Review Special Issues

Impulsive strategies in nonlinear dynamical systems: A brief overview

  • Received: 23 September 2022 Revised: 27 November 2022 Accepted: 06 December 2022 Published: 22 December 2022
  • The studies of impulsive dynamical systems have been thoroughly explored, and extensive publications have been made available. This study is mainly in the framework of continuous-time systems and aims to give an exhaustive review of several main kinds of impulsive strategies with different structures. Particularly, (i) two kinds of impulse-delay structures are discussed respectively according to the different parts where the time delay exists, and some potential effects of time delay in stability analysis are emphasized. (ii) The event-based impulsive control strategies are systematically introduced in the light of several novel event-triggered mechanisms determining the impulsive time sequences. (iii) The hybrid effects of impulses are emphatically stressed for nonlinear dynamical systems, and the constraint relationships between different impulses are revealed. (iv) The recent applications of impulses in the synchronization problem of dynamical networks are investigated. Based on the above several points, we make a detailed introduction for impulsive dynamical systems, and some significant stability results have been presented. Finally, several challenges are suggested for future works.

    Citation: Haitao Zhu, Xinrui Ji, Jianquan Lu. Impulsive strategies in nonlinear dynamical systems: A brief overview[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 4274-4321. doi: 10.3934/mbe.2023200

    Related Papers:

  • The studies of impulsive dynamical systems have been thoroughly explored, and extensive publications have been made available. This study is mainly in the framework of continuous-time systems and aims to give an exhaustive review of several main kinds of impulsive strategies with different structures. Particularly, (i) two kinds of impulse-delay structures are discussed respectively according to the different parts where the time delay exists, and some potential effects of time delay in stability analysis are emphasized. (ii) The event-based impulsive control strategies are systematically introduced in the light of several novel event-triggered mechanisms determining the impulsive time sequences. (iii) The hybrid effects of impulses are emphatically stressed for nonlinear dynamical systems, and the constraint relationships between different impulses are revealed. (iv) The recent applications of impulses in the synchronization problem of dynamical networks are investigated. Based on the above several points, we make a detailed introduction for impulsive dynamical systems, and some significant stability results have been presented. Finally, several challenges are suggested for future works.



    加载中


    [1] W. Haddad, V. Chellaboina, S. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton University Press, 2004. https://doi.org/10.1515/9781400865246
    [2] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, 1995. https://doi.org/10.1142/2892
    [3] I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, De Gruyter, 2009. https://doi.org/10.1515/9783110221824
    [4] T. Yang, Impulsive Control Theory, Springer Science & Business Media, 2001.
    [5] V. Lakshmikantham, D. Bainov, P. Simeonov, Theory of Impulsive Differential Equations, World Scientific, 1989. https://doi.org/10.1142/0906
    [6] S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal. Hybrid Syst., 26 (2017), 190–200. https://doi.org/10.1016/j.nahs.2017.06.004 doi: 10.1016/j.nahs.2017.06.004
    [7] A. Ignatyev, A. Soliman, Asymptotic stability and instability of the solutions of systems with impulse action, Math. Notes, 80 (2006), 491–499. https://doi.org/10.1007/s11006-006-0167-7 doi: 10.1007/s11006-006-0167-7
    [8] A. N. Michel, L. Hou, D. Liu, Stability of Dynamical Systems, Birkhäuser Cham, 2008. https://doi.org/10.1007/978-3-319-15275-2
    [9] R. Goebel, R. G. Sanfelice, A. R. Teel, Hybrid Dynamical Systems: Modeling Stability, and Robustness, Princeton University Press, 2012. https://doi.org/10.23943/princeton/9780691153896.001.0001
    [10] H. Zhu, X. Li, S. Song, Input-to-state stability of nonlinear impulsive systems subjects to actuator saturation and external disturbance, IEEE Trans. Cyber., 2021 (2021). https://doi.org/10.1109/TCYB.2021.3090803
    [11] J. Lu, D. W. C. Ho, J. Cao, J. Kurths, Exponential synchronization of linearly coupled neural networks with impulsive disturbances, IEEE Trans. Neural Networks, 22 (2011), 329–336. https://doi.org/10.1109/TNN.2010.2101081 doi: 10.1109/TNN.2010.2101081
    [12] Y. Guo, Y. Shen, W. Gui, Asymptotical stability of logic dynamical systems with random impulsive disturbances, IEEE Trans. Automa. Control, 66 (2021), 513–525. https://doi.org/10.1109/TAC.2020.2985302 doi: 10.1109/TAC.2020.2985302
    [13] Z. He, C. Li, Z. Cao, H. Li, Periodicity and global exponential periodic synchronization of delayed neural networks with discontinuous activations and impulsive perturbations, Neurocomputing, 431 (2021), 111–127. https://doi.org/10.1016/j.neucom.2020.09.080 doi: 10.1016/j.neucom.2020.09.080
    [14] J. Yang, J. Lu, J. Lou, Y. Liu, Synchronization of drive-response boolean control networks with impulsive disturbances, Appl. Math. Comput., 364 (2020), 124679. https://doi.org/10.1016/j.amc.2019.124679 doi: 10.1016/j.amc.2019.124679
    [15] B. Jiang, J. Lu, X. Li, K. Shi, Impulsive control for attitude stabilization in the presence of unknown bounded external disturbances, Int. J. Robust Nonlinear Control, 32 (2022), 1316–1330. https://doi.org/10.1002/rnc.5889 doi: 10.1002/rnc.5889
    [16] X. Li, C. Zhu, Saturated impulsive control of nonlinear systems with applications, Automatica, 142 (2022), 110375. https://doi.org/10.1016/j.automatica.2022.110375 doi: 10.1016/j.automatica.2022.110375
    [17] B. Liu, B. Xu, Z. Sun, Incremental stability and contraction via impulsive control for continuous-time dynamical systems, Nonlinear Anal. Hybrid Syst., 39 (2021), 100981. https://doi.org/10.1016/j.nahs.2020.100981 doi: 10.1016/j.nahs.2020.100981
    [18] H. Li, A. Liu, Asymptotic stability analysis via indefinite lyapunov functions and design of nonlinear impulsive control systems, Nonlinear Anal. Hybrid Syst., 38 (2020), 100936. https://doi.org/10.1016/j.nahs.2020.100936 doi: 10.1016/j.nahs.2020.100936
    [19] H. Ren, P. Shi, F. Deng, Y. Peng, Fixed-time synchronization of delayed complex dynamical systems with stochastic perturbation via impulsive pinning control, J. Franklin Inst., 357 (2020), 12308–12325. https://doi.org/10.1016/j.jfranklin.2020.09.016 doi: 10.1016/j.jfranklin.2020.09.016
    [20] Y. Wang, X. Li, S. Song, Input-to-state stabilization of nonlinear impulsive delayed systems: An observer-based control approach, IEEE/CAA J. Autom. Sin., 9 (2022), 1273–1283. https://doi.org/10.1109/JAS.2022.105422 doi: 10.1109/JAS.2022.105422
    [21] H. Zhu, P. Li, X. Li, Input-to-state stability of impulsive systems with hybrid delayed impulse effects, J. Appl. Anal. Comput., 9 (2019), 777–795. https://doi.org/10.11948/2156-907X.20180182 doi: 10.11948/2156-907X.20180182
    [22] H. Zhu, P. Li, X. Li, H. Akca, Input-to-state stability for impulsive switched systems with incommensurate impulsive switching signals, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104969. https://doi.org/10.1016/j.cnsns.2019.104969 doi: 10.1016/j.cnsns.2019.104969
    [23] Y. Wang, J. Lu, J. Liang, J. Cao, M. Perc, Pinning synchronization of nonlinear coupled Lur'e networks under hybrid impulses, IEEE Trans. Circuits Syst. II Express Briefs, 66 (2018), 432–436. https://doi.org/10.1109/TCSII.2018.2844883 doi: 10.1109/TCSII.2018.2844883
    [24] N. Wang, X. Li, J. Lu, F. Alsaadi, Unified synchronization criteria in an array of coupled neural networks with hybrid impulses, Neural Networks, 101 (2018), 25–32. https://doi.org/10.1016/j.neunet.2018.01.017 doi: 10.1016/j.neunet.2018.01.017
    [25] W. Wang, C. Huang, C. Huang, J. Cao, J. Lu, L. Wang, Bipartite formation problem of second-order nonlinear multi-agent systems with hybrid impulses, Appl. Math. Comput., 370 (2020), 124926. https://doi.org/10.1016/j.amc.2019.124926 doi: 10.1016/j.amc.2019.124926
    [26] B. Jiang, B. Li, J. Lu, Complex systems with impulsive effects and logical dynamics: A brief overview, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 1273–1299. https://doi.org/10.3934/dcdss.2020369 doi: 10.3934/dcdss.2020369
    [27] P. Li, X. Li, J. Lu, Input-to-state stability of impulsive delay systems with multiple impulses, IEEE Trans. Autom. Control, 66 (2021), 362–368. https://doi.org/10.1109/TAC.2020.2982156 doi: 10.1109/TAC.2020.2982156
    [28] T. Ensari, S. Arik, Global stability analysis of neural networks with multiple time varying delays, IEEE Trans. Autom. Control, 50 (2005), 1781–1785. https://doi.org/10.1109/TAC.2005.858634 doi: 10.1109/TAC.2005.858634
    [29] C. Murguia, R. Fey, H. Nijmeijer, Network synchronization using invariant-manifold-based diffusive dynamic couplings with time-delay, Automatica, 57 (2015), 34–44. https://doi.org/10.1016/j.automatica.2015.03.031 doi: 10.1016/j.automatica.2015.03.031
    [30] H. Freedman, J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23 (1992), 689–701. https://doi.org/10.1137/0523035 doi: 10.1137/0523035
    [31] A. Martin, S. Ruan, Predator-prey models with delay and prey harvesting, J. Math. Biol., 43 (2001), 247–267. https://doi.org/10.1007/s002850100095 doi: 10.1007/s002850100095
    [32] H. Zhu, R. Rakkiyappan, X. Li, Delayed state-feedback control for stabilization of neural networks with leakage delay, Neural Networks, 105 (2018), 249–255. https://doi.org/10.1016/j.neunet.2018.05.013 doi: 10.1016/j.neunet.2018.05.013
    [33] X. Li, X. Yang, Lyapunov stability analysis for nonlinear systems with state-dependent state delay, Automatica, 112 (2020), 108674. https://doi.org/10.1016/j.automatica.2019.108674 doi: 10.1016/j.automatica.2019.108674
    [34] X. Wu, W. Zhang, Y. Tang, pth moment stability of impulsive stochastic delay differential systems with markovian switching, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1870–1879. https://doi.org/10.1016/j.cnsns.2012.12.001 doi: 10.1016/j.cnsns.2012.12.001
    [35] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, L. Naujok, Stability of interconnected impulsive systems with and without time delays, using lyapunov methods, Nonlinear Anal. Hybrid Syst., 6 (2012), 899–915. https://doi.org/10.1016/j.nahs.2012.02.001 doi: 10.1016/j.nahs.2012.02.001
    [36] X. Liu, K. Zhang, Input-to-state stability of time-delay systems with delay-dependent impulses, IEEE Trans. Autom. Control, 65 (2020), 1676–1682. https://doi.org/10.1109/TAC.2019.2930239 doi: 10.1109/TAC.2019.2930239
    [37] H. Yang, X. Wang, S. Zhong, L. Shu, Synchronization of nonlinear complex dynamical systems via delayed impulsive distributed control, Appl. Math. Comput., 320 (2018), 75–85. https://doi.org/10.1016/j.amc.2017.09.019 doi: 10.1016/j.amc.2017.09.019
    [38] G. Wang, Y. Liu, J. Lu, Z. Wan, Stability analysis of totally positive switched linear systems with average dwell time switching, Nonlinear Anal. Hybrid Syst., 36 (2020), 100877. https://doi.org/10.1016/j.nahs.2020.100877 doi: 10.1016/j.nahs.2020.100877
    [39] Z. H. Guan, Z. W. Liu, G. Feng, Y. W. Wang, Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Trans. Circuits Syst. I Regular Papers, 57 (2010), 2182–2195. https://doi.org/10.1109/TCSI.2009.2037848 doi: 10.1109/TCSI.2009.2037848
    [40] X. Li, J. Cao, D. W. C. Ho, Impulsive control of nonlinear systems with time-varying delay and applications, IEEE Trans. Cybern., 50 (2020), 2661–2673. https://doi.org/10.1109/TCYB.2019.2896340 doi: 10.1109/TCYB.2019.2896340
    [41] B. Jiang, J. Lu, X. Li, J. Qiu, Input/output-to-state stability of nonlinear impulsive delay systems based on a new impulsive inequality, Int. J. Robust Nonlinear Control, 29 (2020), 6164–6178. https://doi.org/10.1002/rnc.4712 doi: 10.1002/rnc.4712
    [42] X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031
    [43] X. Li, X. Zhang, S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378–382. https://doi.org/10.1016/j.automatica.2016.08.009 doi: 10.1016/j.automatica.2016.08.009
    [44] X. Li, S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Trans. Autom. Control, 62 (2017), 406–411. https://doi.org/10.1109/TAC.2016.2530041 doi: 10.1109/TAC.2016.2530041
    [45] H. Wang, S. Duan, C. Li, L. Wang, T. Huang, Stability of impulsive delayed linear differential systems with delayed impulses, J. Franklin Inst., 352 (2015), 3044–3068. https://doi.org/10.1016/j.jfranklin.2014.12.009 doi: 10.1016/j.jfranklin.2014.12.009
    [46] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [47] X. Li, P. Li, Stability of time-delay systems with impulsive control involving stabilizing delays, Automatica, 124 (2021), 109336. https://doi.org/10.1016/j.automatica.2020.109336 doi: 10.1016/j.automatica.2020.109336
    [48] J. Lu, B. Jiang, W. X. Zheng, Potential impact of delay on stability of impulsive control systems, IEEE Trans. Autom. Control, 67 (2021), 5179–5190. https://doi.org/10.1109/TAC.2021.3120672 doi: 10.1109/TAC.2021.3120672
    [49] J. P. Hespanha, D. Liberzon, A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735–2744. https://doi.org/10.1016/j.automatica.2008.03.021 doi: 10.1016/j.automatica.2008.03.021
    [50] Y. Wang, J. Lu, Y. Lou, Halanay-type inequality with delayed impulses and its applications, Sci. China Inf. Sci., 62 (2019), 192–206. https://doi.org/10.1007/s11432-018-9809-y doi: 10.1007/s11432-018-9809-y
    [51] S. Luo, F. Deng, W. H. Chen, Stability and stabilization of linear impulsive systems with large impulse-delays: A stabilizing delay perspective, Automatica, 127 (2021), 109533. https://doi.org/10.1016/j.automatica.2021.109533 doi: 10.1016/j.automatica.2021.109533
    [52] T. Jiao, W. Zheng, S. Xu, Unified stability criteria of random nonlinear time-varying impulsive switched systems, IEEE Trans. Circuits Syst. I Regular Papers, 67 (2020), 3099–3112. https://doi.org/10.1109/TCSI.2020.2983324 doi: 10.1109/TCSI.2020.2983324
    [53] W. Zhu, D. Wang, L. Liu, G. Feng, Event-based impulsive control of continuous-time dynamic systems and its application to synchronization of memristive neural networks, IEEE Trans. Neural Networks Learn. Syst., 29 (2017), 3599–3609. https://doi.org/10.1109/TNNLS.2017.2731865 doi: 10.1109/TNNLS.2017.2731865
    [54] B. Li, Z. Wang, Q. L. Han, Input-to-state stabilization of delayed differential systems with exogenous disturbances: The event-triggered case, IEEE Trans. Syst. Man Cybern. Syst., 49 (2019), 1099–1109. https://doi.org/10.1109/TSMC.2017.2719960 doi: 10.1109/TSMC.2017.2719960
    [55] K. Zhang, B. Gharesifard, E. Braverman, Event-triggered control for nonlinear time-delay systems, IEEE Trans. Autom. Control, 67 (2022), 1031–1037. https://doi.org/10.1109/TAC.2021.3062577 doi: 10.1109/TAC.2021.3062577
    [56] L. Meng, H. Bao, Synchronization of delayed complex dynamical networks with actuator failure by event-triggered pinning control, Phys. A Stat. Mech. Appl., 606 (2022), 128138. https://doi.org/10.1016/j.physa.2022.128138 doi: 10.1016/j.physa.2022.128138
    [57] Y. Bao, Y. Zhang, B. Zhang, Fixed-time synchronization of coupled memristive neural networks via event-triggered control, Appl. Math. Comput., 411 (2021),: 126542. https://doi.org/10.1016/j.amc.2021.126542
    [58] P. Li, W. Zhao, J. Cheng, Event-triggered control for exponential stabilization of impulsive dynamical systems, Appl. Math. Comput., 413 (2022), 126608. https://doi.org/10.1016/j.amc.2021.126608 doi: 10.1016/j.amc.2021.126608
    [59] K. Zhang, B. Gharesifard, Hybrid event-triggered and impulsive control for time-delay systems, Nonlinear Anal. Hybrid Syst., 43 (2021), 101109. https://doi.org/10.1016/j.nahs.2021.101109 doi: 10.1016/j.nahs.2021.101109
    [60] Y. Zou, Z. Zeng, Event-triggered impulsive control on quasi-synchronization of memristive neural networks with time-varying delays, Neural Networks, 110 (2019), 55–65. https://doi.org/10.1016/j.neunet.2018.09.014 doi: 10.1016/j.neunet.2018.09.014
    [61] X. Tan, J. Cao, X. Li, Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy, IEEE Trans. Cybern., 49 (2019), 792–801. https://doi.org/10.1109/TCYB.2017.2786474 doi: 10.1109/TCYB.2017.2786474
    [62] B. Jiang, J. Lu, X. Li, J. Qiu, Event-triggered impulsive stabilization of systems with external disturbances, IEEE Trans. Autom. Control, 67 (2022), 2116–2122. https://doi.org/10.1109/TAC.2021.3108123 doi: 10.1109/TAC.2021.3108123
    [63] S. Shanmugasundaram, K. Udhayakumar, D. Gunasekaran, R. Rakkiyappan, Event-triggered impulsive control design for synchronization of inertial neural networks with time delays, Neurocomputing, 483 (2022), 322–332. https://doi.org/10.1016/j.neucom.2022.02.023 doi: 10.1016/j.neucom.2022.02.023
    [64] X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
    [65] B. Liu, D. J. Hill, Z. Sun, Stabilisation to input-to-state stability for continuous-time dynamical systems via event-triggered impulsive control with three levels of events, IET Control Theory Appl., 12 (2018), 1167–1179. https://doi.org/10.1049/iet-cta.2017.0820 doi: 10.1049/iet-cta.2017.0820
    [66] X. Li, H. Zhu, S. Song, Input-to-state stability of nonlinear systems using observer-based event-triggered impulsive control, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 6892–6900. https://doi.org/10.1109/TSMC.2020.2964172 doi: 10.1109/TSMC.2020.2964172
    [67] H. Zhu, J. Lu, J. Lou, Event-triggered impulsive control for nonlinear systems: The control packet loss case, IEEE Trans. Circuits Syst. II Express Briefs, 69 (2022), 3204–3208. https://doi.org/10.1109/TCSII.2022.3140346 doi: 10.1109/TCSII.2022.3140346
    [68] E. I. Verriest, F. Delmotte, M. Egerstedt, Control of epidemics by vaccination, in Proceedings of the 2005 American Control Conference, (2005), 985–990. https://doi.org/10.1109/ACC.2005.1470088
    [69] C. Briata, E. I. Verriest, A new delay-sir model for pulse vaccination, Biomed. Signal Process. Control, 4 (2009), 272–277. https://doi.org/10.3182/20080706-5-KR-1001.01742 https://doi.org/10.3182/20080706-5-KR-1001.01742 doi: 10.3182/20080706-5-KR-1001.01742
    [70] Y. V. Orlov, Discontinuous Systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions, Springer Science & Business Media, 2008.
    [71] X. Yang, X. Cao, A new approach to autonomous rendezvous for spacecraft with limited impulsive thrust: Based on switching control strategy, Aerosp. Sci. Technol., 43 (2015), 454–462. https://doi.org/10.1016/j.ast.2015.04.007 doi: 10.1016/j.ast.2015.04.007
    [72] L. A. Sobiesiak, C. J. Damaren, Optimal continuous/impulsive control for lorentz-augmented spacecraft formations, J. Guid. Control Dyn., 38 (2015), 151–157. https://doi.org/10.2514/1.G000334 doi: 10.2514/1.G000334
    [73] D. Auckly, L. Kapitanski, W. White, Control of nonlinear underactuated systems, Commun. Pure Appl. Math., 53 (2000), 354–369. https://doi.org/10.1002/(SICI)1097-0312(200003)53:3354::AID-CPA33.0.CO;2-U doi: 10.1002/(SICI)1097-0312(200003)53:3354::AID-CPA33.0.CO;2-U
    [74] N. Kant, R. Mukherjee, D. Chowdhury, H. K. Khalil, Estimation of the region of attraction of underactuated systems and its enlargement using impulsive inputs, IEEE Trans. Rob., 35 (2019), 618–632. https://doi.org/10.1109/TRO.2019.2893599 doi: 10.1109/TRO.2019.2893599
    [75] A. Churilov, A. Medvedev, A. Shepeljavyi, Mathematical model of non-basal testosterone regulation in the male by pulse modulated feedback, Automatica, 45 (2009), 78–85. https://doi.org/10.1016/j.automatica.2008.06.016 doi: 10.1016/j.automatica.2008.06.016
    [76] V. Badri, M. J. Yazdanpanah, M. S. Tavazoei, Global stabilization of lotka-volterra systems with interval uncertainty, IEEE Trans. Autom. Control, 64 (2018), 1209–1213. https://doi.org/10.1109/TAC.2018.2845659 doi: 10.1109/TAC.2018.2845659
    [77] E. I. Verriest, P. Pepe, Time optimal and optimal impulsive control for coupled differential difference point delay systems with an application in forestry, in Topics in Time Delay Systems, (2009), 255–265. https://doi.org/10.1007/978-3-642-02897-7_22
    [78] J. Zhang, J. Lu, M. Xing, J. Liang, Synchronization of finite field networks with switching multiple communication channels, IEEE Trans. Network Sci. Eng., 8 (2021), 2160–2169. https://doi.org/10.1109/TNSE.2021.3079631 doi: 10.1109/TNSE.2021.3079631
    [79] A. Arenas, A. Diaz-Guilera, C. J. P$\acute{e}$rez-Vicente, Synchronization processes in complex networks, Phys. D Nonlinear Phenom., 224 (2006), 27–34. https://doi.org/10.1016/j.physd.2006.09.029 doi: 10.1016/j.physd.2006.09.029
    [80] A. Arenas, A. Diaz-Guilera, C. J. P$\acute{e}$rez-Vicente, Synchronization reveals topological scales in complex networks, Phys. Rev. Lett., 96 (2006), 114102. https://doi.org/10.1103/PhysRevLett.96.114102 doi: 10.1103/PhysRevLett.96.114102
    [81] V. Belykh, I. Belykh, M. Hasler, K. Nevidin, Cluster synchronization in three-dimensional lattices of diffusively coupled oscillators, Int. J. Bifurcation Chaos, 13 (2003), 755–779. https://doi.org/10.1142/S0218127403006923 doi: 10.1142/S0218127403006923
    [82] W. Lu, T. Chen, Quad-condition, synchronization, consensus of multiagents, and antisynchronization of complex networks, IEEE Trans. Cybern., 51 (2021), 3384–3388. https://doi.org/10.1109/TCYB.2019.2939273 doi: 10.1109/TCYB.2019.2939273
    [83] L. Zhang, J. Zhong, J. Lu, Intermittent control for finite-time synchronization of fractional-order complex networks, Neural Networks, 144 (2021), 11–20. https://doi.org/10.1016/j.neunet.2021.08.004 doi: 10.1016/j.neunet.2021.08.004
    [84] L. Zhang, Y. Li, J. Lou, J. Qiu, Bipartite asynchronous impulsive tracking consensus for multi-agent systems, Front. Inf. Technol. Electron. Eng., 2022 (2022), 1–11. https://doi.org/10.1631/FITEE.2100122 doi: 10.1631/FITEE.2100122
    [85] H. Fan, K. Shi, Y. Zhao, Global $\mu$-synchronization for nonlinear complex networks with unbounded multiple time delays and uncertainties via impulsive control, Phys. A Stat. Mech. Appl., 599 (2022), 127484. https://doi.org/10.1016/j.physa.2022.127484 doi: 10.1016/j.physa.2022.127484
    [86] Q. Cui, L. Li, J. Lu, A. Alofi, Finite-time synchronization of complex dynamical networks under delayed impulsive effects, Appl. Math. Comput., 430 (2022), 127290. https://doi.org/10.1016/j.amc.2022.127290 doi: 10.1016/j.amc.2022.127290
    [87] T. Chen, X. Liu, W. Lu, Pinning complex networks by a single controller, IEEE Trans. Syst. Man Cybern. Syst., 54 (2007), 1317–1326. https://doi.org/10.1109/TCSI.2007.895383 doi: 10.1109/TCSI.2007.895383
    [88] J. Lu, D. W. C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215–1221. https://doi.org/10.1016/j.automatica.2010.04.005 doi: 10.1016/j.automatica.2010.04.005
    [89] X. Ji, J. Lu, J. Lou, J. Qiu, K. Shi, A unified criterion for global exponential stability of quaternion-valued neural networks with hybrid impulses, Int. J. Robust Nonlinear Control, 30 (2020), 8098–8116. https://doi.org/10.1002/rnc.5210 doi: 10.1002/rnc.5210
    [90] R. Li, H. Wu, J. Cao, Exponential synchronization for variable-order fractional discontinuous complex dynamical networks with short memory via impulsive control, Neural Networks, 148 (2022), 13–22. https://doi.org/10.1016/j.neunet.2021.12.021 doi: 10.1016/j.neunet.2021.12.021
    [91] Q. Fu, S. Zhong, K. Shi, Exponential synchronization of memristive neural networks with inertial and nonlinear coupling terms: Pinning impulsive control approaches, Appl. Math. Comput., 402 (2021), 126169. https://doi.org/10.1016/j.amc.2021.126169 doi: 10.1016/j.amc.2021.126169
    [92] X. Ji, J. Lu, B. Jiang, J. Zhong, Network synchronization under distributed delayed impulsive control: Average delayed impulsive weight approach, Nonlinear Anal. Hybrid Syst., 44 (2022), 101148. https://doi.org/10.1016/j.nahs.2021.101148 doi: 10.1016/j.nahs.2021.101148
    [93] A. D'Jorgea, A. Andersona, A. Ferramoscab, A. H. Gonz$\acute{a}$leza, M. Actis, On stability of nonzero set-point for nonlinear impulsive control systems, Syst. Control Lett., 165 (2022), 105244. https://doi.org/10.1016/j.sysconle.2022.105244 doi: 10.1016/j.sysconle.2022.105244
    [94] J. Liu, L. Guo, M. Hu, Z. Xu, Y. Yang, Leader-following consensus of multi-agent systems with delayed impulsive control, IMA J. Math. Control Inf., 33 (2016), 137–146. https://doi.org/10.1093/imamci/dnu037 doi: 10.1093/imamci/dnu037
    [95] S. Dashkovskiy, A. Mironchenko, Input-to-state stability of nonlinear impulsive systems, SIAM J. Math. Anal., 51 (2013), 1962–1987. https://doi.org/10.1137/120881993 doi: 10.1137/120881993
    [96] P. Feketa, N. Bajcinca, On robustness of impulsive stabilization, Automatica, 104 (2019), 48–56. https://doi.org/10.1016/j.automatica.2019.02.056 doi: 10.1016/j.automatica.2019.02.056
    [97] P. Feketa, S. Bogomolov, T. Meurer, Safety verification for impulsive systems, IFAC-Papers OnLine, 53 (2020), 1949–1954. https://doi.org/10.1016/j.ifacol.2020.12.2589 doi: 10.1016/j.ifacol.2020.12.2589
    [98] P. Feketa, V. Klinshov, L. L$\ddot{u}$cken, A survey on the modeling of hybrid behaviors: How to account for impulsive jumps properly, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), 105955. https://doi.org/10.1016/j.cnsns.2021.105955 doi: 10.1016/j.cnsns.2021.105955
    [99] P. Feketa, N. Bajcinca, Average dwell-time for impulsive control systems possessing iss-lyapunov function with nonlinear rates, in Proceedings of the 18th European Control Conference, (2019), 3686–3691. https://doi.org/10.23919/ECC.2019.8796238
    [100] A. S. Morse, Supervisory control of families of linear set-point controllers-part i. exact matching, IEEE Trans. Autom. Control, 41 (1996), 1413–1431. https://doi.org/10.1109/9.539424 doi: 10.1109/9.539424
    [101] C. Briat, A. Seuret, Convex dwell-time characterizations for uncertain linear impulsive systems, IEEE Trans. Autom. Control, 57 (2012), 3241–3246. https://doi.org/10.1109/TAC.2012.2200379 doi: 10.1109/TAC.2012.2200379
    [102] J. C. Geromel, P. Colaneri, Stability and stabilization of continuous-time switched linear systems, SIAM J. Control Optim., 45 (2006), 1915–1930. https://doi.org/10.1137/050646366 doi: 10.1137/050646366
    [103] C. Briat, A. Seuret, A looped-functional approach for robust stability analysis of linear impulsive systems, Syst. Control Lett., 61 (2012), 980–988. https://doi.org/10.1016/j.sysconle.2012.07.008 doi: 10.1016/j.sysconle.2012.07.008
    [104] S. Dashkovskiy, V. Slynko, Stability conditions for impulsive dynamical systems, Math. Control Signals Syst., 34 (2022), 95–128, 2022. https://doi.org/10.1007/s00498-021-00305-y doi: 10.1007/s00498-021-00305-y
    [105] S. Dashkovskiy, V. Slynko, Dwell-time stability conditions for infinite dimensional impulsive systems, Automatica, 147 (2023), 110695. https://doi.org/10.1016/j.automatica.2022.110695 doi: 10.1016/j.automatica.2022.110695
    [106] J.L. Mancilla-Aguilar, H. Haimovich, P. Feketa, Uniform stability of nonlinear time-varying impulsive systems with eventually uniformly bounded impulse frequency, Nonlinear Anal. Hybrid Syst., 38 (2020), 100933. https://doi.org/10.1016/j.nahs.2020.100933 doi: 10.1016/j.nahs.2020.100933
    [107] C. Briat, Dwell-time stability and stabilization conditions for linear positive impulsive and switched systems, Nonlinear Anal. Hybrid Syst., 24 (2017), 198–226. https://doi.org/10.1016/j.nahs.2017.01.004 doi: 10.1016/j.nahs.2017.01.004
    [108] J. Tan, C. Li, T. Huang, Stability of impulsive systems with time window via comparison method, Int. J. Control Autom. Syst., 13 (2015), 1346–1350. https://doi.org/10.1007/s12555-014-0197-y doi: 10.1007/s12555-014-0197-y
    [109] E. Fridman, Introduction to Time-Delay Systems: Analysis and Control, Springer, 2014. https://doi.org/10.1007/978-3-319-09393-2
    [110] J. K. Hale, Theory of Functional Differential Equations, Springer, 1971. https://doi.org/10.1007/BFb0060406
    [111] S. Dashkovskiy, P. Feketa, Asymptotic properties of zeno solutions, Nonlinear Anal. Hybrid Syst., 30 (2018), 256–265. https://doi.org/10.1016/j.nahs.2018.06.005 doi: 10.1016/j.nahs.2018.06.005
    [112] J. P. Hespanha, A. S. Morse, Stability of switched systems with average dwell-time, in Proceedings of the 38th IEEE Conference on Decision and Control, (1999), 2655–2660. https://doi.org/10.1109/CDC.1999.831330
    [113] T. Yang, L. Chua, Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 44 (1997), 976–988. https://doi.org/10.1109/81.633887 doi: 10.1109/81.633887
    [114] E. Kaslik, S. Sivasundaram, Impulsive hybrid discrete-time hopfield neural networks with delays and multistability analysis, Neural Networks, 24 (2011), 370–377. https://doi.org/10.1016/j.neunet.2010.12.008 doi: 10.1016/j.neunet.2010.12.008
    [115] S. Duan, H. Wang, L. Wang, T. Huang, C. Li, Impulsive effects and stability analysis on memristive neural networks with variable delays, IEEE Trans. Neural Networks Learn. Syst., 28 (2017), 476–481. https://doi.org/10.1109/TNNLS.2015.2497319 doi: 10.1109/TNNLS.2015.2497319
    [116] R. Rakkiyappan, A. Chandrasekar, S. Lakshmanan, J. H. Park, H. Y. Jung, Effects of leakage time-varying delays in markovian jump neural networks with impulse control, Neurocomputing, 121 (2013), 365–378. https://doi.org/10.1016/j.neucom.2013.05.018 doi: 10.1016/j.neucom.2013.05.018
    [117] Z. Tang, J. Park, Impulsive effects on quasi-synchronization of neural networks with parameter mismatches and time-varying delay, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 908–919. https://doi.org/10.1109/TNNLS.2017.2651024 doi: 10.1109/TNNLS.2017.2651024
    [118] K. Gu, J. Chen, V. L. Kharitonov, Stability of Time-Delay Systems, Springer Science & Business Media, 2003. https://doi.org/10.1007/978-1-4612-0039-0
    [119] N. N. Krasovskii, Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford University Press, 1963.
    [120] B. Zhou, Construction of strict lyapunov-krasovskii functionals for time-varying time delay systems, Automatica, 107 (2019), 382–397. https://doi.org/10.1016/j.automatica.2019.05.058 https://doi.org/10.1016/j.jfranklin.2020.05.051
    [121] Q. L. Han, On stability of linear neutral systems with mixed time delays: A discretized lyapunov functional approach, Automatica, 41 (2005), 1209–1218. https://doi.org/10.1016/j.automatica.2005.01.014 doi: 10.1016/j.automatica.2005.01.014
    [122] I. Haidar, P. Pepe, Lyapunov-krasovskii characterizations of stability notions for switching retarded systems, IEEE Trans. Autom. Control, 66 (2021), 437–443. https://doi.org/10.1109/TAC.2020.2979754 doi: 10.1109/TAC.2020.2979754
    [123] T. H. Lee, H. M. Trinh, J. H. Park, Stability analysis of neural networks with time-varying delay by constructing novel lyapunov functionals, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 4238–4247. https://doi.org/10.1109/TNNLS.2017.2760979 doi: 10.1109/TNNLS.2017.2760979
    [124] X. Liu, Q. Wang, The method of lyapunov functionals and exponential stability of impulsive systems with time delay, Nonlinear Anal. Theory Methods Appl., 66 (2007), 1465–1484. https://doi.org/10.1016/j.na.2006.02.004 doi: 10.1016/j.na.2006.02.004
    [125] Z. Luo, J. Shen, Stability of impulsive functional differential equations via the liapunov functional, Appl. Math. Lett., 22 (2009), 163–169. https://doi.org/10.1016/j.aml.2008.03.004 doi: 10.1016/j.aml.2008.03.004
    [126] M. A. Davo, A. Banos, F. Gouaisbaut, S. Tarbouriech, A. Seuret, Stability analysis of linear impulsive delay dynamical systems via looped-functionals, Automatica, 81 (2017), 107–114. https://doi.org/10.1016/j.automatica.2017.03.029 doi: 10.1016/j.automatica.2017.03.029
    [127] J. Liu, X. Liu, W. Xie, Input-to-state stability of impulsive and switching hybrid systems with time-delay, Automatica, 47 (2011), 899–908. https://doi.org/10.1016/j.automatica.2011.01.061 doi: 10.1016/j.automatica.2011.01.061
    [128] X. Sun, W. Wang, Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics, Automatica, 48 (2012), 2359–2364. https://doi.org/10.1016/j.automatica.2012.06.056 doi: 10.1016/j.automatica.2012.06.056
    [129] C. Briat, Theoretical and numerical comparisons of looped functionals and clock-dependent Lyapunov functions???The case of periodic and pseudo-periodic systems with impulses, Int. J. Robust Nonlinear Control, 26 (2016), 2232–2255. https://doi.org/10.1002/rnc.3405 doi: 10.1002/rnc.3405
    [130] J. J Nieto, R. R. Lopez, New comparison results for impulsive integro-differential equations and applications, J. Math. Anal. Appl., 328 (2007), 1343–1368. https://doi.org/10.1016/j.jmaa.2006.06.029 doi: 10.1016/j.jmaa.2006.06.029
    [131] Q. Wu, H. Zhang, L. Xiang, J. Zhou, A generalized halanay inequality on impulsive delayed dynamical systems and its applications, Chaos Solitons Fractals, 45 (2012), 56–62. https://doi.org/10.1016/j.chaos.2011.09.010 doi: 10.1016/j.chaos.2011.09.010
    [132] R. Kumar, U. Kumar, S. Das, J. Qiu, J. Lu, Effects of heterogeneous impulses on synchronization of complex-valued neural networks with mixed time-varying delays, Inf. Sci., 551 (2021), 228–244. https://doi.org/10.1016/j.ins.2020.10.064 doi: 10.1016/j.ins.2020.10.064
    [133] A. R. Teel, A. Subbaraman, A. Sferlazza, Stability analysis for stochastic hybrid systems: a survey, Automatica, 50 (2014), 2435–2456. https://doi.org/10.1016/j.automatica.2014.08.006 doi: 10.1016/j.automatica.2014.08.006
    [134] W. Hu, Q. Zhu, Stability criteria for impulsive stochastic functional differential systems with distributed-delay dependent impulsive effects, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 2027–2032. https://doi.org/10.1109/TSMC.2019.2905007 doi: 10.1109/TSMC.2019.2905007
    [135] K. Rengamannar, G. P. Balakrishnan, M. Palanisamy, M. Niezabitowski, Exponential stability of non-linear stochastic delay differential system with generalized delay-dependent impulsive points, Appl. Math. Comput., 382 (2020), 125344. https://doi.org/10.1016/j.amc.2020.125344 doi: 10.1016/j.amc.2020.125344
    [136] H. Chen, P. Shi, C. C. Lim, Synchronization control for neutral stochastic delay markov networks via single pinning impulsive strategy, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 5406–5419. https://doi.org/10.1109/TSMC.2018.2882836 doi: 10.1109/TSMC.2018.2882836
    [137] X. Wu, Y. Tang, W. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica, 66 (2016), 195–204. https://doi.org/10.1016/j.automatica.2016.01.002 doi: 10.1016/j.automatica.2016.01.002
    [138] W. Hu, Q. Zhu, H. R. Karimi, Some improved razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE Trans. Autom. Control, 64 (2019), 5207–5213. https://doi.org/10.1109/TAC.2019.2911182 doi: 10.1109/TAC.2019.2911182
    [139] H. Xu, Q. Zhu, New criteria on exponential stability of impulsive stochastic delayed differential systems with infinite delays, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106460. https://doi.org/10.1016/j.cnsns.2022.106460 doi: 10.1016/j.cnsns.2022.106460
    [140] X. Liu, G. Ballinger, Uniform asymptotic stability of impulsive delay differential equations, Comput. Math. Appl., 41 (2001), 903–915. https://doi.org/10.1016/S0898-1221(00)00328-X doi: 10.1016/S0898-1221(00)00328-X
    [141] S. Zhang, A new technique in stability of infinite delay differential equations, Comput. Math. Appl., 44 (2002), 1275–1287. https://doi.org/10.1016/S0898-1221(02)00255-9 doi: 10.1016/S0898-1221(02)00255-9
    [142] X. Li, J. Cao, An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Trans. Autom. Control, 62 (2017), 3618–3625. https://doi.org/10.1109/TAC.2017.2669580 doi: 10.1109/TAC.2017.2669580
    [143] X. Li, D. Peng, Uniform stability of nonlinear systems with state-dependent delay, Automatica, 137 (2011), 110098. https://doi.org/10.1016/j.automatica.2021.110098 doi: 10.1016/j.automatica.2021.110098
    [144] Y. Tang, X. Wu, P. Shi, F. Qian, Input-to-state stability for nonlinear systems with stochastic impulses, Automatica, 113 (2020), 108766. https://doi.org/10.1016/j.automatica.2019.108766 doi: 10.1016/j.automatica.2019.108766
    [145] N. Zhang, S. Huang, W. Li, Stability of stochastic delayed semi-markov jump systems with stochastic mixed impulses: A novel stochastic impulsive differential inequality, J. Franklin Inst., 2022 (2022). https://doi.org/10.1016/j.jfranklin.2022.06.033
    [146] M. Yao, G. Wei, D. Ding, W. Li, Output-feedback control for stochastic impulsive systems under round-robin protocol, Automatica, 143 (2022), 110394. https://doi.org/10.1016/j.automatica.2022.110394 doi: 10.1016/j.automatica.2022.110394
    [147] W. Zhang, Y. Tang, Q. Miao, W. Du, Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 1316–1326. https://doi.org/10.1109/TNNLS.2013.2257842 doi: 10.1109/TNNLS.2013.2257842
    [148] X. Yang, X. Li, Q. Xi, P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495–1515. https://doi.org/10.3934/mbe.2018069 doi: 10.3934/mbe.2018069
    [149] A. Vinodkumar, T. Senthilkumar, S. Hariharan, J. Alzabut, Exponential stabilization of fixed and random time impulsive delay differential system with applications, Math. Biosci. Eng., 18 (2021), 2384–2400. https://doi.org/10.3934/mbe.2021121 doi: 10.3934/mbe.2021121
    [150] B. Hu, Z. Wang, M. Xu, D. Wang, Quasilinearization method for an impulsive integro-differential system with delay, Math. Biosci. Eng., 19 (2022), 612–623. https://doi.org/10.3934/mbe.2022027 doi: 10.3934/mbe.2022027
    [151] Z. Xiong, X. Li, M. Ye, Q. Zhang, Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by l$\acute{e}$vy process with time-varying delay, Math. Biosci. Eng., 18 (2021), 8462–8498. https://doi.org/10.3934/mbe.2021419 doi: 10.3934/mbe.2021419
    [152] C. Lu, B. Li, L. Zhou, L. Zhang, Survival analysis of an impulsive stochastic delay logistic model with l$\acute{e}$vy jumps, Math. Biosci. Eng., 16 (2019), 3251–3271. https://doi.org/10.3934/mbe.2019162 doi: 10.3934/mbe.2019162
    [153] L. Gao, D. Wang, G. Wang, Further results on exponential stability for impulsive switched nonlinear time-delay systems with delayed impulse effects, Appl. Math. Comput., 268 (2015), 186–200. https://doi.org/10.1016/j.amc.2015.06.023 doi: 10.1016/j.amc.2015.06.023
    [154] J. Sun, Q. L. Han, X. Jiang, Impulsive control of time-delay systems using delayed impulse and its application to impulsive master–slave synchronization, Phys. Lett. A, 372 (2008), 6375–6380. https://doi.org/10.1016/j.physleta.2008.08.067 doi: 10.1016/j.physleta.2008.08.067
    [155] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer Science & Business Media, 2013.
    [156] N. Wouw, P. Naghshtabrizi, M. Cloosterman, J. P. Hespanha, Tracking control for sampled-data systems with uncertain timevarying sampling intervals and delays, Int. J. Robust Nonlinear Control, 20 (2010), 387–411. https://doi.org/10.1002/rnc.1433 doi: 10.1002/rnc.1433
    [157] W. H. Chen, D. Wei, X. Lu, Exponential stability of a class of nonlinear singularly perturbed systems with delayed impulses, J. Franklin Inst., 350 (2013), 2678–2709. https://doi.org/10.1016/j.jfranklin.2013.06.012 doi: 10.1016/j.jfranklin.2013.06.012
    [158] A. Khadra, X. Liu, X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication, Automatica, 41 (2005), 1491–1502. https://doi.org/10.1016/j.automatica.2005.04.012 doi: 10.1016/j.automatica.2005.04.012
    [159] W. H. Chen, W. X. Zheng, Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays, Automatica, 45 (2009), 1481–1488. https://doi.org/10.1016/j.automatica.2009.02.005 doi: 10.1016/j.automatica.2009.02.005
    [160] W. H. Chen, W. X. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects, Automatica, 47 (2011), 1075–1083. https://doi.org/10.1016/j.automatica.2011.02.031 doi: 10.1016/j.automatica.2011.02.031
    [161] X. Liu, K. Zhang, Synchronization of linear dynamical networks on time scales: Pinning control via delayed impulses, Automatica, 72 (2016), 147–152. https://doi.org/10.1016/j.automatica.2016.06.001 doi: 10.1016/j.automatica.2016.06.001
    [162] B. Jiang, J. Lu, Y. Liu, Exponential stability of delayed systems with average-delay impulses, SIAM J. Control Optim., 58 (2020), 3763–3784. https://doi.org/10.1137/20M1317037 doi: 10.1137/20M1317037
    [163] K. Zhang, E. Braverman, Event-triggered impulsive control for nonlinear systems with actuation delays, IEEE Trans. Autom. Control, 2022 (2022). https://doi.org/10.1109/TAC.2022.3142127
    [164] X. Li, J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63–69. https://doi.org/10.1016/j.automatica.2015.10.002 doi: 10.1016/j.automatica.2015.10.002
    [165] H. Akca, R. Alassar, V. Covachev, Z. Covacheva, E. Al-Zahrani, Continuous-time additive hopfield-type neural networks with impulses, J. Math. Anal. Appl., 290 (2004), 436–451. https://doi.org/10.1016/j.jmaa.2003.10.005 doi: 10.1016/j.jmaa.2003.10.005
    [166] W. H. Chen, W. X. Zheng, The effect of delayed impulses on stability of impulsive time-delay systems, IFAC Proc. Volumes, 44 (2011), 6307–6312. https://doi.org/10.3182/20110828-6-IT-1002.02984 doi: 10.3182/20110828-6-IT-1002.02984
    [167] X. Li, J. Wu, Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay, IEEE Trans. Autom. Control, 63 (2018), 306–311. https://doi.org/10.1109/TAC.2016.2639819 doi: 10.1109/TAC.2016.2639819
    [168] X. Zhang, X. Li, Input-to-state stability of non-linear systems with distributed delayed impulses, IET Control Theory Appl., 11 (2017), 81–89. https://doi.org/10.1049/iet-cta.2016.0469 doi: 10.1049/iet-cta.2016.0469
    [169] Q. Cui, L. Li, J. Cao, Stability of inertial delayed neural networks with stochastic delayed impulses via matrix measure method, Neurocomputing, 471 (2022), 70–78. https://doi.org/10.1016/j.neucom.2021.10.113 doi: 10.1016/j.neucom.2021.10.113
    [170] X. Yang, Z. Yang, Synchronization of ts fuzzy complex dynamical networks with time-varying impulsive delays and stochastic effects, Fuzzy Sets Syst., 235 (2014), 25–43. https://doi.org/10.1016/j.fss.2013.06.008 doi: 10.1016/j.fss.2013.06.008
    [171] X. Yang, X. Li, J. Lu, Z. Cheng, Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control, IEEE Trans. Cybern., 50 (2020), 4043–4052. https://doi.org/10.1109/TCYB.2019.2938217 doi: 10.1109/TCYB.2019.2938217
    [172] P. Rubbioni, Asymptotic stability of solutions for some classes of impulsive differential equations with distributed delay, Nonlinear Anal. Real World Appl., 61 (2021), 103324. https://doi.org/10.1016/j.nonrwa.2021.103324 doi: 10.1016/j.nonrwa.2021.103324
    [173] X. Liu, K. Zhang, Stabilization of nonlinear time-delay systems: Distributed-delay dependent impulsive control, Syst. Control Lett., 120 (2018), 17–22. https://doi.org/10.1016/j.sysconle.2018.07.012 doi: 10.1016/j.sysconle.2018.07.012
    [174] Y. Zhao, X. Li, J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 125467. https://doi.org/10.1016/j.amc.2020.125467 doi: 10.1016/j.amc.2020.125467
    [175] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [176] W. Du, S. Leung, Y. Tang, A. Vasilakos, Differential evolution with event-triggered impulsive control, IEEE Trans. Cybern., 47 (2017), 244–257. https://doi.org/10.1109/TCYB.2015.2512942 doi: 10.1109/TCYB.2015.2512942
    [177] X. Li, P. Li, Input-to-state stability of nonlinear systems: Event-triggered impulsive control, IEEE Trans. Autom. Control, 67 (2022), 1460–1465. https://doi.org/10.1109/TAC.2021.3063227 doi: 10.1109/TAC.2021.3063227
    [178] X. Li, Y. Wang, S. Song, Stability of nonlinear impulsive systems: Self-triggered comparison system approach, IEEE Trans. Autom. Control, 2022 (2011). https://doi.org/10.1109/TAC.2022.3209441
    [179] E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Autom. Control, 34 (1989), 435–443. https://doi.org/10.1109/9.28018 doi: 10.1109/9.28018
    [180] W. Liu, P. Li, X. Li, Impulsive systems with hybrid delayed impulses: Input-to-state stability, Nonlinear Anal. Hybrid Syst., 46 (2022), 101248. https://doi.org/10.1016/j.nahs.2022.101248 doi: 10.1016/j.nahs.2022.101248
    [181] J. Mancilla-Aguilar, H. Haimovich, Uniform input-to-state stability for switched and time-varying impulsive systems, IEEE Trans. Autom. Control, 65 (2020), 5028–5042. https://doi.org/10.1109/TAC.2020.2968580 doi: 10.1109/TAC.2020.2968580
    [182] C. Ning, Y. He, M. Wu, S. Zhou, Indefinite lyapunov functions for input-to-state stability of impulsive systems, Inf. Sci., 436 (2018), 343–351. https://doi.org/10.23919/ChiCC.2018.8483927 https://doi.org/10.1016/j.ins.2018.01.016
    [183] S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems with different jump maps, IFAC-Papers OnLine, 49 (2016), 1073–1078.
    [184] P. Feketa, N. Bajcinca, Stability of nonlinear impulsive differential equations with non-fixed moments of jumps, in Proceedings of the 17th European Control Conference, (2018), 900–905. https://doi.org/10.23919/ECC.2018.8550434
    [185] N. Zhang, X. Wang, W. Li, Stability for multi-linked stochastic delayed complex networks with stochastic hybrid impulses by dupire it$\hat{o}$'s formula, Nonlinear Anal. Hybrid Syst., 45 (2022), 101200. https://doi.org/10.1016/j.nahs.2022.101200 doi: 10.1016/j.nahs.2022.101200
    [186] C. W. Wu, L. Chua, Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 42 (1995), 430–447.
    [187] B. Jiang, J. Lu, J. Lou, J. Qiu, Synchronization in an array of coupled neural networks with delayed impulses: Average impulsive delay method, Neural Networks, 121 (2020), 452–460. https://doi.org/10.1016/j.neunet.2019.09.019 doi: 10.1016/j.neunet.2019.09.019
    [188] Y. Fiagbedzi, A. Pearson, A multistage reduction technique for feedback stabilizing distributed time-lag systems, Automatica, 23 (1987), 311–326. https://doi.org/10.1016/0005-1098(87)90005-7 doi: 10.1016/0005-1098(87)90005-7
    [189] X. Ji, J. Lu, B. Jiang, K. Shi, Distributed synchronization of delayed neural networks: Delay-dependent hybrid impulsive control, IEEE Trans. Network Sci. Eng., 9 (2021), 634–647. https://doi.org/10.1109/TNSE.2021.3128244 doi: 10.1109/TNSE.2021.3128244
    [190] W. He, F. Qian, J. Cao, Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control, Neural Networks, 85 (2017), 1–9. https://doi.org/10.1016/j.neunet.2016.09.002 doi: 10.1016/j.neunet.2016.09.002
    [191] Z. Huang, J. Cao, J. Li, H. Bin, Quasi-synchronization of neural networks with parameter mismatches and delayed impulsive controller on time scales, Nonlinear Anal. Hybrid Syst., 33 (2019), 104–115. https://doi.org/10.1016/j.nahs.2019.02.005 doi: 10.1016/j.nahs.2019.02.005
    [192] D. Ding, Z. Tang, J. H. Park, Y. Wang, Z. Ji, Dynamic self-triggered impulsive synchronization of complex networks with mismatched parameters and distributed delay, IEEE Trans. Cybern., 2022 (2022). https://doi.org/10.1109/TCYB.2022.3168854
    [193] D. Antunes, J. P. Hespanha, C. Silvestre, Stability of networked control systems with asynchronous renewal links: An impulsive systems approach, Automatica, 49 (2013), 402–413. https://doi.org/10.1016/j.automatica.2012.11.033 doi: 10.1016/j.automatica.2012.11.033
    [194] C. Yuan, F. Wu, Delay scheduled impulsive control for networked control systems, IEEE Trans. Control Network Syst., 4 (2017), 587–597. https://doi.org/10.1109/TCNS.2016.2541341 doi: 10.1109/TCNS.2016.2541341
    [195] X. Yang, J. Lu, D. W. C. Ho, Q. Song, Synchronization of uncertain hybrid switching and impulsive complex networks, Appl. Math. Modell., 59 (2018), 379–392. https://doi.org/10.1016/j.apm.2018.01.046 doi: 10.1016/j.apm.2018.01.046
    [196] J. Hu, G. Sui, X. Lv, X. Li, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Anal. Modell. Control, 23 (2018), 904–920. https://doi.org/10.15388/NA.2018.6.6 doi: 10.15388/NA.2018.6.6
    [197] J. Lu, L. Li, D. W. C. Ho, J. Cao, Collective Behavior in Complex Networked Systems under Imperfect Communication, Springer, 2021. https://doi.org/10.1007/978-981-16-1506-1
    [198] X. Li, S. Song, Impulsive Systems with Delays, Springer, 2022. https://doi.org/10.1007/978-981-16-4687-4
    [199] C. Louembet, D. Arzelier, G. Deaconu, Robust rendezvous planning under maneuver execution errors, J. Guid. Control Dyn., 38 (2015), 76–93. https://doi.org/10.2514/1.G000391 doi: 10.2514/1.G000391
    [200] M. Brentari, S. Urbina, D. Arzelier, C. Louembet, L. Zaccarian, A hybrid control framework for impulsive control of satellite rendezvous, IEEE Trans. Control Syst. Technol., 27 (2019), 1537–1551. https://doi.org/10.1109/ACC.2016.7526843 https://doi.org/10.1109/TCST.2018.2812197
    [201] G. Deaconu, C. Louembet, A. Th$\acute{e}$ron, A two-impulse method for stabilizing the spacecraft relative motion with respect to a periodic trajectory, in Proceedings of the 51st IEEE Conference on Decision and Control (CDC), (2012), 6541–6546. https://doi.org/10.1109/CDC.2012.6426542
    [202] W. Fehse, Automated Rendezvous and Docking of Spacecraft, Cambridge University Press, 2003.
    [203] P. S. Rivadeneira, C. H. Moog, Impulsive control of single-input nonlinear systems with application to hiv dynamics, Appl. Math. Comput., 218 (2012), 8462–8474. https://doi.org/10.1016/j.amc.2012.01.071 doi: 10.1016/j.amc.2012.01.071
    [204] M. Legrand, E. Comets, G. Aymard, R. Tubiana, C. Katlama, B. Diquet, An in vivo pharmacokinetic/pharmacodynamic model for antiretroviral combination, HIV Clin. Trials, 4 (2003), 170–183. https://doi.org/10.1310/77YN-GDMU-95W3-RWT7 doi: 10.1310/77YN-GDMU-95W3-RWT7
    [205] P. S. Rivadeneira, C. H. Moog, Observability criteria for impulsive control systems with applications to biomedical engineering processes, Automatica, 55 (2015), 125–131. https://doi.org/10.1016/j.automatica.2015.02.042 doi: 10.1016/j.automatica.2015.02.042
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2070) PDF downloads(248) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog