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Abstract: The studies of impulsive dynamical systems have been thoroughly explored, and exten-
sive publications have been made available. This study is mainly in the framework of continuous-time
systems and aims to give an exhaustive review of several main kinds of impulsive strategies with
different structures. Particularly, (i) two kinds of impulse-delay structures are discussed respectively
according to the different parts where the time delay exists, and some potential effects of time delay
in stability analysis are emphasized. (ii) The event-based impulsive control strategies are systemati-
cally introduced in the light of several novel event-triggered mechanisms determining the impulsive
time sequences. (iii) The hybrid effects of impulses are emphatically stressed for nonlinear dynamical
systems, and the constraint relationships between different impulses are revealed. (iv) The recent appli-
cations of impulses in the synchronization problem of dynamical networks are investigated. Based on
the above several points, we make a detailed introduction for impulsive dynamical systems, and some
significant stability results have been presented. Finally, several challenges are suggested for future
works.
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1. Introduction

In an engineering environment, some abrupt changes may interfere with system behavior at some
certain instants, which are hard to consider continuously. These abrupt changes are usually called im-
pulsive phenomena, and those systems with impulsive phenomena are called impulsive systems [1–9].
Generally, impulsive systems are usually composed of three elements: A continuous dynamics gov-
erning the continuous evolution of the system between impulses, which is typically described by a
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differential equation; a discrete dynamics governing the way that the system state is changed at an
impulsive instant; and an impulsive law for determining when the impulse occurs. According to the
different effects of impulses on the dynamical behavior of the system, the study of dynamics of impul-
sive systems can be divided into two classes: i) impulsive disturbance problem (IDP) and ii) impulsive
control problem (ICP). If a given system without impulse possesses certain performances, such as
periodic solution, attractor, stability, and boundedness, while the corresponding performances can be
preserved when the system is subjected to sudden impulsive disturbance, then this phenomenon can be
regarded as IDP. Lots of interesting works on IDP have been reported; see [10–14] and the references
therein. Particularly, Zhu et al. studied the input-to-state stability (ISS) property of a class of nonlinear
impulsive systems via saturated control strategy, where both the impulsive disturbance and external
disturbance could severely destroy the dynamical behaviour, and the optimization design procedures
were provided with the hope of obtaining the estimates of admissible external disturbance and domain
of initial value [10]. Lu et al. extended the average impulsive interval (AII) to linearly coupled neural
networks with time-varying delay and impulsive disturbance, and the globally exponential synchro-
nization were obtained by referring to an impulsive delayed differential inequality [11]. If a given
system without impulse does not possess a certain performance, but it may possess it via a proper im-
pulsive control, then such phenomenon is generally regarded as ICP. Some interesting works on ICP
can be found in [15–20], where Liu et al. established the sufficient criteria for incremental stability via
impulsive control strategy by using the methods of Lyapunov-like function and average dwell-time (
ADT) condition [17]. The saturation structure was first introduced in impulsive control strategy by Li
and Zhu, and the optimization problem on designing controller was presented in order to maximize the
domain of attraction [16]. Interestingly, in recent years, a class of impulses, named hybrid impulses,
have gradually attracted the attention of researchers. Namely, this kind of impulse includes both im-
pulsive disturbance and impulsive control, and the IDP and ICP can be characterized simultaneously
in one system. In this case, the dynamical behavior will become more complex compared with those
systems with single impulse. Hence, how to give a uniform criterion to reveal the relationship between
the hybrid effects of impulses and dynamical behavior of systems is worth exploring deeply. Recently,
some interesting works have been presented to analyze the effects of hybrid impulses; see [21–27] and
the references therein. Particularly, Zhu et al. established the relationship between impulsive frequency
and time delay existing in hybrid impulses, so that the ISS and iISS of impulsive systems with delayed
hybrid impulses can be revealed [21]. Moreover, for impulsive systems with switching topology, Zhu
et al. further considered the effects of hybrid impulses, and the incommensurate impulsive switching
signals were firstly studied. With the help of Lyapunov method and ADT approach, some sufficient
conditions were provided to cope with the problem of ISS for impulsive switched systems [22].

It is noted that time delay is often encountered in many practical cases, such as engineering, biolog-
ical and economical systems [28–31]. As is known, time delay in a system makes the evolution of the
system depend on the historical state heavily, and the performance of the closed-loop system may be
degraded if time delay is not taken into consideration. The stability analysis of delayed systems usu-
ally includes time-domain and frequency-domain methods. In general, frequency-domain methods are
often favored for their conceptual simplicity and computational ease, which typically can be checked
in an efficient manner by plotting graphically a certain frequency-dependent measure. Different from
the frequency-domain methods, the time-domain methods have more advantages in adapting to non-
linear time-delay systems. In this scene, a large number of stability results have been derived by using
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Lyapunov-Razumikhin (L-R) approach, Lyapunov-Krasovskii (L-K) functional approach, Halanay-
type inequalities, comparison principle, and so on. Owing to the important role in dynamical behavior
estimation of engineering systems, time delay has been receiving increasing attention in various dy-
namical systems [32–38]. For instance, Zhu et al. considered the leakage delay existing in neural
networks, and the delayed state-feedback control strategy was constructed for globally exponential
stability, which showed the controller can be used in all states or in some state [32]. Yang et al. ex-
plored the state-dependent state delay making the value of delay dependent on the state change, which
indicated that it was impossible to exactly know a priori how far the historical state information was
needed, and the sufficient conditions for exponential stability of the zero equilibrium were derived by
using the Lyapunov stability theory [33]. According to the different parts where the time delay exists,
impulsive systems with time delay can be roughly divided into two classes: impulsive delayed systems
(IDSs) [39–42] and delayed impulsive systems (DISs) [43–46]. In IDSs, time delay exists in the con-
tinuous dynamics of impulsive systems, and the continuous state evolution is affected by historical state
while the impulsive jump excludes time delay. In DISs, impulsive jump depends on the historical state,
and the continuous dynamics of the system may contain time delay. Interestingly, with the deepening
of research, some potential effects of time delay on the dynamical behavior of impulsive systems have
been slowly discovered. That is, in addition to destroying the original performance of the system to a
certain extent, some unstable systems will become stable by properly applying time delay; see [47,48]
for more details.

Most of the existing results on ICP focus on a time-triggered mechanism (TTM), which means the
instants when the impulses occur, normally called impulsive instants, are pre-scheduled [5, 49–52].
Nevertheless, sometimes unnecessary impulsive control tasks may be executed in TTM, which clearly
is a waste of control efforts and communication resources. Different from TTM, an event-triggered
mechanism (ETM) can avoid unnecessary waste of resources because the information transmissions
are determined by the occurrence of some well-designed events which are related to the system state
or output. Specifically, in ETM, a transmission only happens when an event is triggered; otherwise,
the impulsive control signal will not be updated. Due to the advantages of ETM, many efforts have
been made for various practical control systems [53–57]. Furthermore, by combining the advantages of
impulsive control strategy and ETM, a kind of novel control strategy named event-triggered impulsive
control (ETIC) has gradually obtained more and more attentions, and many meaningful results have
been derived [58–63]. Shanmugasundaram et al. investigated the synchronization problem of inertial
neural networks with time delays by virtue of ETIC, in which a Lyapunov function based ETM was
used to determine impulsive instants [63]. In the presence of time delay, Li et al. studied the exponen-
tial stability of nonlinear delayed systems by means of ETIC approach, and the theoretical result has
been applied to nonlinear delayed multi-agent systems [64]. However, one extreme case, where the
event function cannot be activated while the state of system diverges in a relatively long time interval,
should be mentioned. To solve this situation, some ETIC strategies containing the forced mechanism
have been proposed, implying that the impulses may be forcibly triggered if the system status or output
fails to trigger the event within a relatively long time interval, and some meaningful results have been
obtained [65–67].

The mathematical descriptions of many evolution processes and hybrid dynamical systems can be
characterized by impulsive systems, and the applications of the theory of impulsive systems to engi-
neering or biosciences are increasing, including mechanical systems, automatic and remote control,
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secure communication, neural networks, epidemiology, forestry, vaccination, population management,
etc. See [68–77] for more details. As a very important and meaningful application of impulsive sys-
tems, impulsive dynamical networks (IDNs) have received more and more attentions, and impulsive
control has shown its advantages in control purpose on the clustering properties of IDNs, especially in
the synchronization problems. Intuitively, dynamical networks can be regarded as a whole composed
of a large number of systems with dynamical behaviors and their interactions. Generally, the system
is regarded as a single node, and the interactions between systems are regarded as the connections or
edges between the nodes. A single node is the identity element of the network, which has certain dy-
namical behavior. Edges represent the connections between these nodes. All edges combined together
constitute the network topology, so that the networks show the clustering property. Now, there are
many studies on the clustering behaviour of dynamical networks, and synchronization is the key. It can
be found everywhere, such as applauding, the beating of the heart and so on. Synchronization is that
all/some nodes in a network can reach a consistent state [78–86]. For many realistic networks, the state
of nodes is often subject to instantaneous disturbance and experiences abrupt change at certain instants
which may be caused by switching phenomena, frequency change or other sudden noise, that is, it
exhibits impulsive effects [87, 88]. As we mentioned before, impulsive control has a simple structure
and lower control cost, thus impulsive control strategy has been widely applied in the synchronization
for dynamical networks, and many insightful results have been proposed [89–92]. For instance, the
exponential synchronization for memristive networks with inertial and nonlinear coupling terms was
studied by Fu et al. [91], and two novel hybrid mode-dependent pinning impulsive control approaches
were proposed, where one was adaptive element-selection, and the other was fixed node-selection. Ji et
al. introduced the concept of average delayed impulsive weight (ADIW) to explore the synchronization
of IDNs with both system delay and coupled delay, and the certain flexible criteria were given as well
as the estimated corresponding convergence rate [92].

By analyzing related studies, this paper provides a comprehensive and intuitive overview for non-
linear impulsive systems, involving time delay, event-triggered mechanism (ETM), hybrid impulses,
and the applications in dynamical networks. Essentially, it focuses on the stability and stabilization
problems, and some meaningful results in recent works have been presented. The rest of this paper is
organized as follows. In Section 2, some fundamental notations and descriptions for impulsive systems
are presented. Section 3 covers the stability problems of IDSs and DISs, which are divided according
to the different parts where the time delay exists. The impulsive control strategy based on certain event,
named ETIC, is introduced in Section 4, which involves several classical ETMs. Section 5 considers
the analysis of dynamical behaviour of nonlinear systems in the presence of hybrid impulses. The ef-
fects of impulses existing in dynamical networks are illustrated in Section 6, and some synchronization
results are given. Section 7 concludes the paper and discusses the future research directions on this
topic.

Notation: Let Z+ denote the set of positive integer numbers, R the set of real numbers, R+
the set of nonnegative real numbers, R>0 the set of positive real numbers, and Rn and Rn×m the
n-dimensional Euclidean space and the set of all n × m real matrices, respectively. The sym-
bol ∥x∥ stands for the Euclidean norm of a real vector x, and I represents the identity matrix
with compatible dimension. a ∨ b and a ∧ b are the maximum and minimum of a and b, re-
spectively. For any interval J ⊆ R, set S ⊆ Rk(1 ≤ k ≤ n), C(J, S ) = {φ : J →

S is continuous} and C1(J, S ) = {φ : J → S is continuously differentiable}. PC(J, S ) = {φ : J →
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S is continuous everywhere except at finite number of points t, at which φ(t+), φ(t−) exist and φ(t+) =
φ(t)}. If a continuous function φ(s) > 0 for all s > 0 and φ(0) = 0, then φ ∈ P. Moreover, if
φ ∈ P and is globally Lipschitz continuous, then φ ∈ PL. For given ℑ > 0, set Cℑ = C([−ℑ, 0],Rn)
and PCℑ = PC([−ℑ, 0],Rn) with the norm ∥ × ∥ defined by ∥φ∥ℑ = sup{∥φ(s)∥ : s ∈ [−ℑ, 0]}.
B(ℑ) = {x ∈ Rn : ∥x∥ < ℑ}. Let (Ω,R, {Rt}t≥0,P) be a complete probability space with a natural filtra-
tion {Rt}t≥0 satisfying the usual condition (i.e., it is right continuous, and R0 satisfies the usual condition
and contains all P-null sets). PCb

R0
([−ℑ, 0],Rn) denotes the family of all bounded R0-measurable, and

PLp
R0

([−ℑ, 0],Rn) denotes the family of all R0-measurable. E(·) denotes the expectation operator with
respect to the probability measure P. Given a constant M > 0, set CM

ℑ
= {φ ∈ Cℑ : 0 < ∥φ∥ ≤ M}.

A function ϑ : [0,∞) → [0,∞) is of class K if ϑ is continuous, strictly increasing, and ϑ(0) = 0. In
addition, if ϑ is unbounded, then it is of class K∞. KL = {β ∈ C(R+ × R+,R+)| β(r, t) is in class K
w.r.t. r for each fixed t ≥ 0, and β(r, t) is decreasing to 0 as t → ∞ for each fixed r ≥ 0}.

2. Preliminaries

Consider the general impulsive system{
ẋ(t) = f (t, x(t)), t , tk, t ≥ t0,

x(t) = gk(t−, x(t−)), t = tk, k ∈ Z+,
(2.1)

where x(t) ∈ Rn denotes the system state, ẋ denotes the left-hand derivative of x, functions f , gk ∈

R+ × R
n → Rn, with f locally Lipschitz, such that f (t, 0) = 0 and gk(t, 0) = 0, so that system (2.1)

admits a trivial solution x ≡ 0. The impulsive time sequence {tk, k ∈ Z+} describes that the continuous
dynamics from equation ẋ(t) = f (t, x(t)) activated when t , tk, and the discrete dynamics from the
impulsive condition x(t) = gk(t−, x(t−)) activated when t = tk. As is usual for an impulsive system, we
consider the impulsive time sequence {tk, k ∈ Z+} that is strictly increasing and has no accumulation
points, i.e., limk→∞ tk = ∞. Let the set F0 denote such kind of impulsive time sequences for later use.
The state variables of system (2.1) are right continuous at each tk, i.e., x(t+k ) = x(tk). In other words,
x(t) is continuous at each interval [tk−1, tk), k ∈ Z+. Moreover, a solution of (2.1) is called a solution
with initial value x0 := x(t0), denoted by x(t, t0, x0), if it satisfies initial value x0.

From above model description, one can observe that impulsive system usually consists of three
parts: i) an ordinary differential equation that characterizes the dynamical behaviour between two
consecutive impulsive instants, ii) a difference equation that describes the instantaneous change of
state at each impulsive instant, iii) a regulation that determines when the impulse occurs. Hence, the
impulsive system typically produces solutions that are piecewise continuous. Namely, for system (2.1),
a function x ∈ PC([t0, t0 + ℓ),Rn) is said to be a solution of system (2.1) on [t0, t0 + ℓ) for some ℓ > 0, if
x(t) is piecewise absolutely continuous in [t0, t0 + ℓ), is continuous at each t , tk in [t0, t0 + ℓ), satisfies
the differential equation of (2.1) for all t ∈ [t0, t0 + ℓ) except on a set of Lebesgue measure zero, and
satisfies the difference equation of (2.1) for all tk ∈ [t0, t0+ ℓ). Other necessary and sufficient conditions
for function x ∈ PC([t0, t0 + ℓ),Rn) to be a solution of system (2.1) can be found in [1, 5]. In what
follows, some main stability definitions for (2.1) will be briefly introduced.

Definition 1. Suppose that an impulsive time sequence {tk, k ∈ Z+} is given. Let x(t) = x(t, t0, x0) be
the solution of system (2.1) through (t0, x0). Then, system (2.1) is said to be
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(D1) stable if for any ε > 0, t0 ≥ 0, there exists a σ = σ(t0, ε) > 0 such that ∀x0 : ∥x0∥ < σ implies
that ∥x(t)∥ < ε for all t ≥ t0;

(D2) uniformly stable (US) if δ in (D1) is independent of t0;
(D3) asymptotically stable (AS) if (D1) holds, and there exists a σ > 0 such that ∀x0 : ∥x0∥ < σ

implies that limt→∞ ∥x(t)∥ = 0;
(D4) exponentially stable (ES) if there exist σ, λ > 0, η ≥ 1, such that ∀x0 : ∥x0∥ < σ implies that

∥x(t)∥ ≤ η∥x0∥e−λ(t−t0) for all t ≥ t0;
(D5) globally exponentially stable (GES) if there exist λ > 0, η ≥ 1, such that ∀x0 implies that

∥x(t)∥ ≤ η∥x0∥e−λ(t−t0) for all t ≥ t0;
(D6) globally uniformly exponentially stable (GUES) if the GES property holds over the class Φ,

where Φ denotes a class of impulsive time sequences in F0.

Definition 2. V(t, x) : [t0,∞) × Rn → R+ is said to be inV0 if
(D1) V(t, x) is continuous in [tk−1, tk) × Rn, k ∈ Z+ and lim(t,z)→(tk ,z

′ ) V(t, z) = V(tk, z
′

);
(D2) V(t, x) is locally Lipschitz in x and V(t, 0) = 0 for all t > 0;
(D3) there exist positive scalars ω1, ω2 and p such that ω1∥x∥p ≤ V(t, x) ≤ ω2∥x∥p,∀x ∈ Rn.

Definition 3. Let V(t, x) ∈ V0, and then the left-upper Dini derivative of V(t, x) along (2.1) is defined
as

D+V(t, x) = lim sup
h→0+

1
h

[V(t + h, x + h f (x)) − V(t, x)],

where (t, x) : [tk−1, tk) × Rn, k ∈ Z+.

Based on the Lyapunov method, the Lyapunov function V(t, x) with proper form is usually con-
structed to reflect the evolution process of system state. By introducing indexes α ∈ R, β ∈ R+
named rate coefficients, it holds for any k ∈ Z+ that D+V(t, x(t)) ≤ αV(t, x(t)), t , tk and V(t, x(t)) ≤
βV(t−, x(t−)), t = tk. Specially, β is usually called the impulsive gain. Due to the fact the impul-
sive gain in (2.1) may be different at the different impulsive instants, the dynamical behaviour x(t) =
gk(t−, x(t−)), t = tk implies that β can also be rewritten as βk, that is, V(t, x(t)) ≤ βkV(t−, x(t−)), t = tk.

It should be mentioned that, β corresponds to different value ranges in terms of the different effects of
impulses on the dynamic behaviour of the system, that is,

i) If the state value at tk is lower than the state value at t−k , that is, the impulses are beneficial for
the stability property of system (2.1), then we say that impulses are stabilizing. In this case, β can
be chosen in (0, 1) to characterize the positive effect of impulses. The stabilizing impulses can be
considered as impulsive control input, and the relevant results have been shown in [15, 48, 92–94];

ii) If the state value at tk is equal to the state value at t−k , that is, the impulses are neither harmful nor
beneficial for the stability property of system (2.1), then these impulses are named as inactive impulses,
under which β can usually be chosen as 1.

iii) If the state value at tk is larger than the state value at t−k , that is, the impulses can potentially
destroy the stability property of system (2.1), then we say that impulses are destabilizing. In this case,
β can be chosen in (1,∞) to characterize the negative effect of impulses. The destabilizing impulses
can be regarded as impulsive disturbance; see [10, 12, 13].

Remark 1. Clearly, constants α and β are used to characterize the evolution of the Lyapunov function
along the solutions to an impulsive system, and such characterizations are referred to as linear rates
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(since the resulting inequalities on D+V(t, x(t)), t , tk and V(t, x(t)), t = tk are linear). Interestingly, one
can use arbitrary nonlinear functions instead of linear ones with slopes α and β. Specifically, assume
there exist functions αL ∈ P and βL ∈ PL, the dynamical behaviour of impulsive system can be described
by D+V(t, x(t)) ≤ αL(V(t, x(t))), t , tk and V(t, x(t)) ≤ βL(V(t−, x(t−))), t = tk. Such an approach with
nonlinear rates is especially beneficial for nonlinear impulsive systems, and it is able to obtain less
conservative stability conditions compared to the conditions based on linear rates. For more detailed
discussions, see [95–99] and the references therein.

For impulsive systems, an important scheme is to consider the impulsive time sequence {tk, k ∈ Z+},
which determines when the impulse occurs. Generally, there are two mechanisms that have been used
in existing works: Time-triggered mechanism (TTM) and event-triggered mechanism (ETM). Namely,
the former means that the instants of impulses follow the certain preset rule as time goes by, and the
conditions proposed to restrict the impulsive time sequences can be divided into the following several
classes:

i) ArDT (arbitrary dwell-time) condition [100]: impulsive time sequence {tk, k ∈ Z+} is said to
satisfy ArDT condition, denoted by {tk, k ∈ Z+} ⊆ F0, if tk − tk−1 > 0 for any k ∈ Z+;

ii) FDT (fixed dwell-time) condition [101]: impulsive time sequence {tk, k ∈ Z+} is said to satisfy
FDT condition, denoted by {tk, k ∈ Z+} ⊆ Fρ for some ρ > 0, if tk − tk−1 ≡ ρ for any k ∈ Z+;

iii) MiDT (minimum dwell-time) condition [102]: impulsive time sequence {tk, k ∈ Z+} is said to
satisfy MiDT condition, denoted by {tk, k ∈ Z+} ⊆ F +ρ for some ρ > 0, if tk − tk−1 ≥ ρ for any k ∈ Z+;

iv) MaDT (maximum dwell-time) condition [103]: impulsive time sequence {tk, k ∈ Z+} is said to
satisfy MaDT condition, denoted by {tk, k ∈ Z+} ⊆ F −ρ for some ρ > 0, if tk − tk−1 ≤ ρ for any k ∈ Z+;

v) TsDT/PDT/RDT (two sided/persistent/range dwell-time) condition [103–105]: impulsive time
sequence {tk, k ∈ Z+} is said to satisfy TsDT/PDT/RDT condition, denoted by {tk, k ∈ Z+} ⊆ F

ρ2
ρ1 for

some ρ2 ≥ ρ1 > 0, if ρ1 ≤ tk − tk−1 ≤ ρ2 for any k ∈ Z+;
vi) AII (average impulsive interval) condition [88]: impulsive time sequence {tk, k ∈ Z+} is said to

satisfy AII condition, denoted by {tk, k ∈ Z+} ⊆ FAII , if there are positive constants τAII ,N0, such that
t−s
τAII
− N0 ≤ N(t, s) ≤ t−s

τAII
+ N0,∀t ≥ s ≥ t0, where N(t, s) denotes the number of impulsive instants

in the semi-open interval [s, t), τAII represents the AII constant of FAII , and N0 is called the elasticity
number.

vii) EUB (eventually uniformly bounded) condition [95,96]: impulsive time sequence {tk, k ∈ Z+} is
said to satisfy eventually uniformly upper bounded (EUupB) condition, denoted by {tk, k ∈ Z+} ⊆ FBup ,
if for ∀ε > 0, there are positive constants T (ε), δ, such that N(t+∆,t)

∆
≤ δ + ε,∀∆ ≥ T (ε),∀t ≥ t0.

Correspondingly, impulsive time sequence {tk, k ∈ Z+} is said to satisfy eventually uniformly lower
bounded (EUlowB) condition, denoted by {tk, k ∈ Z+} ⊆ FBlow , if for ∀ε > 0, there are positive constants
T (ε), δ, such that δ − ε ≤ N(t+∆,t)

∆
,∀∆ ≥ T (ε),∀t ≥ t0.

Remark 2. In [106, 107], the above described dwell-time conditions have been systematically intro-
duced, and the corresponding stability and stabilization of impulsive systems have been summarized.
Based on TsDT/PDT/RDT condition, Dashkovskiy and Slynko recently considered the nonlinear im-
pulsive systems on Banach spaces subjected to disturbances and looked for dwell-time conditions guar-
anteeing the stability property [104, 105]. Interestingly, the presented results covered the case where
both continuous and discrete dynamics could be unstable simultaneously. That is, the controlled sta-
bility performance of the system could still be obtained, even if the continuous and discrete behaviours
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of the system were both unstable, as long as the proposed TsDT/PDT/RDT condition could be met.
In consideration of the fact that the occurrence of impulses may be not uniformly distributed, hence
there may exist some consecutive impulsive signals separated by less than or greater than fixed bound
ρ. Inspired by this phenomenon, Feketa and Dashkovskiy proposed the EUB conditions [95,96] by im-
proving AII condition [88], which is able to characterize the wider range of impulsive time sequences.
In particular, EUB conditions can be separated into

EUupB :
N(t + ∆, t)
∆

≤ δ + ε, ∀∆ ≥ T (ε), ∀ε > 0, ∀t ≥ t0, (2.2)

EUlowB :
N(t + ∆, t)
∆

≥ δ − ε, ∀∆ ≥ T (ε), ∀ε > 0, ∀t ≥ t0. (2.3)

when the original system without impulsive disturbance is stable, and the impulses are harmful, in
order to guarantee the stability, the impulses should not occur frequently. In this case, condition (2.2)
enforces an upper bound on the number of impulses, and impulsive intervals should be longer. Con-
versely, when the original system without impulse is unstable and the impulses are beneficial, in order
to ensure the stability of the system, it is usually assumed that the frequency of impulses should not be
too low. Therefore, condition (2.3) enforces a lower bound on the number of impulses, and impulsive
intervals will be not overly long in this case. Because EUB conditions are the improved criteria for AII
conditions and are substantially broader than other previously considered classes, it is undoubted the
above two discussions still correspond to the AII conditions. By comparison, conditions ii)–iv) may im-
pose the relatively strong restrictions on the interval length of arbitrary two adjacent impulsive instants,
while there are still some stability criteria based on these conditions that deserve attentions [95,96,108].
Based on the classification criterion proposed by Feketa et al., impulsive time sequences with condi-
tions ii)–iv) can also be regarded as being defined within predefined time-windows [106]. Clearly, no
matter by what standard, such classifications can be a basis to answer a question on the robustness of
impulsive stabilization, w.r.t. the perturbations of the moments of jumps.

For the latter triggered mechanism, that is, the ETM, the instants of impulses are determined by
an event, which is usually generated by some well-designed and output-based or state-based event
conditions. The ETM is generally in the form

tk = inf
k∈Z+
{t ≥ tk−1 : Ω(t) ≥ 0}, (2.4)

where function Ω(t) is named event function. In recent studies, impulsive control equipped with ETM
has been well known as event-triggered impulsive control (ETIC), which has shown its advantages in
the problems of control and communication, see [53, 61–63, 67]. The detailed introductions of ETIC
will be given in Section 4, and the impulsive time sequences involved in other sections are mainly in
the category of TTM.

3. Stability for IDSs and DISs

Time delay is ubiquitous in nature and exists widely in many practical systems [109, 110]. For
those systems with many types of dynamical behaviours, the operation of the system will be affected
differently according to the different parts where the time delay exists. It is possible that the time
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delay exists in continuous or discontinuous dynamics, thus impulsive systems with time delay can be
roughly divided into impulsive delayed systems (IDSs) and delayed impulsive systems (DISs). More
specifically, they are generally reviewed as:

i)

IDSs :


ẋ(t) = f (t, x(t), x(t − τ)), t , tk, t ≥ t0,

x(t) = gk(t−, x(t−)), t = tk, k ∈ Z+,
x(t0 + θ) = ϕ(θ), θ ∈ [−τ, 0],

(3.1)

where τ is a positive constant representing the time delay existing in the continuous dynamics of (3.1).
The function ϕ ∈ PC([−τ, 0],Rn) denotes the initial value of the system state.

ii)

DISs :


ẋ(t) = f (t, x(t), x(t − τ)), t , tk, t ≥ t0,

x(t) = gk((t − τk)−, x((t − τk)−)), t = tk, k ∈ Z+,
x(t0 + θ) = ϕ(θ), θ ∈ [−ϱ, 0],

(3.2)

where the time delays in impulses meet τk ∈ R+, k ∈ Z+, and sequence {τk} is said to be the impulsive
delay sequence. The function ϕ ∈ PC([−ϱ, 0],Rn) denotes the initial value of the system (3.2), where
ϱ = supk∈Z+{τk − tk, τ}.

For impulsive systems (3.1) and (3.2), due to the existing of time delay, initial value (t0, x0) in those
systems without time delay will be transmitted to initial function (t0, ϕ), and the solution to systems
(3.1) and (3.2) through (t0, ϕ) should be denoted by x(t) = x(t, t0, ϕ). For simplicity, here we will not
redescribe the relevant stability definitions of impulsive systems with time delay, which can be easily
deduced on the basis of Definition 1 and 3. Particularly, some necessary definitions should be added
here, which are presented as follows:

Definition 4. Suppose that an impulsive time sequence {tk, k ∈ Z+} is given. Let x(t) = x(t, t0, ϕ) be the
solution of system (3.1) or (3.2) through (t0, ϕ). Then, given constant ℑ > 0, (3.1) or (3.2) is said to be

(D1) locally uniformly stable (LUS) in the region ϕ ∈ CM
ℑ

if there exists a constant M > 0, and if
for any t0 ≥ 0 and ε > 0, there exists some δ = δ(ε,M) ∈ (0,M] such that ∀ϕ : ϕ ∈ Cδ

ℑ
implies that

∥x(t, t0, ϕ)∥ < ε for all t ≥ t0;
(D2) locally uniformly asymptotically stable (LUAS) in the region ϕ ∈ CM

ℑ
if it is US and uniformly

attractive;
(D3) locally exponentially stable (LES) in the region ϕ ∈ CM

ℑ
if there exist constants λ > 0, η ≥

1,M > 0 such that ∀ϕ : ϕ ∈ CM
ℑ

implies that ∥x(t)∥ ≤ η∥ϕ∥ℑe−λ(t−t0) for all t ≥ t0.

In what follows, we start with the stability of IDSs where the time delay exists in the continuous
dynamics of impulsive systems.

3.1. Stability of IDSs

According to IDSs (3.1), it is shown the evolution of continuous dynamical behaviour depends
on not only their current but also historical states of the system. For IDSs (3.1), Lu et al. have
studied its ES property [48], which showed that some unstable IDSs may be stabilized by increasing
time delay in continuous dynamics. More interestingly, it was proved that along with the increase of
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time delay within a certain range, the convergence rate of such IDSs also increased correspondingly.
Then, by utilizing a comparison principle, it could be shown that for some stable IDSs, under certain
conditions, the stability was robust against any large but bounded time delay. Compared with the
previous results on delay-free impulsive systems, some potential impacts of time delay on the stability
were investigated. Next we will emphasize the corresponding results obtained in [48].

Definition 5. A function V ∈ V0 is called an exponential Lyapunov function (ELF) for system (3.1)
with rate coefficients α1, α2 ∈ R and β ∈ R+ if

D+V(t, φ(0)) ≤ α1V(t, φ(0)) + α2V(t − τ, φ(−τ)), t , tk, t ≥ t0,

V(t, gk(φ(0))) ≤ βV(t−, φ(0)), t = tk, k ∈ Z+,

for any φ ∈ PC([−τ, 0],Rn).

Theorem 1. [48] Let V ∈ V0 be an ELF for system (3.1) with rate coefficients α1, α2 ∈ R and β ∈ R+
such that α1 + α2 > 0. Set η∗ = {α1, α2, η0} with α1 +

α2
β

e−η0τ − η0 = 0, and then system (3.1) is GUES
over the class FAII if the following condition holds:

η∗τAII + ln β < 0. (3.3)

Remark 3. Condition (3.3) may not hold when time delay τ is small enough, but it may turn to be
satisfied as τ becomes larger. It implies that for some unstable IDSs, one may achieve the stabilization
by increasing time delay in continuous dynamics. Thus, it may be a hint that the increase of time delay
has the potential stabilizing impact on the stability of impulsive systems, which is not well derived in
the previous results. Further, one can observe that the estimate of convergence rate, i.e., −(η∗ + ln β

τAII
)/p

turns to be larger as time delay τ increases. Namely, in a certain interval, the larger the time delay is,
the faster the system state may converge. Note that in most of the existing results on the stability of
IDSs, one may infer that there is a tendency to destroy the stability along with the increase of time
delay.

In particular, when there is no time delay, i.e., τ = 0, the following corollary has been derived.

Corollary 1. [48] Let V ∈ V0 be an ELF for system (3.1) with rate coefficients α1, α2 ∈ R and β ∈ R+
such that α1+α2 > 0. Then, system (3.1) without time delay is GUES over the class FAII if the following
condition holds:

(α1 + α2)τAII + ln β < 0.

For the case of system (3.1) with arbitrarily finite time delay, the following result has been obtained.

Theorem 2. [48] Let V ∈ V0 be an ELF for system (3.1) with rate coefficients α1, α2 ∈ R and β ∈ R+
such that α1 + α2 > 0. Then, system (3.1) with any large but bounded time delay τ is GUES over the
class FAII if the following condition holds:

α1 +
α2

βN0
+

ln β
τAII
< 0. (3.4)

Mathematical Biosciences and Engineering Volume 20, Issue 2, 4274–4321.



4284

Remark 4. One may see that in the case where β ∈ (0, 1) (both in Theorem 1 and Theorem 2),
the impulsive intervals should be small enough on average to satisfy the conditions (3.3) and (3.4),
respectively. Namely, the more frequent the impulsive control is, the more favorable it may be to the
stabilization of delayed system. In particular, a valid framework has been established by Dashkovskiy
and Feketa to study asymptotic behaviour of Zeno solutions [111], which may be applied to consider
the stabilization under impulsive control with extremely high input frequency. Furthermore, it is worth
noting that the stability criterion in Theorem 2 involves the elasticity number N0, which is very different
from the relevant results on delay-free systems (see [88, 112]). That is, in the previous results, the
stability cannot be destroyed by any given parameter N0 for impulsive systems without time delay.
In addition, we can also observe that parameter N0 is not involved in Theorem 1, i.e., the case for
impulsive systems with small delay. But Theorem 2 implies that for an original stable impulsive
control system with large time delay, it may turn to be unstable with the increase of the parameter N0.
Thus, Theorem 2 further reveals the potential impact of large time delay on the stability of impulsive
control systems under AII condition.

Furthermore, time delay is very likely to be time-varying. Under this case, Li et al. addressed the
IDSs model with time-varying time delay [40]:

ẋ(t) = f (t, x(t), x(t − τ(t))), t , tk, t ≥ t0,

∆x(t) = Ik(t, x(t−)), t = tk, k ∈ Z+,
x(t0 + θ) = ϕ(θ), θ ∈ [−τ∗, 0],

(3.5)

where τ : R+ → [0, τ∗] is the time-varying time delay. For IDSs (3.5), [40] has presented the following
stability result:

Theorem 3. [40] System (3.5) is GES if there exist constants ω1 > 0, ω2 > 0, p > 0, γ > 1, ς > 0, σk >

0,ℵ ∈ Z+, functions α1 ∈ C(R+,R), α2 ∈ C(R+,R) and V ∈ V0 such that:

i) ω1∥x∥p ≤ V(t, x) ≤ ω2∥x∥p, (t, x) ∈ [t0 − τ
∗,∞) × Rn;

ii) D+V(t, φ(0)) ≤ α1(t)V(t, φ(0)) + α2V(t − τ(t), φ(−τ(t))), (t, φ) ∈ R+ × PCτ∗;

iii) V(tk, φ(0)) + Ik(tk, φ) ≤
1
σk

V(t−k , φ(0)), (tk, φ) ∈ R+ × PCτ∗ , where σℵ+k = σk, k ∈ Z+;

iv) sup
k∈Z+
{tk − tk−1} < ∞ and sup

k∈Z+

∫ tk

tk−1

α1(s)ds + σℵ sup
k∈Z+

∫ tk

tk−1

|α2(s)|eςτ(s)ds < ln γ;

v)
{ ∏

1≤ j≤ℵ−1( γ
σ j
∨ 1) ≤ σℵ

γ
, ℵ ≥ 2,

σk ≡ γ, ℵ = 1.

Remark 5. Note that when there is no impulsive control, it is possible that Lyapunov function V in
Theorem 3 tends to infinity since α1 ∈ C(R+,R) and α2 ∈ C(R+,R). That is, it implies that it is possible
that the equilibrium solution of system (3.5) is unstable without impulsive control. However, under
proper impulsive control, the equilibrium solution of system (3.5) can be stabilized and becomes GES.
The impulsive controller {tk, σk}, k ∈ Z+ is composed of impulsive instants tk and impulsive weights σk,
which is implicit in Theorem 3. Compared with the existing results in [113–117] in which a common
threshold for the impulsive weights is needed at each impulsive instant, the proposed result in Theorem
3 removes the restriction on threshold of the impulsive weights. It provides an effective way to ensure
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GES via impulsive control, despite the existence of impulsive disturbance which causes negative effect
to the control.

Remark 6. If the time delay τ(t) in system (3.5) is bounded, then condition iv) in Theorem 3 can be
replaced by

sup
k∈Z+

∫ tk

tk−1

α1(s)ds + σℵ sup
k∈Z+

∫ tk

tk−1

|α2(s)|ds < ln γ.

In addition, under conditions i)–iii) and v) in Theorem 3, Theorem 3 still holds if there exist constants
γ > 1, ς > 0, α∗1 ∈ R, α

∗
2 > 0, such that

α1(t) ≤ α∗1, |α2(t)|eςτ(t) ≤ α∗2, t ≥ t0

and

[α∗1 + α
∗
2σℵ] · sup

k∈Z+
{tk − tk−1} < ln γ.

Corollary 2. [40] System (3) without impulse is GES if there exist constants ω1 > 0, ω2 > 0, p >
0, ς > 0, functions α1 ∈ C(R+,R), α2 ∈ C(R+,R), and a differentiable function V : R+ × Rn → R+ such
that:

i) ω1∥x∥p ≤ V(t, x) ≤ ω2∥x∥p, (t, x) ∈ [t0 − τ
∗,∞) × Rn;

ii) V̇(t, φ(0)) ≤ α1(t)V(t, φ(0)) + α2(t)V(t − τ(t), φ(−τ(t))), (t, φ) ∈ R+ × PCτ∗;
iii) sup

t≥t0
{α1(t) + |α2(t)|eςτ(t)} < 0.

Remark 7. Corollary 2 is a special case of Theorem 3 (i.e., without impulse) which has been partially
derived in [109] and [118]. Nevertheless, there are a lot of differences between the results of Corollary
2 and that of [109] and [118]. Corollary 2 can be applied to the case that the time delay is time-varying
and unbounded, which is not covered in [109] and [118]. For example, it follows from Corollary 2 that
system (3.5) without impulse is GES for the case that τ(t) = ln(1 + t), α2(t) = 1

(1+t)ς , and α1(t) = −2.

In the previous presentation, some sufficient conditions for stability are given in terms of L-R ap-
proach, which could typically be expressed as a Lyapunov function of the form V(x) = xT Px with
P > 0. When using the Lyapunov function, it is necessary to choose a suitable minimum functional
class to estimate the derivative of the Lyapunov function, which is often called the Razumikhin condi-
tion. The concept of L-K functional method introduced by Krasovskii [119] provides less conservative
results than the Razumikhin method since it takes advantage of the detailed information of the time de-
lay, especially for the case involving small time delay. When using L-K functional, the corresponding
derivative can be estimated without the need of minimal functional class. Results in this category are
generally referred to as theorems of L-K type, see [120–123]. In what follows, some stability results
of L-K type for IDSs will be presented.

Theorem 4. [124] If there exist functions V1(t, x) ∈ V0,V2(t, φ) ∈ V∗0(·), positive constants ω1,

ω2, ω3, α, l, p, p1, p2, and {tk} ∈ F1, such that for every k ∈ Z+,

i) ω1∥x∥p1 ≤ V1(t, x) ≤ ω2∥x∥p2 , 0 ≤ V2(t, φ) ≤ ω3∥φ∥
p2
τ , (t, x) ∈ [t0 − τ,∞) × Rn;
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ii) D+V(t, φ) ≤ pV(t, φ), t , tk, where V(t, φ) = V1(t, x) + V2(t, φ);
iii) V1(t, x + gk(t, x)) ≤ βkV1(t−, x), t = tk, where βk ≥ 0;

iv) ln(βk +
ω3

ω1
e( p2

p1
−1)pkl) ≤ −(α + p)l;

then system (3.1) is UES over the class F1, where F1 ∈ F0 denotes a class of {tk} satisfying

τ ≤ tk − tk−1 ≤ l, ∀t ≥ t0.

Note that Theorem 4 is given from the impulsive control point of view, namely, impulses may be
used as a control to stabilize the underlying continuous system. While from the impulsive disturbance
point of view, combining the advantages of L-K and L-R approaches, the following result can be given.

Theorem 5. [125] Given constants ℓ > 0 and L > 0. If there exist functions V1(t, x) ∈ V0,V2(t, φ) ∈
V∗0(·), Wi ∈ K , i = 1, 2, ..., 7,Ψ : [t0 − ℓ,∞) → [0, A] which is continuous with A > 0,Υ ∈
C(R+,R+),Υ ≥ L, p ∈ C(R+,R+), q ∈ C(R+,R+) which is nonincreasing, q(s) > s, s > 0, and {tk} ∈ F0,

such that for every k ∈ Z+,

i) W1(∥x∥) ≤ V(t, φ) ≤ W2(∥x∥) +W3(
∫ t

t−ℓ
Ψ(s)W4(∥φ(s)∥)ds) +W5(

∫ t

−τ

Υ(t − s)W6(∥φ(s)∥)ds),

where V(t, φ) = V1(t, x) + V2(t, φ);
ii) D+V(t, φ) ≤ −W7(∥x(t)∥), t , tk, whenever p(V(t, x(·))) > V(s, x(·))

for max{−τ, t − q(V(t, x(·)))} ≤ s ≤ t, where p(s) > Ms, M =
∞∏

k=1

(1 + βk);

iii) V1(t, x + gk(t, x)) ≤ (1 + βk)V1(t−, x) t = tk, where βk ≥ 0 with Σ∞k=1βk < ∞;

then system (3.1) is UAS over the class F0.

Remark 8. Since the method of L-K functional is sometimes more general than the L-R method, it has
been receiving increasing attention in various dynamical systems [35,101,103,126–129]. Interestingly,
Briat and Seuret developed a new functional-based approach including looped functionals to consider
non-monotonic Lyapunov functions, leading to LMI conditions devoid of exponential terms [103]. Fur-
thermore, in the looped-functional and clock-dependent Lyapunov function frameworks, Briat studied
the stability of uncertain periodic and pseudo-periodic systems with impulses [129]. In addition to
L-R and L-K methods, the Halanay-type inequalities and comparison principle are also the useful tools
to analyze the stability properties of nonlinear delay systems; see [50, 130–132] and the references
therein.

When it comes to the stochastic factors, that is, the impulsive stochastic delay systems (ISDSs),
there are still a lot of meaningful works [133–137]. Generally, the general ISDSs can be modeled as
follows: {

dx(t) = f (t, xt)dt + h(t, xt)dB(t), t , tk, t ≥ t0,

x(t) = gk(t−, x(t−)), t = tk, k ∈ Z+,
(3.6)

where xt0 = ϕ ∈ PC
b
R0

([−τ, 0],Rn), f : [0,∞) × PLp
Rt

([−τ, 0],Rn) → Rn, and h : [0,∞) ×
PLp
Rt

([−τ, 0],Rn) → Rn×m, xt is regarded as a stochastic process such that xt(θ) = x(t + θ), θ ∈ [−τ, 0],
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B(t) = (B1(t), B2(t), ..., Bm(t))T is an m-dimensional Brownian motion defined on a complete probability
space. Before we introduce these works, the following definitions need to be supplied.

Definition 6. The trivial solution (3.6) is called pth moment exponentially stable (p-ES), if there are
positive constants λ and η such that for all ϕ ∈ PCb

R0
([−∞, 0],Rn), E∥x(t, ϕ)∥p ≤ η∥ϕ∥pe−λ(t−t0) holds.

Definition 7. The function V(t, x) : R+ × Rn → R+ belongs to class Ψ if it is continuously twice
differentiable with respect to x and once differentiable with respect to t.

We first introduce the results derived by Hu et al., which studied the Razumikhin stability for a class
of ISDSs with which the time-derivatives of the Razumikhin functions were allowed to be indefinite
[138].

Theorem 6. [138] Let p, ω1, ω2, q > 1 be all positive constants. If there exist a function V ∈ Ψ and
constants ρ, β ∈ (0, 1) such that the conditions:

i) ω1∥x∥p ≤ V(t, x) ≤ ω2∥x∥p, (t, x) ∈ [t0 − τ,∞) × Rn;
ii) ELV(t, xt) ≤ µ(t)EV(t, x(t)) if EV(t + θ, x(t + θ)) ≥ qEV(t, x(t)), t , tk;
iii) EV(t, x(t)) ≤ βEV(t−, x(t−)), t = tk;

iv) (β ∨ q−1)eµ̃ ≤ ρ, where µ̃ = sup
k∈Z+

∫ tk

tk−1

max{0, µ(t)}dt,

then system (3.6) is p-ES.

Obviously, the β reflecting the effect of impulse in Theorem 6 is in (0, 1), that is, the impulses are
conducive to the stability of the system. Next, the result under case β ≥ 1 will be introduced.

Theorem 7. [138] Let p, ω1, ω2, q > 1 be all positive constants. If there exist a function V ∈ Ψ, a
uniformly exponentially stable function µ(t) with parameters α and γ, constants ρ ∈ (0, 1), β ≥ 1 such
that the conditions:

i) ω1∥x∥p ≤ V(t, x) ≤ ω2∥x∥p, (t, x) ∈ [t0 − τ,∞) × Rn;
ii) ELV(t, xt) ≤ µ(t)EV(t, x(t)) if EV(t + θ, x(t + θ)) ≥ qEV(t, x(t)), t , tk;
iii) EV(t, x(t)) ≤ βEV(t−, x(t−)), t = tk;

iv) βN0eγq−1 ≤ ρ, τAII >
ln β
α
,

then system (3.6) is p-ES.

Moreover, [139] investigated p-ES of ISDSs with infinite delays. The main idea was to construct a
positive function q(t) that was determined by the infinite delay. Thereby, model (3.6) can be rewritten
as {

dx(t) = f (t, x(t), x(t − τ(t)))dt + h(t, x(t), x(t − τ(t)))dB(t), t , tk, t ≥ t0,

x(t) = gk(t−, x(t−)), t = tk, k ∈ Z+,
(3.7)

where τ ∈ PC(R+,R+) is the infinite delay which satisfies (t − τ(t)) → ∞ when t → ∞. Furthermore,
define ť = inft≥t0{t − τ(t)}.
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Theorem 8. [139] Suppose that there exist functions V ∈ Ψ,m(t), q(t) defined from (ť,+∞) to R+ and
some positive constants p, ω1, ω1, c̃, γ such that the following conditions hold:

i) ω1∥x∥p ≤ V(t, x) ≤ ω2∥x∥p, (t, x) ∈ [t0 − τ,∞) × Rn;
ii) ELV(t, x(t), x(t − τ(t))) ≤ m(t)EV(t, x(t)) if EV(t − τ(t), x(t − τ(t))) ≥ q(t)EV(t, x(t)), t , tk;
iii) EV(t, x(t)) ≤ (1 + vk)EV(t−, x(t−)), vk ≥ 0 and Σ∞k=1(1 + vk) < ∞, t = tk;

iv) sup
t≥t0

∫ t+z

t
m(s)ds, where z = max

k∈Z+
{zk = tk − tk−1}.

Then, system (3.7) is p-ES.

Since the IDSs (ISDSs) model was proposed, the related studies on their stability analysis have
made great progress during the past few years, for their wide applications in real engineering practice.
For example, an early study can be traced back to 2001, where Liu and Ballinger applied the impulse
(especially impulsive control) in delayed differential equations and established the sufficient criteria
on uniform asymptotic stability (UAS) for impulsive delayed differential equations by using Lyapunov
functions and Razumikhin techniques, which showed that impulses did contribute to yield stability
properties even when the underlying system did not enjoy any stability behavior [140]. Furthermore,
for those differential equations with infinite time delay, by using the inequality technique given in
[141], the more general results on stability of infinite delayed differential equations were presented
via impulsive control. Since time delay is very likely to be time-varying, Li and Cao addressed the
impulsive systems with unbounded time-varying time delay and introduced a new impulsive delayed
inequality that involved unbounded and non-differentiable time-varying time delay [142], where some
sufficient conditions ensuring stability and stabilization of impulsive time-unvarying and time-varying
systems were derived, respectively. Moreover, when the change of time lag is related to the system
state, which is usually called the state-dependent time delay, some interesting works can be found
in [33,143]. In [144], for the case that impulsive strengths were stochastic and impulsive intervals were
confined by the AII and the case that both the impulsive intensity and density were stochastic, the ISS
problems were considered for nonlinear impulsive systems, respectively. Zhang et al. considered the
semi-Markov jump and stochastic mixed impulses simultaneously in the stochastic delayed systems,
and the p-ES property was derived by using the methods of graph theory, stochastic analysis technique,
and a new impulsive differential inequality [145]. Furthermore, an output-feedback control problem
was investigated for a class of stochastic systems with impulsive effects under Round-Robin protocol
[146], and the designed problem was deduced by solving a set of semi-definite programming problem.
For the synchronization problem, Zhang et al. investigated the synchronization problem of coupled
switched neural networks (SNNs) with mode-dependent impulsive effects and time delays [147], where
the involved impulses included those that suppressed synchronization or enhanced synchronization.
Based on switching analysis techniques and comparison principle, the exponential synchronization
criteria were derived for coupled delayed SNNs with mode-dependent impulses. For more related
works on IDSs (ISDSs) and the potential impacts of time delay, see [26, 148–152] and the references
therein.

3.2. Stability of DISs

DISs (3.2) describe a phenomenon where impulsive transients depend on not only their current but
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also historical states of the system; see [45, 153–158]. For instance, in population dynamics such as
in the fishing industry [45], effective impulsive control such as harvesting and re-leasing can keep the
balance of fishing, and the quantities of every impulsive harvesting or releasing are not only measured
by the current numbers of fish but also depend on the numbers in recent history due to the fact that
the immature fishes need some time to grow. As another example, in communication security systems
based on impulsive synchronization [157,158], there exist transmission and sampling delays during the
information transmission process, where the sampling delays created from sampling the impulses at
some discrete instants causes the impulsive transients to depend on their historical states. In previous
results, the time delays in impulses are confined by some strong constraints, e.g., time delays are
required to be fixed, or their upper bound should be small enough (see [44, 159–161]) and thus the
corresponding criteria may not be flexible to some degree. However, in practice, the occurrence of
delays is not always changeless. On the contrary, time delays may be flexible or even larger than
the length of impulsive interval. Motivated by the above-mentioned current situation, the concept of
average impulsive delay (AID) is proposed [162], which will be introduced in the following. Note that
this concept allows that time delays in impulses can exist flexibly and even be larger than the length of
impulsive interval. Namely, the upper bound of the sizes of delays in impulses is allowed to be very
large. In particular, if τk ≡ 0, then system (3.2) becomes a well-known case, that is, x(tk) = gk(t−k , x(t−k )),
which implies that the state jump at an impulsive instant depends on its current state.

Definition 8. A function V ∈ V0 is called an ELF for system (3.2) with rate coefficients α1, α2 ∈ R and
β ∈ R+ if

i) D+V(t, φ(0)) ≤ α1V(t, φ(0)) + α2V(t − τ, φ(−τ)), t , tk, t ≥ t0,

ii) V(t, gk(φ(0))) ≤ βV((t − τk)−, φ(0)), t = tk, k ∈ Z+,

for any φ ∈ PC([−ϱ, 0],Rn).

Definition 9. [162] Assume that there exist positive numbers τAID and ∆ such that

τAIDN(t, t0) − ∆ ≤
N(t,t0)∑

j=1

τ j ≤ τAIDN(t, t0) + ∆, ∀t ≥ t0,

where ∆ is called the preset value, and τAID is the AID constant of impulsive delay sequence {τk}.

Let H[τAII , τAID] denote the class composed of impulsive time sequence {tk} and impulsive delay
sequence {τk}. The main results in [162] have been presented from the following two cases: i) stability
of delayed systems with destabilizing delayed impulses, where time delays in impulses can be flexible
and even larger than the length of impulsive interval, and ii) stability of delayed systems with stabiliz-
ing delayed impulses, where time delays in impulses are flexible between two consecutive impulsive
instants. For the former case, the following result has been obtained.

Theorem 9. [162] Let V be the ELF for system (3.2) with constants α1, α2 > 0 and β > 1. Then,
system (3.2) is GUES over the class H[τAII , τAID] if the following condition holds:

ϵ1(τAID − τAII) + ln β < 0, (3.8)

where ϵ1 > 0 satisfies that α1 + α2eϵ1τ + ϵ1 = 0.
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Remark 9. One can observe that when the rate coefficients of an ELF for system (3.2) satisfy that
α1 > α2 > 0 and β > 1, the continuous dynamics are stable, but the impulses potentially destroy the
stability. Hence, the impulses cannot happen too frequently if system (3.2) is required to be stable.
Consequently, condition (3.8) indicates that τAII > τAID +

ln β
ϵ1
. Note that this condition also implies

that AII constant is supposed to be larger when AID constant becomes larger. In other words, the time
delay in destabilizing impulses brings a destructive tendency to the stability, and further, the larger
the delay is, the stronger the destructiveness it may bring. In addition, one can check that ϵ1 will be
smaller if delay τ in continuous dynamics becomes larger and condition (3.8) may not hold when (3.8)
is sufficient small. Thus, it is required that delay τ in continuous dynamics cannot be too large in the
above results.

For the latter case, that is, the delayed impulse is stabilizing, and [162] presented the following
result:

Theorem 10. [162] Let V be the ELF for system (3.2) with constants α1 ∈ R, α2 > 0 and β ∈ (0, 1).
Then system (3.2) is GUES over the class H[τAII , τAID] if the following condition holds:

η∗(τAII − τAID) + ln β < 0, (3.9)

where η∗ = max{−α1 +
α2
β
, 0}.

Remark 10. For delayed systems with stabilizing delayed impulses, from α1 ∈ R, α2 ≥ 0 and β ∈
(0, 1), it is clear that the continuous dynamics may be unstable, and the impulses are beneficial for
the stability. Hence, stabilizing impulses are supposed to occur persistently, namely, the AII constant
cannot be too large if system (3.2) is required to be stable. Therefore, condition (3.9) implies that the
AII holds τAII < τAID −

ln β
η∗
. One can observe that, owing to the existence of time delays in stabilizing

impulses, τAII is permitted to be greater than the delay-free case, i.e., τAII < −
ln β
η∗
. It illustrates that

the time delay in stabilizing impulses may bring a stabilizing effect to the stability of system (3.2).
Further, from Theorem 10 one can also observe that there are no extra restriction on time delay τ
in continuous dynamics. Thus, we can conclude that Theorem 10 holds for all time delays τ such
that τk < τ ≤ tk − tk−1. Namely, for some stable delayed systems with stabilizing delayed impulses,
under some conditions, the stability can always be ensured regardless of the size of delay in continuous
dynamics.

It should be noted that most of the results focusing on DISs mainly consider the time delay existing
in controller-sensor pair. For those delays existing in the controller-actuator pair, which known as
actuation delays, there is little literature to explore. Recently, the newest results in [163] considered
this case, and hence the impulsive systems with actuation delay can be shown as{

ẋ(t) = f (t, x(t)), t , sk + τ, t ≥ t0,

x(t + τ) = gk(t−, x(t−)), t = sk + τ, k ∈ Z+.
(3.10)

Compared (3.2) with (3.10), one may amazingly find that their differential equation expression are
same mathematically, that is, system (3.10) can be transformed to (3.2) as long as one denotes sk+τ by
tk. Nevertheless, the dynamical behaviour they describe are actually very different. For system (3.2),
the impulsive jump at tk is dependence of the system state at tk − τ, while (3.10) shows the impulsive
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jump generated at tk can not be implemented successfully at impulsive instant sk until time goes to sk+τ.

Hence, the impulse mechanisms in (3.2) and (3.10) can be considered as the forward and the backward
process, respectively, even through their differential equation expressions are same in mathematics.

Furthermore, it is possible that time delay is dependent on both time and system state. In this
case, [164] has considered the following model:

ẋ(t) = f (t, x(t)), t , tk, t ≥ t0,

x(t) = gk((t − τ̃)−, x((t − τ̃)−)), τ̃ = τ̃(t−, x(t−)), t = tk, k ∈ Z+,
x(t0 + θ) = ϕ(θ), θ ∈ [−τ∗, 0],

(3.11)

where τ̃ ∈ C(R+ × Rn, [0, τ∗]) represents the state-dependent delay. Some sufficient conditions under
which the stability property of (3.11) can be guaranteed were also derived in [164].

Theorem 11. [164] Assume that there exist constants γ > 0, θ ∈ (0, 1),M > 0, βk ≥ 1, k ∈ Z+,
functions ω1, ω2 ∈ K ,Ξ ∈ C(R+ × R+,R+), and V ∈ V0 such that

i) ω1(∥x∥) ≤ V(t, x) ≤ ω2(∥x∥), (t, x) ∈ [t0 − τ
∗,∞) × Rn;

ii) D+V(t, x) ≤ −Ξ(t,V(t, x)), t , tk, t ≥ t0;
iii) V(t, x(t)) ≤ βkV((t − τ̃)−, x((t − τ̃)−)), t = tk, k ∈ Z+;
iv) |τ̃(s,u) − τ̃(s, 0)| ≤ γ|u|, s ∈ R+, u ∈ Rn;
v) τ̂ = sup

t≥t0
τ̃(t, 0) < ∞;

vi) ∀k ∈ Z+, ln βk +

∫ tk

tk−ζ
sup

u∈(0,ω2(M))

Ξ(s, u)
u

ds ≤ θ
∫ tk

tk−ϖ
inf

u∈(0,ω2(M))

Ξ(s, u)
u

ds.

Then system (3.11) is LUS in the region ϕ ∈ CM
τ∗ , where ζ = γω−1

1 [ω2(M)] + τ̂ < ϖ,ϖ = infk∈Z+{tk −

tk−1} > 0. Furthermore, if for any κ > 0, there exist Ω = Ω(κ) > 0 such that

vii)
∫ t

t0
inf

u∈(0,ω2(M))

Ξ(s, u)
u

ds > κ, t ≥ t0 + Ω,

then system (3.11) is LUAS in the region ϕ ∈ CM
τ∗ .

Remark 11. Theorem 11 presents some conditions for US and UAS of systems with impulses involv-
ing state-dependent time delay. One may observe that these kinds of impulses are more complicated
than the ones in [157–159, 165] that are only dependent on current states or past states in given time
interval. Even if βk ≤ 1, it is possible that function V has state-dependent increase at different impulse
points. Thus, more conditions such as restrictions iv) and v) on state-dependent time delay τ̃ must be
imposed on these kinds of impulsive systems. In fact, one may note that the local stability of system
(3.11) implies the local boundedness of system states, which leads to the boundedness of the state
delay. Thus, the time delay in Theorem 11 actually is bounded, but it is not required a priori. In other
words, one can utilize the stability criteria to know the boundedness of the state-dependent time delay,
but do not assume the boundedness of time delay a priori. Mnt impulsive disturbance (βk > 1), it is
possible that system (3.11) is unbounded if the impulsive interval is small oreover, due to the existence
of impulses, especially for persisteenough.
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In addition to the latest results described above, Chen and Zheng have dealt with both destabilizing
delayed impulses and stabilizing delayed impulses, and the corresponding Lyapunov-type sufficient
conditions for exponential stability have been derived [166]. In [164], Li and Wu focused on stability
problem of nonlinear differential systems with impulses involving state-dependent time delay based
on Lyapunov methods, and some general and applicable results for US, UAS and ES of systems were
derived by using the impulsive control theory and some comparison arguments. It has been shown how
restrictions on the change rates of states and impulses should be imposed to achieve systems stability,
in comparison with general impulsive delayed differential systems with state-dependent time delay in
the nonlinearity, or the differential systems with constant time delays. Furthermore, Li and Wu studied
the delayed impulsive control of nonlinear differential systems, where the impulsive control involved
the delayed state of the system for which time delay was state-dependent [167]. With the development
of impulsive control theory, some recent works have focused on ISS property of delayed control system
under the delayed impulsive control. For example, Zhang and Li addressed the ISS and integral ISS
(iISS) of nonlinear systems with distributed delayed impulses [168]. Meanwhile, Li et al. studied
the ISS property of nonlinear systems with delayed impulses and external input affecting both the
continuous dynamics and the state impulse map [43]. Correspondingly, when it comes to the stochastic
factor in delayed impulses, i.e., the stochastic delayed impulses, there are some (but very little) results
[169], which deserve to be deeply explored. In addition, it seems that there have been few results that
consider the effect of delayed impulses on ISS property for nonlinear systems, which still remains as an
important direction in research fields. In the application of networked control systems, due to the finite
speed of computation, a type of delayed impulses which were called sensor-to-controller time delay
and controller-to-actuator time delay do exist in a working network; see [156, 160, 170, 171] for more
details. Clearly, the above mentioned results are mainly focused on the discrete delays and time-varying
delays. There are still many important results on the stability of impulsive systems with distributed
delays that deserve attentions. For instance, Rubbioni showed the asymptotic stability of the solutions
of some differential equations with distributed delay and subject to impulses [172], and the established
criteria were prodromes of the mild solutions to a semi-linear differential equation with functional delay
and impulses in Banach spaces and of its application to a parametric differential equation driving a
population dynamics model. Liu and Zhang applied the distributed-delay dependent impulsive control
on the stabilization of general nonlinear delay systems [173], where the derived sufficient conditions
on the system parameters, impulsive control gains, impulsive instants and distributed delays were in
the form of an inequality for GES. Furthermore, Zhao et al. studied the infinite distributed delay
in nonlinear impulsive system [174], and the GES property was derived based on flexible impulsive
frequency. Note that, the distributed delays are more common in network models, so some novel results
about distributed delays will be given in Section 6.

4. Stability under ETIC strategy

Generally speaking, TTM strictly gives the instants that the impulses are occurring, and then there
may exist some unnecessary impulsive control tasks in TTM even though system has achieved its
desired performance, which may cause a waste of control efforts and communication resources. To
overcome this disadvantage, researchers propose the activation strategy based on a designed event, that
is, the so-called ETM. By designing the proper event function, the triggered instants can be adaptively
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determined according to what is currently happening within the system. The general form of ETM is
tk = infk∈Z+{t ≥ tk−1 : Ω(t) ≥ 0}, where Ω(t) is the deigned event function, tk−1 is the latest impulsive
instant or the initial instant, and tk is the impulsive instant to be determined. Note that, due to the fact
that the information transmissions in ETM are determined by the occurrence of some well-designed
events which are related to the system state or output, then there may be infinite triggered instants
in a very small time interval, which is the so-called Zeno phenomenon. Hence, before verifying the
feasibility of the designed ETM, the possible Zeno phenomenon should be excluded first.

Definition 10. [5] For the closed-loop system (2.1) with triggered instants determined by (2.4), a
solution with initial condition x0 is said to exhibit Zeno behaviour if there exists T > 0 such that tk ≤ T
for all k ∈ Z+. If Zeno behaviour does not occur along any solution of system (2.1), then we say system
(2.1) does not exhibit Zeno behaviour.

It should be mentioned that in general Zeno behavior is not always possible to avoid (think of a
bouncing ball). In this case, still approaches to study asymptotic stability even exist [111], in which
Dashkovskiy and Feketa proposed a method to prolong solutions to the hybrid dynamical system be-
yond its Zeno time and moreover, gave a way for asymptotic characterization of the prolonged solu-
tions. Hence the asymptotic stability with respect to a closed set for those hybrid systems with Zeno
solutions could be verified. For the case that a triggered mechanism has no Zeno behaviour, there are
generally two main ways to confirm it: The first one is to ensure the existence of a uniform lower bound
of any two adjacent triggered instants, and the second one is based on the contradiction argument to
show the exclusion of Zeno behaviour by direct use of Definition 10. It is worth mentioning that en-
suring a lower bound of any two adjacent triggered instants is stronger than ruling out Zeno behaviour.
For example, suppose system (2.1) has a solution with triggered instants tk = Σ

k
i=11/i for k ∈ Z+. It

can be seen that tk → ∞ as k → ∞, which means such a solution does not exhibit Zeno behaviour.
However, a lower bound of any two adjacent triggered instants is not ensured because tk − tk−1 → 0 as
k → ∞. The detailed discussion can be found in [55]. Next, we will first introduce an ETM proposed
by Li et al. in [175]:

tk = inf
k∈Z+
{t ≥ tk−1 : V(t, x) ≥ eakV(tk−1, x(tk−1))}, (4.1)

where ak ∈ R+ are event parameters satisfying
∑m

k=1 ak → ∞ as m → ∞. Based on (4.1), the following
result has been derived.

Theorem 12. [175] System (2.1) is US under ETM (4.1) if there exist functions ω1, ω2 ∈ K∞, a locally
Lipschitz continuous function V ∈ V0, and positive constants α, ak, βk,M, such that

i) ω1(∥x∥) ≤ V(t, x) ≤ ω2(∥x∥), x ∈ Rn; (4.2)
ii) D+V(t, x) ≤ αV(t, x), t , tk, t ≥ t0; (4.3)
iii) V(t, x(t)) ≤ e−βkV(t−, x(t−)), t = tk, k ∈ Z+, (4.4)

where {tk, k ∈ Z+} are triggered instants generated by (4.1), and ak, βk satisfy

iv)
m∑

k=1

(ak − βk) + am+1 ≤ M, ∀m ∈ Z+. (4.5)
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Remark 12. Theorem 12 presents some Lyapunov-based sufficient conditions for US of impulsive
system (2.1) according to ETM (4.1), where condition (4.3) governs the continuous dynamics of the
system between impulsive instants, condition (4.4) governs discrete dynamics of the system when
impulses occur, which can be regarded as an impulse generator, and condition (4.5) establishes the
relationship between event parameters ak and impulse rate coefficients βk, which is crucial to the pro-
posed ETM (4.1). In addition, event parameters ak in ETM (4.1) can be appropriately changed to adjust
the possible triggered instants. Observe that choosing a small value of ak can potentially reduce the
value of the inter-event bound and, thus, increase the frequency of the impulses, which will speed up
the convergence rate. Conversely, choosing a large one will potentially increase the value of the inter-
event bound and, thus, decrease the frequency of the impulses, which will slow down the convergence
rate. As a special case, when the stabilizing effect of the impulsive control vanish gradually as time
goes, i.e., βk → 0 with increasing k, one must require continuous flows to be persistently interrupted by
impulses in order to guarantee the stability. In this case, condition (4.3) enforces a restriction between
ak and βk such that impulsive control appears more and more frequently, but still the Zeno behaviour is
avoided under the help of condition

∑m
k=1 ak → ∞ as m→ ∞.

It is not hard to find that (4.1) needs to memorize the system information at the previous triggered
instant to determine the next triggered instant, which increases the burden of information storage to a
certain extent. Hence, an improved ETM has provided in the form of tk = infk∈Z+{t ≥ tk−1 : V(x(t)) ≥
ae−bt} by Zhang et al. in [163]. Particularly, Zhang and Braverman also considered an interesting time
delay phenomenon named actuator delay, under which the dynamical behaviour in (2.1) at impulsive
instants can be described by x(tk + τ) = g(t−k , x(t−k )), and the extended ETM can be written as

tk =

{
infk∈Z+{t ≥ tk−1 : V(t, x) ≥ ae−bt}, if k = 1,
infk∈Z+{t ≥ tk−1 + τ : V(t, x) ≥ ae−bt}, if k ≥ 2,

(4.6)

where a > 0, b > 0 are event parameters. Based on the following assumptions, the main results in [163]
can be derived.

Assumption 1. Given a positive constant ℑ, there exist positive constants L1, L2 such that

∥ f (t, x)∥ ≤ L1∥x∥ and ∥x + g(t, x)∥ ≤ L2∥x∥

holds for any x ∈ B(ℑ).

Assumption 2. There exist functions V ∈ V0, ω1, ω2 ∈ K∞, positive constants α and β such that, for
any x ∈ B(ℑ),

i) ω1(∥x∥) ≤ V(t, x) ≤ ω2(∥x∥);
ii) D+V(t, x) ≤ αV(t, x);
iii) if y and y + g(t, x) ∈ B(ℑ), then V(y + g(t, x)) ≤ βV(t),

where y = z(s), and z(s) is the solution of the following initial value problem:{
z(t) = f (z(t)),
z(0) = x.
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Theorem 13. [163] Consider system (2.1) with actuator delay in impulsive control, and the triggered
instants are determined by (4.6). Supposed that there exists ℑ > 0 so that Assumption 2 holds for all
x ∈ B(ℑ). If β < 1, a < ω1(ℑ) and 0 ≤ τ < min{ε1, ε2} with

ε1 =
1
α

ln(
ω1(ℑ)

a
) and ε2 =

1
b

ln(
1
β

)

satisfy

L2 +

√
τL1(e2L1τ − 1)

2
<
ℑ

ω−1
1 (a)

, (4.7)

then, for any initial value x0 ∈ B(ω−1
2 (a)), {tk − tk−1, k ∈ Z+} can be lower bounded byD = τ − ln(βebτ)

b+α τ.

Moreover, the trivial solution of system (2.1) with actuator delay in impulsive control is AS.

Remark 13. To ensure the stability, two types of conditions on τ are included in Theorem 13: i)
0 ≤ τ < ε1 with (4.7) satisfied; ii) τ ≤ ε2. The type i) condition guarantees that the system trajectory
stays in B(ℑ) for all t, so that Assumption 1 can be applied, and the type ii) condition ensures the
validity of event-triggered algorithm with triggered instants determined by (4.6). If f and g are globally
Lipschitz, i.e., ℑ = ∞, then both 0 ≤ τ < ε1 and (4.7) hold for all τ, and the only requirement on the
actuation delay is τ ≤ ε2, which implies βebτ ≤ 1. Large delay τ allows the Lyapunov function to
go over and deviate far from the threshold, then big jump of the Lyapunov function at each impulsive
instant is expected such that the Lyapunov function can be smaller than the threshold after the impulse.
For f and/or g being locally Lipschitz on B(ℑ), large ℑ may lead to large L1 and L2, but the largest
admissible delay τ is not directly conclusive from (4.7).

However, one extreme case, where the event function can not be activated while the state of system
diverges in a relatively long time interval, should be mentioned. In this case, the above mentioned
ETMs may be invalid, and hence the desired property of system can not be guaranteed. To deal with this
extreme case, the ETM with forced mechanism gradually attracts people’s attention, where impulses
may be forcibly triggered if the system status or output fails to trigger the event within a relatively
long time interval. By defining forced period ℜ > 0 (a relatively larger real number), Zhu et al. have
constructed an improved ETM [66, 67]:

if ℧1k = {∃t ∈ [tk−1, tk−1 +ℜ) : Ω(t) ≥ 0} , ∅,
then tk = inf{t : t ∈ ℧1k};

if ℧2k = {∀t ∈ [tk−1, tk−1 +ℜ) : Ω(t) ≥ 0} = ∅,
then tk = tk−1 +ℜ.

(4.8)

Remark 14. Under ETM (4.8), we can see that the triggered instants are determined by two kinds of
mechanisms: triggered mechanism and forced mechanism. Specifically, after the last triggered instant
tk−1, if the event function can be triggered at t∗,where t∗ ∈ [tk−1, tk−1+ℜ), then the next triggered instant
tk = t∗. Instead, if the event function fails to be triggered in [tk−1, tk−1+ℜ), then the next triggered instant
is chosen as tk−1 + ℜ, i.e., tk = tk−1 + ℜ. This mechanism is able to effectively deal with a class of
extreme cases where the event function can not be activated while the state of system diverges in a
relatively long time interval, which may degrade the system controlled performance seriously, and the
necessity of forced mechanism has been detailed discussed in [65–67].
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Both impulsive control and event-triggered control (ETC) have been widely explored in the past
decade and years, and many meaningful works have been presented. In view of their wide applications
and great advantages in the field of control, the presentation of ETIC strategy well combines the ad-
vantages of impulsive control and ETC strategy. Roughly speaking, ETIC strategy was first introduced
by Du et al. to change the search performance of the population in a positive way after revising the
positions of some individuals at certain moments, and the proposed ETIC strategy was flexible to be in-
corporated into several state-of-the-art DE variants [176]. Immediately after, Zhu et al. investigated the
exponential stabilization of continuous-time dynamical systems (CDSs) via ETIC approach, and then
the developed ETIC was applied to the synchronization problem of master and slave memristive neural
networks [53]. Tan et al. applied ETIC into the leader-following consensus problem of multi-agent
systems in the sense of distributed strategy, which showed that continuous communication of neigh-
boring agents can be avoided, and Zeno behavior can be excluded [61]. Furthermore, based on the
ETIC strategy designed in [65], Li et al. considered the case that the states of the system are not fully
available [66]. By designing an improved ETM and constructing the proper observer, the ISS problem
for a class of nonlinear systems with external disturbance was solved. Different from [65, 66], Li et al.
further proposed a more flexible ETIC approach in [177], which excluded the forced mechanism, with
guaranteeing the ISS of nonlinear systems by establishing the relationship between impulsive strength
and ETIC. More interestingly, Li et al. gave an improved triggered strategy named self-triggered impul-
sive control (STIC) for stabilization purpose in [178], which was based on the comparison approach.
Different from ETIC strategies mentioned above in which the triggering conditions need to be con-
tinuously or periodically monitored to determine whether an impulse should be generated, the STIC
does not require those monitoring because it can utilize the measurable information to predict the next
impulsive instant.

5. Stability under hybrid impulses

Generally, most results on impulsive systems consider the single kind of impulses. For those sys-
tems with unstable continuous dynamics, the stabilizing impulse (impulsive control) is introduced to
for control purpose, and hence the desired stability property can be achieved. For those systems with
stable continuous dynamics, it is meaningful to consider the possible destabilizing impulse (impulsive
disturbance) so as to explore the robustness of systems against impulsive disturbance. Different from
the above descriptions, it is possible that both two kinds of impulses (stabilizing impulse and desta-
bilizing impulse) are included in one system simultaneously. Specifically, in addition to establishing
the constraint relationship between impulse and continuous dynamics of system, the coupling rela-
tionship between stabilizing impulse and destabilizing impulse is also very important. Based on this
basic thinking, many efforts had been paid to the stability of dynamical systems with hybrid impulses,
especially for ISS [23,24,26,27]. When there existed some external disturbance, ISS was proposed by
Sontag in 1989 so that the effect caused by external disturbance on dynamical behavior of systems can
be effectively depicted [179]. Consider the following IDSs with locally continuous bounded external
input u(t) ∈ Rm, which is in the form

ẋ(t) = f (t, xt, u(t)), t , tk, t ≥ t0,

x(t) = gk(t−, x(t−), u(t−)), t = tk, k ∈ Z+,
x(t0 + θ) = ϕ(θ), θ ∈ [−τ, 0].

(5.1)
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Definition 11. For the prescribed sequence {tk, k ∈ Z+}, system (5.1) is said to be input-to-state stable
(ISS) if there exist functions ϑ ∈ KL and χ ∈ K such that for every initial condition (t0, x0) and each
bounded external input u(t), the solution x(t) satisfies

∥x(t)∥ ≤ ϑ(∥ϕ∥τ, t − t0) + χ(∥u∥[t0,t]), t ≥ t0.

Furthermore, it is said to be uniformly ISS (UISS) over a given class of time sequences Φ if the ISS
property expressed by the above inequality holds for every sequence in Φ, with functions ϑ and χ that
are independent of the choice of the time sequences.

Particularly, Li et al. investigated the ISS property of delayed systems with hybrid impulses [27].
In terms of the Razumikhin-type conditions, the sufficient conditions, under which the ISS can be
guaranteed via exponential ISS-Lyapunov functions, were given from two cases: i) the continuous
dynamics were ISS; ii) the continuous dynamics were non-ISS. First, for the former case, it was shown
that when the continuous dynamics were ISS, and the discrete dynamics that governed the jumps
involved multiple impulses, the ISS property could be retained for arbitrary impulsive time sequences
if the cumulative strength of hybrid impulses satisfied the conditions in the following result.

Theorem 14. [27] Assume that there exist functions V ∈ V0 and ω1, ω2,X∞,X2 ∈ K∞, constants
ℵ ∈ Z+, α > 0, λ ∈ (0, α), and βk, k ∈ Z+ such that βℵ+k = βk for every k ∈ Z+, E(1,ℵ) ≤ 1, and the
following hold:

i) ω1(∥x∥) ≤ V(t, x) ≤ ω2(∥x∥), (t, x) ∈ [t0 − τ,∞) × Rn;
ii) V(t, x) ≤ βkV(t−, x(t−)) + X2(∥u∥), t = tk, k ∈ Z+;
iii) D+V(t, φ(0)) ≤ −αV(t, φ(0)) + X1(∥u∥), t , tk, φ ∈ PCτ,

whenever BV(t + s, φ(s)) ≤ eλτV(t, φ(0)), s ∈ [−τ, 0],

where

B = Bmin ∧
Bmin

Bmax
, Bmax = max

1≤m,l≤ℵ
E(m, l), Bmin = min

1≤m,l≤ℵ
E(m, l),

E(m, l) =
{ ∏l−1

k=1 βm+k for 1 ≤ l,m ≤ ℵ,
1 for l = 0 and 1 ≤ m ≤ ℵ.

Then, the system (5.1) is UISS over the class F0.

For the latter case where the continuous dynamics were not ISS, then the multiple impulses that
satisfied the following conditions could stabilize the system in ISS sense if there was no overly long
interval between impulses.

Theorem 15. [27] Assume that there exist functions V ∈ V0 and ω1, ω2,X∞,X2 ∈ K∞, constants
ℵ ∈ Z+, δ > 0, α > 0, q ∈ (0, e−αδ), λ ∈ (0,− ln q

δ
− α), βk, k ∈ Z+ such that βℵ+k = βk for every

k ∈ Z+,
ℵ
√

E(1,ℵ) ≤ q, and the following hold:

i) ω1(∥x∥) ≤ V(t, x) ≤ ω2(∥x∥), (t, x) ∈ [t0 − τ,∞) × Rn;
ii) V(t, x) ≤ βkV(t−, x(t−)) + X2(∥u∥), t = tk, k ∈ Z+;
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iii) D+V(t, φ(0)) ≤ −αV(t, φ(0)) + X1(∥u∥), t , tk, φ ∈ PCτ,

whenever qℵBV(t + s, φ(s)) ≤ eλτV(t, φ(0)), s ∈ [−τ, 0],
where B is same as in Theorem 14.

Then, the system (5.1) is UISS over the class F −δ .

Remark 15. In [127, 159], the authors presented some sufficient conditions for ISS of impulsive de-
layed systems, where [127, 159] considered the case that the delayed continuous dynamics of the
system was ISS, but all of the discrete dynamics of the impulses were destabilizing. In order to achieve
the ISS property, they required that the impulses did not happen too frequently, i.e., there was a re-
striction on lower bound of the impulsive intervals. Meanwhile, in Theorem 14, Li et al. presented the
sufficient condition for ISS in which the multiple impulses were involved. It showed that under the sta-
bilizing continuous dynamics and the stabilizing cumulative influence of the jumps (i.e., E(1,ℵ) ≤ 1),
the restriction on lower bound of impulsive intervals (i.e., the frequency of the impulses) could be
removed.

Furthermore, Liu et al. extended the hybrid effects of impulses to (3.2) with τ = 0, τk ≡ h,∀k ∈ Z+
in [180]. Based on the results in [27], Li et al. illustrated that impulsive system was ISS provided
that the combined action of time delay existing in impulses, continuous dynamics, and the cumulative
strength of hybrid impulses satisfied some conditions, even if the hybrid delayed impulses played
destabilizing effects on ISS.

Theorem 16. [180] Assume that there exist functions V ∈ V0, ω1, ω2, ρ1, ρ2 ∈ K∞, continuous func-
tions U1 : R→ R,U2 : R+ → R>0, constants M, λ > 0, such that for all t ≥ t0, x ∈ Rn, u ∈ Rm,

i) ω1(∥x∥) ≤ V(t, x) ≤ ω2(∥x∥), (t, x) ∈ [t0 − h,∞) × Rn;
ii) D+V(t, x) ≤ U1(t)V(t, x) whenever V(t) ≥ ρ1(∥u∥), t , tk, t ≥ t0;
iii) V(t, x) ≤ U2(t)V(t− − h, x(t−)) whenever V(t, x) ≥ ρ2(∥u∥), t = tk, k ∈ Z+;
iv)W(t) ≥ 1.

Then system (3.2) with τ = 0, τk ≡ h is UISS over the class
∫
F
, where

∫
F

denotes a class of impulsive
time sequences in F0 satisfying∫ t

t′
U1(s)ds +

∑
tk∈[s,t)

ln(W(tk)) ≤ −λ(t − s) + M, ∀t0 − h ≤ s ≤ t, (5.2)

whereW(t) = U2(t)e
∫ t−h

t U1(s)ds.

Remark 16. Conditions ii) and iii) in Theorem 16 imply that the continuous dynamics of impulsive
system are indefinite, and discrete dynamics (i.e., hybrid impulse) contain multiple effects, respectively.
Condition (5.2) establishes a relationship between the continuous dynamical behaviour of system and
hybrid delayed impulses, which is crucial to ensure the ISS property. Note that, if there is no impulse
during the interval [s, t), then the term

∑
tk∈[s,t) ln(W(tk)) is understood to be zero. Besides, condition

iv) can be removed if the time delay is not too large (i.e., tk − tk−1 ≥ h,∀k ∈ Z+).
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Remark 17. Compared with the existing results in [6,27,181], one of the main contributions of Theo-
rem 16 is to consider the effect of time delay in impulses on ISS property. Especially, if there is no time
delay, i.e., h = 0 and the description of impulse dynamics iii) is replaced by V(t, x) ≤ U1(t)V(t−, x(t−))
for V(t, x) ≥ ρ2(∥u∥), while considering the linear rates of the continuous dynamics and the discrete
dynamics, i.e., U1(t) = α,U2(t) = β, then the requirement ln(W(tk)) ≥ 0 can be discarded, and con-
dition (5.2) reduces to N(t, s) ln β + (α + λ)(t − s) ≤ M, which has been sufficiently studied in [49].
Furthermore, Ning et al. studied the ISS property of delay-free impulsive systems based on the Lya-
punov function with indefinite derivative [182]. However, only a single effect of the impulse, i.e., the
stabilizing impulse or the destabilizing impulse, was taken into account. Hence the results obtained
in [180] have wilder applications. In addition, in [182], the authors required that the corresponding
function U1(t) should satisfy

∫ ∞
t0

(U1(s) ∨ 0)ds = ∞, which was quite strict. Observe that in result
of Theorem 16, such restriction on the continuous dynamics is completely dropped. Thus, the result
derived in [180] is less conservative than the results proposed in [182] even in the delay-free case.

Since they were first systematically studied by Dashkovskiy and Feketa [6, 183], the hybrid im-
pulses have been proved that they are likely to appear in various engineering systems with complex
operating environment, and many works have been given. For instance, Feketa and Bajcinca studied
a class of impulsive system with multiple impulsive time sequences and a distinct jump map for each
sequence, and a set of less conservative criteria were proposed by introducing the multiple nonlin-
ear rate functions to characterize system behaviour during flows and jumps [184]. Recently, Wang
et al. proposed two new concepts on AII and average impulsive gain (AIG) to deal with the diffi-
culties coming from hybrid impulses so that the problem of globally exponential synchronization of
coupled neural networks with hybrid impulses could be solved, and the derived method and criteria
were proved to be effective for impulsively coupled neural networks simultaneously with synchroniz-
ing impulses and desynchronizing impulses [24]. Particularly, these two kinds of impulses did not
need to be discussed separately. Furthermore, the pinning synchronization problem of impulsive Lur’e
networks with nonlinear and asymmetrical coupling was studied by Wang et al. in [23], where the
synchronizing impulses and desynchronizing impulses were allowed to occur simultaneously. In the
presence of external disturbance, Liu et al. considered the hybrid impulses affected by time delay, and
the ISS and iISS properties were investigated via the Lyapunov method, where the time derivative of
Lyapunov function was indefinite [180]. Then, considering the stochastic factor, the stochastic hybrid
impulses possessing stochastic impulsive instants and impulsive gains were studied by Zhang et al.
in [185]. By the use of Dupire Itô’s formula, based on Lyapunov method, graph theory and stochas-
tic analysis techniques, two sufficient criteria for the mean-square exponential stability were derived,
which were closely related to average stochastic impulsive gain, stochastic disturbance strength as well
as the topological structure of the network itself.

6. Synchronization for IDNs

As a very important and meaningful application of impulsive systems, IDNs have received more
and more attentions, and impulsive control has shown its advantages in control purpose on the clus-
tering properties of IDNs, especially in the synchronization problems. For example, the latest results
proposed by Ji et al. considered the synchronization of dynamical networks with system and coupling
delays under the distributed delayed impulsive control [92]. It has been shown that impulsive delay
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and impulsive weight could be combined, for which the concept of limiting average delayed impulsive
weight (ADIW) was put forward. Noted that although impulse may produce inhibition of synchroniza-
tion, but the networks under the given criterion could still achieve synchronization, which implied time
delay in impulsive control could potentially promote network synchronization. Consider the following
IDNs consisting of N coupled identical nodes:{

ẋi (t) = Axi (t) + f (t, xi (t) , xi (t − τ)) + c
∑N

j=1 bi jΓx j (t) + cτ
∑N

j=1 bτi jΓ
τx j (t − τ),

xi(t0 + θ) = ϕi(θ), θ ∈ [−τ, 0], i = 1, 2, ...N,
(6.1)

where A is a constant n-dimensional square matrix, τ denotes constant delay. c > 0(cτ > 0) and Γ ∈
Rn×n(Γτ ∈ Rn×n) represent the delay-free (delayed) inner coupling strength and matrices, respectively.
Then, the distributed delayed impulsive controller of ith node is designed as

xi (t) =
∞∑

k=1

Ck

xi
(
(t − dk)−

)
−

N∑
j=1

ξi jx j
(
(t − dk)−

), (6.2)

where t = tk, x
(
t+k
)
= x (tk), xi

(
(tk − dk)−

)
= limt→t−k

xi (t − dk) , i = 1, 2, ...,N, k ∈ Z+. {dk, k ∈ Z+} is
the impulsive delay sequence, and dk ∈ R+. ξi j ≥ 0 satisfies that

∑N
j=1 ξi j = 1, for all i = 1, 2, ...,N.

Then, (6.2) can be easily converted into:

xi (t) =
∞∑

k=1

Ck

N∑
j=1

ξi jx j
(
(t − dk)−

)
, t = tk, i = 1, 2, ...,N.

Given function V ∈ V0, the following impulsive delayed inequality with rate coefficients α1 ∈

R, α2 ∈ R+, βk ∈ R holds:{
D+V (t, x) ≤ α1V (t, x) + α2V (t − τ, x(t − τ)) , t , tk, t ≥ t0,

V (t, x) ≤ e−βkV (t − dk, x((t − dk)−)) , t = tk, k ∈ Z+.
(6.3)

Definition 12. [186] The IDNs (6.1) is called globally exponentially synchronized (GES), if there exist
scalars λ > 0, T ≥ 0 and M > 0 such that

∥xi − x j∥ ≤ Me−λt, t ≥ T,

for all i, j = 1, 2, · · · ,N.

Lemma 1. [186] Let M ∈ M2 be m×n matrix and A ∈ T (ε) be n×n matrix. Then, the n× p matrix GM

can be calculated such that MA = ÂM, where Â = MAGM. In addition, if M is a (n − 1) × n matrix,
then MGM = In−1. Correspondingly, MAΓ = ÂΓM, where M = M⊗ In and Γ is a constant n×n matrix
such that AΓ = A ⊗ Γ, ÂΓ = Â ⊗ Γ.

In what follows, [92] proposed a new concept named average delayed impulsive weight (ADIW),
which contained both impulsive weights and impulsive delays, as follows:

Definition 13. The ADIW for impulsive delayed inequality (6.3) is defined as

σ = lim
t→∞

β1
η
+ d1 + · · · +

βN(t,t0)
η
+ dN(t,t0)

N (t, t0)
,

where η > 0 such that α1 + α2

(
1 ∨ eβ

)
− η < 0.
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Remark 18. In some previous papers, the upper bound of time delay was relatively small. In this
way, the corresponding criterion was a bit conservative. In [187], the average sense of time delay in
impulses was put forward to analyze delayed impulsive control, which enabled time delays to exist
flexibly and not be limited to a fixed value. But it ignored the effects of impulsive weights. Thus,
without the one-by-one constraints, the new definition of ADIW that considered impulsive delays and
impulsive weights simultaneously was proposed.

Based on above discussions, the synchronization criterion through Lyapunov function and LMI-
based method has been derived in [92].

Theorem 17. [92] If there are n−dimensional matrices Q1 > 0, Q2 > 0 and constants α1 ∈ R, α2 ∈

R+, βk ∈ R such that the conditions:

i) Q1 + Q2 ≤ α2I;

ii)


Π B̂

τ

Γ LI
∗ −Q1 0
∗ ∗ −Q2

 < 0, where Π = −α1I + 2KI +
(
AP + B̂Γ

)T
+

(
AP + B̂Γ

)
;

iii)
(
−e−βk · Ipn −(Ip ⊗Ck)(υ̂ ⊗ In)
∗ −Ipn

)
< 0, k ∈ Z+;

iv)
σ

τAII
− 1 > 0

then networks (6.1) is GES via delayed impulsive control (6.2), and the exponential convergence rate
is
γ

2
, where γ = σ

τAII
− 1 > 0.

Remark 19. Technically speaking, impulsive control is an advanced discontinuous control protocol,
which provides instantaneous change. Distributed impulsive control considers the coupling topology
to obtain a more general criterion to realize synchronization. The matrix Ck corresponds to impulsive
weight matrix whose quantitative value has a great impact on network synchronization. In previous
studies, network synchronization will be destroyed for the most part when impulses work negatively.
If synchronization is required, a strong restriction is always added to impulsive delays dk, which makes
the criterion conservative to some extent. However, the above result requires the inequalities σ

τAII
−1 > 0

and (Ip ⊗ Ck)(υ̂ ⊗ In))T (Ip ⊗ Ck)(υ̂ ⊗ In)) ≤ eβk Ipn . That is to say, it takes the comprehensive effects of
impulsive weights and impulsive delays on synchronization, rather than restrict them separately.

Although there are also many interesting results for synchronization problem with different kinds
of time delays, only discrete time delay is considered in most previous studies. In view of the fact
that dynamical networks often have spatial properties due to the differences in parallel paths and axon
lengths, which means that state changes cannot be regarded as discrete time delays, it is more valuable
to introduce distributed delay into dynamical networks [188]. For this consideration, [189] has made
use of distributed impulsive control to further study the synchronization of dynamical networks with
multiple delays, where the coupling delay considered both discrete and distributed delay. The limiting
ADIW was extended to a more general form, and the comparison principle was used to eliminate the
limitation that the system delay must be less than impulsive interval. Specifically, Ji et al. defined
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IDNs with distributed delay composed of N identical nodes as
ẋi (t) = Axi (t) + f (t, xi (t) , xi (t − τ0 (t))) + c

∑N
j=1 bi jΓx j (t)

+ cτ1
∑N

j=1 bτ1i jΓ
τ1 x j (t − τ1 (t)) + cτ2

∑N
j=1 bτ2i jΓ

τ2
∫ t

t−τ2(t)
x j (s) ds,

xi(t0 + θ) = ϕi(θ), θ ∈ [−ϱ, 0],
(6.4)

where delays τ0 (t) , τ1 (t) , τ2 (t) have the common upper bound τ∗, ϱ = maxk∈Z+{dk − tk, τ
∗}.

Lemma 2. [189] Let 0 ≤ τi (t) ≤ h, i = 0, 1, 2. For fixed t and x, select G
(
t, x, xτ0 , xτ1

)
: R+ ×

R × R × R → R as a nondecreasing function with respect to xτ0 and xτ1 . Let Υk (x) : R → R be a
nondecreasing function with respect to x. Denote a function class S (s) ⊆ PC

([
−ϱ,∞

]
,Rn). Assume

that µ (t) , ν (t) ∈ S (s) satisfy for all k ∈ Z+
D+µ (t) ≤ G (t, µ (t) , µ (t − τ0 (t)) , µ (t − τ1 (t)))

+p
∫ t

t−τ2(t)
µ (s) ds, t , tk, t ≥ t0,

µ (t) ≤ Υk
(
µ((t − dk)−)

)
, t = tk, k ∈ Z+,

D+ν (t) > G (t, ν (t) , ν (t − τ0 (t)) , ν (t − τ1 (t)))
+p

∫ t

t−τ2(t)
ν (s) ds, t , tk, t ≥ t0,

ν (t) ≥ Υk
(
ν((t − dk)−)

)
, t = tk, k ∈ Z+,

where p > 0, and D+µ (t) = lim supϵ→0+
µ(t+ϵ)−µ(t)

ϵ
. If the inequality µ (t) ≤ ν (t) is satisfied when

t0 − ϱ ≤ t ≤ t0, then it can be derived that µ (t) ≤ ν (t) for all t > 0.

Consider an impulsive delayed equation with rate coefficients α ∈ R+, βk ∈ R:{
D+V (t, x) = αV (t, x) , t , tk, t ≥ t0,

V (t, x) = e−βkV ((t − dk)−, x((t − dk)−)) , t = tk, k ∈ Z+.
(6.5)

To comprehensively consider the delayed impulsive control, the previous Definition 13 can be ex-
tended into the following form:

Definition 14. For V ∈ V0 defined in (6.5), suppose that there exist scalars σ∗ ≥ 0 and σ > 0 satisfy

σN (t, s) − σ∗ ≤
N(t,s)∑
i=1

σi ≤ σN (t, s) + σ∗,∀t ≥ s ≥ 0,

where σi =
βi
α
+ di. Then, the σ is defined as the ADIW.

Remark 20. It is clear that the above concepts describe impulsive frequency and other impulsive
parameters, respectively. Then, these two concepts can be combined into

σ
t − s
τAII
− σN0 − σ

∗ ≤

N(t,s)∑
i=1

σi ≤ σ
t − s
τAII
+ σN0 + σ

∗, ∀t ≥ s ≥ 0.

Theorem 18. [189] If there are n-dimensional matrices Q0 > 0, Q1 > 0, Q2 > 0 and positive scalars
α, α0, α1, α2 and βk ∈ R, k ∈ Z+ such that:

i) Q0 ≤ α0I, Q1 ≤ α1I, Q2τ2 ≤ α2I;
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ii)


∏

LI B̂
τ1
Γ B̂

τ2
Γ

∗ −Q0 0 0
∗ ∗ −Q1 0
∗ ∗ ∗ −Q2

 < 0, where Π = −αI + 2KI +
(
AP + B̂Γ

)T
+

(
AP + B̂Γ

)
;

iii)
−e−βk · Ipn −

(
Ip ⊗Ck

)
(υ̂ ⊗ In)

∗ −Ipn

 < 0;

iv) − γ + (α0 + α1 + α2τ2) eγ0 < 0, where γ = α
(
σ

τAII
− 1

)
, γ0 = α (σ∗ + σN0) ,

then system (6.4) is GES in the following sense:

∥xi − x j∥ ≤

√
Ĵ (t0) · e−

δ

2 t, t ≥ t0, i, j = 1, 2, ...,N.

where Ĵ (t0) = eγ0 supt0−ϱ≤s≤t0 J (s), and the convergence rate is δ2 . δ is the unique solution of δ − γ +
eγ0

(
α0eτ0δ + α1eτ1δ + α2 ·

eτ2δ−1
δ

)
= 0.

Remark 21. In fact, the frequency of impulse generation plays a vital role in impulsive control.
Relevant previous studies usually simply set the impulsive interval as τAII = maxk∈Z+{tk − tk−1} or
τAII = mink∈Z+{tk − tk−1}. If this maximum value is used in Theorem 18, then the constraints of im-
pulsive delays or impulsive weights in −γ + (α0 + α1 + α2τ2)eγ0 would be strengthened, and hence
the control cost of controller will be greatly augmented. Otherwise, it can not control the network to
achieve synchronization. If it uses the minimum value, it may cause a waste of resources. Therefore,
the concept of AII does not limit the upper or lower bounds of impulsive interval. In this regard, the
impulsive interval satisfies mink∈Z+{tk − tk−1} ≤ τAII ≤ maxk∈Z+{tk − tk−1}. One can find that AII ef-
fectively releases the limitations on the range of impulsive effects and control gains and reduces the
conservatism of criteria.

Remark 22. A distributed delayed impulsive controller is proposed in (6.2), and the structure is
Σ∞k=1CkΣ

N
j=1ξi jx j(t − dk) where Ck represents the impulsive weight matrix, dk denotes the impulsive

delays, and ξi j represents the topological structure that can be the same as or independent of the system
coupling matrix. Compared with previous studies [44, 187], Theorem 18 eliminates the limitation that
impulsive delays dk should satisfy dk ≤ τ0. The impulsive delays can be larger than the system delays.
In addition, if the impulsive weights work positively to network synchronization, the impulsive delays
dk could be designed as some small scalars to save control costs. If the impulsive weights are so large
that will hinder the synchronization, then the impulsive delays would work positively through increas-
ing the delay values. Based on those discussion, Theorem 18 actually considers a more comprehensive
case, without any limitation for the upper bounds of multiple time-varying delays or for the magnitude
of impulsive weights.

In fact, many researchers have studied network synchronization with impulsive control. As with in
[39], Guan et al. investigated synchronization of dynamical networks with multiple coupling time delay
via distributed impulsive control. In particular, the control topology could be designed either to be the
same as the non-delayed coupling topology of the network, or to be independent of the intrinsic network
topology. Then, He et al. extended it to the coupled networks with distributed coupling delay by
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constructing a novel impulsive pinning strategy involving pinning ratio, under which a general criterion
was derived to ensure an array of neural networks with two different topologies synchronized with the
desired trajactory [190]. Immediately after, Huang et al. were concerned with quasi-synchronization
issue of neural networks which took parameter mismatches and a delayed impulsive controller into
account on time scales in [191], and the relationships between mismatching parameters and delayed
impulses were revealed using a novel inherent quasi-synchronization mechanism. Based on the ETM,
Ding et al. investigated the synchronization of IDNs with nonlinear couplings and distributed time-
varying delays [192], and the dynamic self-triggered impulsive controller was devoted to predict the
available instants of impulsive inputs. In networked control systems (NCSs), Antunes et al. considered
the case that sensors, actuators, and controller transmitted through asynchronous communication links,
each introducing independent and identically distributed intervals between transmission [193]. By
introducing an impulsive systems approach, they proved the origin of a non-linear impulsive system
was (locally) stable with probability one if its local linearization about the zero equilibrium was mean
exponentially stable. Under the integral quadratic constraint framework, Yuan and Wu presented a
new design approach for NCSs containing measurement delay and actuation delay via a novel delay
scheduled impulsive controller [194]. All in all, IDNs have been extensively studied, and they have
been expanded to many fields, such as bioengineering, vaccination, forestry governance, etc., but there
are still many topics that deserve to be explored in depth [170, 171, 195–197].

As mentioned in [1, 5, 198], the mathematical descriptions of many evolution processes and hybrid
dynamical systems can be characterized by impulsive systems, and the applications of the theory of
impulsive systems to various fields are increasing. Next, some examples of impulsive systems will be
briefly introduced.

Example 1. (Satellite rendezvous) The proximity operations between two spacecrafts are characterized
by the use of relative navigation, since the separation between the spacecrafts is sufficiently small. In
this framework, the relative motion of the chaser is described in the local-vertical local-horizontal
(LVLH) frame attached to the target [199]. The origin of the coordinate frame is located at the center
of mass of the target, and the space is spanned by (x, y, z), where the z-axis is in the radial direction (R-
bar) oriented toward the center of the Earth, and the y-axis is perpendicular to the target orbital plane
and pointing in the opposite direction of the angular momentum (H-bar), while the x-axis is chosen
such that x = y × z; see Figure 1.

Under Keplerian assumptions (no orbital perturbations are considered) and an elliptic reference
orbit, [200] considers the impulsive thrusts which mean that instantaneous velocity jumps are applied
to the chaser when firing, whereas its position is continuous. The mathematical model for the relative
motion in the LVLH frame between the chaser and the target is given by

Ẋ(t) = A(t)X(t), t , tk,

∆X(t) =
[

0
I

] ∫ t

t−

f (s)
mF

ds, t = tk, k ∈ Z+,

where X(t) = col(x(t), y(t), z(t), dx(t)/dt, dy(t)/dt, dz(t)/dt) represents positions and velocities in the
three fundamental axes of the LVLH frame, ∆X(t) represents the change of the state vector after the
impulsive thrust (essentially equivalent to velocity jumps in the three axes), f (·) is the thrust vector, mF

is the mass of the chaser, tk is the firing time, and matrix A(t) is a suitable periodic function of time t
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given by 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

a1(t) 0 ϋ 0 0 2υ̇
0 a2(t) 0 0 0 0
−ϋ 0 a3(t) −2υ̇ 0 0


in which some related parameters can be found in [200]. Since the impulsive thrust plan only needs
to be implemented at discrete times, the complexity of guidance and control design can be reduced.
Moreover, such control scheme has been widely used in the literature [201, 202] dedicated to ren-
dezvous.

Figure 1. Satellite rendezvous.

Example 2. (HIV dynamics) For the control and parameter estimation based on clinical data, the
dynamics of HIV-1 virus infection are often modeled by simple ordinary differential equations for the
interactions of healthy CD4+ cells (T ), infected CD4+ cells (y), free viruses (z), see [203]. According
to [204], one can see that the problem of drug administration is classically divided into two phases:
A so-called pharmacodynamic phase that relates the concentration of drugs at the site of action to the
magnitude of the effect produced; a pharmacokinetic phase that relates dose, frequency, and route of
administration to drug level-time relationships in the body. Then, the addressed model in [203, 205]
takes into account the interaction of the intake of drugs and its concentration in blood, in which drug
administration can be characterized by impulsive behavior throughout the treatment process; see Figure
2. Consequently, the HIV dynamics model is given as follows:

Ṫ (t) = s − δT (t) − βT (t)z(t),
ẏ(y) = βT (t)z(t) − µy(t),
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ż(t) = (1 − η)ky(t) − cz(t),
ω̇(t) = −Kω(t) + u(t),

with the impulsive control input

u(t) = Σ∞k=1d(t)δ(t − tk),

where δ(·) is the Dirac impulse function, d(t) is the amount of drug expressed in milligrams, and tk

is the time at which the patient takes the drug. The healthy CD4+ cells (T ) are produced from the
thymus at a constant rate s and die with a half life time equal to 1

δ
. The healthy cells are infected by

the virus at a rate that is proportional to the product of their population and the amount of free virus
particles. The proportionality constant β is an indication of the effectiveness of the infection process.
The infected CD4+ cells (y) result from the infection of healthy CD4+ cells and die at a rate µ. Free
viruses (z) are produced from infected CD4+ cells at a rate k and die with a half life time equal to 1

c . The
pharmacodynamic phase is modeled as η = ω(t)

ω(t)+ω50
, ω(t) is the amounts of drug, and ω50 represents the

concentration of drug that lowers the viral load by 50%, and K is the elimination rate constant of the
drug. The above analysis based on impulsive control systems allows variations of the control variable
in amounts of drug (milligrams) instead of in terms of their efficiency and describes in a realistic way
how the patient follows the therapy.

Figure 2. HIV virus infection.

The other applications of the theory of impulsive systems in engineering or biosciences include
mechanical systems, automatic and remote control, secure communication, neural networks, epidemi-
ology, forestry, vaccination, and population management, etc.; See [68–77] for more details.

7. Conclusion and further works

Impulsive dynamical systems are a very important research area with wide applications, and stabil-
ity analysis is one of the fundamental issues. This paper has given a brief overview on the research
area of impulsive systems with emphasis on the following several topics:
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1) Some recent results of IDSs and DISs, which are divided according to the different dynamical
parts where the time delay exists, are separately given. Particularly, the potential impacts of time delay
on stability of impulsive systems are highlighted.

2) Several classical ETMs are introduced, which are cooperated with impulsive control to form
the ETIC strategy. An extreme case, where the event function can not be activated while the state of
system diverges in a relatively long time interval, is fully considered by introducing forced mechanism.
Furthermore, the improved ETIC strategy with actuator delay is presented.

3) The hybrid effects of multiple impulses in dynamical systems are detailed and described, and
some interesting results on ISS property involving hybrid impulses have been given.

4) The applications of impulses in complex networks are systematically introduced, involving dis-
tributed impulsive control and delayed impulsive control, and the corresponding synchronization re-
sults are derived.

Although impulsive dynamical systems and their control theory have been developed for many
years, there are still some shortcomings and problems to be solved:

1) When designing the impulsive control for stabilization purpose, one may observe the control
gain is relatively large, which means that the system state needs to be quickly pulled down at impulsive
instant. In this case, the requirement for actuator is so high that it is difficult to implement. Hence,
the saturation structure of actuator in controller should be taken into account in engineering practice,
especially for impulsive control.

2) Packet loss phenomenon is common in engineering practice. For a class of impulsive control
systems, if the impulsive control suffers from the effect of packet loss, it is still unknown whether the
desired controlled performance of system can be achieved. In this case, it is important to estimate the
admissible bound of packet loss so that the controlled performance of systems is robust against the
possible inactive impulses.

3) The actuator in engineering systems often has its own dynamical behaviour. When we apply the
impulsive control strategy in practical systems, the actuator dynamics should not be ignored. In this
case, what will happen to the implementation mechanism of impulse needs to be explored in depth.
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