D 0.078*   

 (0.043)   

W*ec 0.123   

 (0.190)   

ρ 0.196*** 0.209***  

(0.029) (0.029)  

λ   0.202*** 

  (0.029) 

N 3348 3348 3348 

R2 0.631 0.706 0.722 

LogL -1323.940 -1331.010 -1333.252 

On the one hand, carbon emissions have negative externalities. On the other hand, technological 
innovation belongs to public goods, and it has the characteristic of positive externality. Therefore, the 
impact mechanism of CET on green innovation has a spatial spillover effect. To further explore the 
spillover effect, a spatial econometric model was implemented in an empirical study. In the 
construction of the spatial weight matrix, the economic geographical spatial weight matrix in the 
benchmark spatial panel econometric model was adopted, as it could better reflect the links and 
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differences between different provinces and cities. The weight matrix of economic geographic space 
was obtained by multiplying the weight matrix of economic distance with the weight matrix of 
geographical distance. Among them, the spatial weight matrix of geographical distance was 
constructed based on the actual distance between two places, and the calculation was based on the 
longitude and latitude of the city. The weight matrix of economic distance was constructed by using 
the reciprocal difference of the mean per capita GDP among cities from 2008 to 2019. In addition, the 
results of the Hausman’s test show that the fixed-effects model is relatively better than the random-
effects model. Therefore, the two-way fixed effects in terms of the individual and time were controlled 
in the econometric spatial model. 

Based on the model (12) and the weight matrix of the economic and geographical distance, the 
two-way fixed effects of the SDM, SEM and SLM were estimated respectively. The results are shown 
in Table 8. It can be found that the SDM was the largest in terms of the log likelihood (LogL), which 
is better than the other two models. Therefore, the empirical results were taken as the final 
interpretation basis. From column (1) in Table 8, the estimated regression coefficient for the core 
explanatory variable did was positive and significant at the 5% level, which further verifies that CET 
promotes the improvement of the urban green innovation level. In addition, the coefficient of W*did 
between the spatial weight matrix of the experienced geographical distance and the difference term 
was positive and significant at the 5% significance level, indicating that CET has a positive spatial 
spillover effect on green innovation. The reason is that CET not only increases indigenous R&D, but 
it also accelerates the flow and diffusion of knowledge and information technology across regions. 
Through the “free-rider” effect and demonstration effect, the green innovation in the surrounding areas 
is then promoted. 

Based on the estimation of the SDM with two-way fixed effects for the time and individual, the 
partial differential method was used to decompose the spatial effect of green innovation above, and the 
results are shown in Table 9. The overall promoting effect of CET on green innovation was dominated 
by the spatial spillover effect and supplemented by the spatial direct effect. First, the spatial direct 
effect size of CET on green innovation was 0.08, which is significantly positive. Second, the spatial 
spillover effect of CET on green innovation was 0.238, which is significantly positive at the 5% 
significance level. In addition, from the proportion of the spatial direct effect and spillover effect, the 
proportion of the spatial spillover effect of CET accounted for 74.8%, which indicates that the spatial 
spillover effect is more significant than the direct effect in the overall impact of CET on green innovation. 
Therefore, this externality should be receive attention in relevant research and policy-making. 

Table 9. Direct and spillover effects of CET on green innovation. 

 LR_Direct LR_Indirect LR_Total 
did 0.080** 0.238** 0.318*** 

 (0.036) (0.108) (0.113) 

Note: Standard errors in parentheses* p < 0.1, ** p < 0.05, *** p < 0.01 

6. Conclusions 

Based on the sample data of 279 prefecture-level cities in China from 2008 to 2019, this paper 
presents a DID identification framework for the study of the heterogeneity effect and spillover effect 
of CET on green innovation in cities. The main conclusions are as follows. 
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First, CET has heterogeneous effects on different types of green innovation. On the one hand, the 
results of benchmark regression show that CET has a significant promoting effect on strategic green 
innovation, but it has no significant impact on substantive green innovation. That is, the impact of CET 
on green innovation is mainly reflected in strategic green innovation. On the other hand, the common 
trend test, PSM-DID model test and placebo test all support the conclusion of benchmark regression. 
For this reason, enterprises will give priority to strategic innovation activities with low research and 
development difficulty and a short cycle in order to cope with the rising costs brought by environmental 
regulation and obtain government subsidies and tax incentives for environmental protection. 

Second, at different quantile levels of green innovation, the impact of CET on green innovation is 
heterogeneous. From the unconditional quantile panel fixed-effects regression results, under the 10–20% 
quantile of green innovation, CET has no significant impact on green innovation. However, under 
the 30–90% quantile, CET has a significant impact. That is, with the increase of quantile, the effect of 
CET on green innovation changes from insignificant to significant. This is because the regions with 
low green innovation levels have limited innovation ability and a lack of motivation to carry out green 
innovation, which leads to the weak green innovation effect of CET. Conversely, when the level of 
green innovation in a region increases to a certain extent, the innovation capability and innovation 
output effect are greatly enhanced. In this case, the innovation compensation effect of CET is greater 
than the innovation cost effect. Therefore, in the face of market-oriented environmental regulation, 
enterprises in this region are more inclined to carry out green innovation. 

Third, the impact of CET on green innovation is heterogeneous under different degrees of 
marketization, fiscal decentralization or government environmental attention. The regression results 
of grouped samples show that the positive impact of CET on green innovation is significant under the 
external conditions of a high degree of marketization, low degree of fiscal decentralization or high 
level of government environmental attention, while it is not significant under the external 
conditions of a low degree of marketization, high degree of fiscal decentralization or low level of 
government attention. 

Fourth, CET has a positive spillover effect on green innovation, and the spillover effect is more 
significant than the direct effect. The results of the panel SDM show that the spillover effect of CET 
on green innovation accounted for 74.8% of the total effect. The reason is that CET not only increases 
local independent research and development, but it also accelerates the cross-regional flow and 
diffusion of knowledge and information technology. Through the “free-rider” effect and demonstration 
effect, green innovation in surrounding areas can be enhanced. 

These empirical results have important practical significance for promoting green innovation and 
realizing low carbon emission reduction. There are some policy suggestions that follow. First, when 
further improving the operational mechanism of China’s CET policy, policymakers should also find 
ways to guide enterprises to tilt their resources toward substantive green innovation technologies. On 
the one hand, it should improve the carbon emission information disclosure, mechanisms of carbon 
market supply and demand, competition and price, so as to guarantee the effective compensation of 
the cost of green innovation for enterprises. On the other hand, the information symmetry between the 
government and enterprises in the CET system, environmental subsidies and other environmental 
regulations should be improved so as to guide enterprises to take the substantial environmental value 
output as the direction of resource allocation and promote enterprises to be inclined toward substantive 
green innovation technologies. Second, after the launch of the national carbon emission market, policy 
tools such as prices, taxes and subsidies should be provided to distinguish enterprises in different cities 
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according to local conditions. Meanwhile, the aim should be to flexibly provide targeted institutional 
guarantees and economic rewards for the technological innovation of enterprises with different levels 
of green innovation so as to improve the green innovation effect of the national carbon market. Third, 
the government should take the differences in the level of marketization, financial system environment 
and environmental regulation intensity among regions into account and reasonably formulate the total 
carbon emission target and the inter-regional quota distribution method so as to give full play to the 
green innovation effect of the national carbon market. Fourth, it should actively promote the spatial 
spillover effect of CET on green innovation. On the one hand, local governments should establish a 
sense of regional community, accelerate the free flow of resource elements and strengthen the 
coordination of carbon emission reduction mechanisms. On the other hand, it should promote the 
diffusion and dissemination of green innovation technology and improve the conversion rate of green 
technology in surrounding cities, thus driving the carbon emission reduction of surrounding cities and 
strengthening the compensation of green innovation. 
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Appendix A 

 

Figure A(1). Results of placebo test (explained variable: green patents). 

 

Figure A(2). Results of placebo test (explained variable: green invention patents). 
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Figure A(3). Results of placebo test (explained variable: green utility patents). 
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