Research article Special Issues

A new approach to calculating fiber fields in 2D vessel cross sections using conformal maps


  • Received: 09 September 2022 Revised: 07 November 2022 Accepted: 08 November 2022 Published: 08 December 2022
  • An arterial vessel has three layers, namely, the intima, the media and the adventitia. Each of these layers is modeled to have two families of strain-stiffening collagen fibers that are transversely helical. In an unloaded configuration, these fibers are coiled up. In the case of a pressurized lumen, these fibers stretch and start to resist further outward expansion. As the fibers elongate, they stiffen, affecting the mechanical response. Having a mathematical model of vessel expansion is crucial in cardiovascular applications such as predicting stenosis and simulating hemodynamics. Thus, to study the mechanics of the vessel wall under loading, it is important to calculate the fiber configurations in the unloaded configuration. The aim of this paper is to introduce a new technique of using conformal maps to numerically calculate the fiber field in a general arterial cross-section. The technique relies on finding a rational approximation of the conformal map. First, points on the physical cross section are mapped to points on a reference annulus using a rational approximation of the forward conformal map. Next, we find the angular unit vectors at the mapped points, and finally a rational approximation of the inverse conformal map is used to map the angular unit vectors back to vectors on the physical cross section. We have used MATLAB software packages to achieve these goals.

    Citation: Avishek Mukherjee, Pak-Wing Fok. A new approach to calculating fiber fields in 2D vessel cross sections using conformal maps[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3610-3623. doi: 10.3934/mbe.2023168

    Related Papers:

  • An arterial vessel has three layers, namely, the intima, the media and the adventitia. Each of these layers is modeled to have two families of strain-stiffening collagen fibers that are transversely helical. In an unloaded configuration, these fibers are coiled up. In the case of a pressurized lumen, these fibers stretch and start to resist further outward expansion. As the fibers elongate, they stiffen, affecting the mechanical response. Having a mathematical model of vessel expansion is crucial in cardiovascular applications such as predicting stenosis and simulating hemodynamics. Thus, to study the mechanics of the vessel wall under loading, it is important to calculate the fiber configurations in the unloaded configuration. The aim of this paper is to introduce a new technique of using conformal maps to numerically calculate the fiber field in a general arterial cross-section. The technique relies on finding a rational approximation of the conformal map. First, points on the physical cross section are mapped to points on a reference annulus using a rational approximation of the forward conformal map. Next, we find the angular unit vectors at the mapped points, and finally a rational approximation of the inverse conformal map is used to map the angular unit vectors back to vectors on the physical cross section. We have used MATLAB software packages to achieve these goals.



    加载中


    [1] C. Simonetto, M. Heier, A. Peters, J. A. Kaiser, S. Rospleszcz, From atherosclerosis to myocardial infarction: A process-oriented model investigating the role of risk factors, Am. J. Epidemiol., 191 (2022), 1766–1775. https://doi.org/10.1093/aje/kwac038 doi: 10.1093/aje/kwac038
    [2] A. Procopio, S. D. Rosa, C. Covello, A. Merola, J. Sabatino, A. D. Luca, et al., Mathematical model of the release of the ctnt and ck-mb cardiac biomarkers in patients with acute myocardial infarction, in 18th European Control Conference (ECC), 2019.
    [3] O. F. Voropaeva, C. A. Tsgoev, Y. L. Shokin, Numerical simulation of the inflammatory phase of myocardial infarction, J. Appl. Mech. Tech. Phys., 62 (2021), 441–450. https://doi.org/10.1134/S002189442103010X doi: 10.1134/S002189442103010X
    [4] C. Simonetto, S. Rospleszcz, M. Heier, C. Meisinger, A. Peters, J. C. Kaiser, Simulating the dynamics of atherosclerosis to the incidence of myocardial infarction, applied to the kora population, Stat. Med., 40 (2021), 3299–3312. https://doi.org/10.1002/sim.8951 doi: 10.1002/sim.8951
    [5] D. Mojsejenko, J. R. McGarvey, S. M. Dorsey, J. H. Gorman, J. A. Burdick, J. J. Pilla, et al., Estimating passive mechanical properties in a myocardial infarction using mri and finite element simulations, Biomech. Model. Mechanobiol., 14 (2015), 633–647. https://doi.org/10.1007/s10237-014-0627-z doi: 10.1007/s10237-014-0627-z
    [6] T. C. Gasser, R. W. Ogden, G. A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, 3 (2006), 15–35. https://royalsocietypublishing.org/doi/10.1098/rsif.2005.0073 doi: 10.1098/rsif.2005.0073
    [7] G. A. Holzapfel, Nonlinear solid mechanics : a continuum approach for engineering science, Meccanica, 37 (2000), 489–490.
    [8] P. W. Fok, K. Gou, Finite element simulation of intimal thickening in 2d multi-layered arterial cross sections by morphoelasticity, Comput. Methods Appl. Mech. Eng., 363 (2020), 112860. https://doi.org/10.1016/j.cma.2020.112860 doi: 10.1016/j.cma.2020.112860
    [9] G. A. Holzapfel, G. Sommer, C. T. Gasser, P. Regitnig, Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Am. J. Physiol. Heart Circ. Physiol., 289 (2005), 2048–2058.
    [10] S. G. Sassani, S. Tsangaris, D. P. Sokolis, Layer- and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models, J. Biomech., 48 (2015), 3757–3765. http://dx.doi.org/10.1016/j.jbiomech.2015.08.028 doi: 10.1016/j.jbiomech.2015.08.028
    [11] N. M. Mirzaei, P. W. Fok, Simple model of atherosclerosis in cylindrical arteries: impact of anisotropic growth on glagov remodeling, Math. Med. Biol. J. IMA, 38 (2020), 59–82. https://doi.org/10.1093/imammb/dqaa011 doi: 10.1093/imammb/dqaa011
    [12] S. Katsuda, Y. Okada, T. Minamoto, Y. Oda, Y. Matsui, I. Nakanishi, Collagens in human atherosclerosis: Immunohistochemical analysis using collagen type-specific antibodies, Arterioscler. Thromb. J. Vasc. Biol., 12 (1992), 494–502. https://doi.org/10.1161/01.ATV.12.4.494 doi: 10.1161/01.ATV.12.4.494
    [13] G. Plank, J. D. Bayer, R. C. Blake, N. A. Trayanova, A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models, Ann. Biomed. Eng., 40 (2012), 2243–2254. https://doi.org/10.1007/s10439-012-0593-5 doi: 10.1007/s10439-012-0593-5
    [14] J. Wong, E. Kuhl, Generating fiber orientation maps in human heart models using poisson interpolation, Comput. Methods Biomech. Biomed. Eng., 17 (2014), 1217–1226. https://doi.org/10.1080/10255842.2012.739167 doi: 10.1080/10255842.2012.739167
    [15] E. K. Theofilogiannakos, G. K. Theofilogiannakos, A. Anogeianaki, P. G. Danias, H. Zairi, T. Zaraboukas, et al., A fiber orientation model of the human heart using classical histological methods, magnetic resonance imaging and interpolation techniques, Comput. Cardiol., 35 (2008), 307–310. https://doi.org/10.1109/CIC.2008.4749039 doi: 10.1109/CIC.2008.4749039
    [16] A. C. Akyildiz, C. K. Chai, C. Oomens, A.van der Lugt, F. Baaijens, G. J. Strijkers, et al., 3d fiber orientation in atherosclerotic carotid plaques, J. Struct. Biol., 200 (2017), 28–35, https://dx.doi.org/10.1016/j.jsb.2017.08.003 doi: 10.1016/j.jsb.2017.08.003
    [17] J. A. Niestrawska, A. Pukaluk, A. R. Babu, G. A. Holzapfel, Differences in collagen fiber diameter and waviness between healthy and aneurysmal abdominal aortas, Microsc. Microanal., 28 (2022), 1649–1663. https://doi.org/10.1017/s1431927622000629 doi: 10.1017/s1431927622000629
    [18] G. A. Holzapfel, R. W. Ogden, S. Sherifova, On fibre dispersion modelling of soft biological tissues: a review, Proc. R. Soc. A, 475 (2019). http://dx.doi.org/10.1098/rspa.2018.0736 doi: 10.1098/rspa.2018.0736
    [19] A. J. Schriefl, A. J. Reinisch, S. Sankaran, D. M. Pierce, G. A. Holzapfel, Quantitative assessment of collagen fibre orientations from two-dimensional images of soft biological tissues, J. R. Soc. Interface, 9 (2012), 3081–3093. https://doi.org/10.1098/rsif.2012.0339 doi: 10.1098/rsif.2012.0339
    [20] M. Kroon, A continuum mechanics framework and a constitutive model for remodelling of collagen gels and collagenous tissues, J. Mech. Phys. Solids, 58 (2010), 918–933. https://doi.org/10.1016/j.jmps.2010.03.005 doi: 10.1016/j.jmps.2010.03.005
    [21] F. Cacho, P. J. Elbischger, J. F. Rodríguez, M. Doblaré, G. A. Holzapfel, A constitutive model for fibrous tissues considering collagen fiber crimp, Int. J. Non Linear Mech., 42 (2007), 391–402, https://doi.org/10.1016/j.ijnonlinmec.2007.02.002 doi: 10.1016/j.ijnonlinmec.2007.02.002
    [22] L. N. Trefethen, Numerical conformal mapping with rational functions, Comput. Methods Funct. Theory, 20 (2020), 369–387. https://doi.org/10.1007/s40315-020-00325-w doi: 10.1007/s40315-020-00325-w
    [23] Y. Nakatsukasa, O. Sète, L. N. Trefethen, The aaa algorithm for rational approximation, SIAM J. Sci. Comput., 40 (2018). https://doi.org/10.1137/16M1106122 doi: 10.1137/16M1106122
    [24] Y. Nakashima, Y. Chen, N. Kinukawa, K. Sueishi, Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age, Virchows Arch., 441 (2002), 279–288. https://doi.org/10.1007/s00428-002-0605-1 doi: 10.1007/s00428-002-0605-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1701) PDF downloads(59) Cited by(2)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog