Research article Special Issues

Dynamics of an impulsive reaction-diffusion mosquitoes model with multiple control measures


  • Received: 09 September 2022 Revised: 03 October 2022 Accepted: 06 October 2022 Published: 14 October 2022
  • It is well-known that mosquito control is one of the effective methods to reduce and prevent the transmission of mosquito-borne diseases. In this paper, we formulate a reaction-diffusion impulsive hybrid model incorporating Wolbachia, impulsively spraying of insecticides, spatial heterogeneity, and seasonality to investigate the control of mosquito population. The sufficient conditions for mosquito extinction or successful Wolbachia persistence in a population of natural mosquitoes are derived. More importantly, we give the estimations of the spraying times of insecticides during a period for achieving the mosquito extinction and population replacement in a special case. A global attractivity of the positive periodic solution is analyzed under appropriate conditions. Numerical simulations disclose that spatial heterogeneity and seasonality have significant impacts on the design of mosquitoes control strategies. It is suggested to combine biological control and chemical pulse control under certain situations to reduce the natural mosquitoes. Further, our results reveal that the establishment of a higher level of population replacement depends on the strain type of the Wolbachia and the high initial occupancy of the Wolbachia-infected mosquitoes.

    Citation: Yun Li, Hongyong Zhao, Kai Wang. Dynamics of an impulsive reaction-diffusion mosquitoes model with multiple control measures[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 775-806. doi: 10.3934/mbe.2023036

    Related Papers:

  • It is well-known that mosquito control is one of the effective methods to reduce and prevent the transmission of mosquito-borne diseases. In this paper, we formulate a reaction-diffusion impulsive hybrid model incorporating Wolbachia, impulsively spraying of insecticides, spatial heterogeneity, and seasonality to investigate the control of mosquito population. The sufficient conditions for mosquito extinction or successful Wolbachia persistence in a population of natural mosquitoes are derived. More importantly, we give the estimations of the spraying times of insecticides during a period for achieving the mosquito extinction and population replacement in a special case. A global attractivity of the positive periodic solution is analyzed under appropriate conditions. Numerical simulations disclose that spatial heterogeneity and seasonality have significant impacts on the design of mosquitoes control strategies. It is suggested to combine biological control and chemical pulse control under certain situations to reduce the natural mosquitoes. Further, our results reveal that the establishment of a higher level of population replacement depends on the strain type of the Wolbachia and the high initial occupancy of the Wolbachia-infected mosquitoes.



    加载中


    [1] World Health Organization, Vector-borne diseases, 2020. Available from: https://www.who.int/zh/news-room/fact-sheets/detail/vector-borne-diseases.
    [2] R. Zhang, J. L. Wang, On the global attractivity for a reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 84 (2022), 1–12. https://doi.org/10.1007/s00285-022-01751-1 doi: 10.1007/s00285-022-01751-1
    [3] World Mosquito Program, Mosquito-Borne Diseases, 2020. Available from: https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases.
    [4] T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-Ormaetxe, F. D. Frentiu, C. J. McMeniman, et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450–453. https://doi.org/10.1038/nature10355 doi: 10.1038/nature10355
    [5] L. A. Moreira, I. Iturbe-Ormaetxe, J. A. Jeffery, G. J. Lu, A. T. Pyke, L. M. Hedges, et al., A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium, Cell, 139 (2009), 1268–1278. https://doi.org/10.1016/j.cell.2009.11.042 doi: 10.1016/j.cell.2009.11.042
    [6] H. L. C. Dutra, M. N. Rocha, F. B. S. Dias, S. B. Mansur, E. P. Caragata, L. A. Moreira, et al., Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes, Cell Host Microbe, 19 (2016), 771–774. https://doi.org/10.1016/j.chom.2016.04.021 doi: 10.1016/j.chom.2016.04.021
    [7] E. P. Caragata, H. L. C. Dutra, L. A. Moreira, Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia, Trends Parasitol., 32 (2016), 207–218. https://doi.org/10.1016/j.pt.2015.10.011 doi: 10.1016/j.pt.2015.10.011
    [8] J. H. Werren, L. Baldo, M. E. Clark, Wolbachia: master manipulators of invertebrate biology, Nat. Rev. Microbiol., 6 (2008), 741–751. https://doi.org/10.1038/nrmicro1969 doi: 10.1038/nrmicro1969
    [9] P. Kittayapong, K. J. Baisley, V. Baimai, S. L. ÓNeill, Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae), J. Med. Entomol., 37 (2000), 340–345. https://doi.org/10.1093/jmedent/37.3.340 doi: 10.1093/jmedent/37.3.340
    [10] J. H. Werren, Biology of wolbachia, Annu. Rev. Entomol., 42 (1997), 587–609. https://doi.org/10.1146/annurev.ento.42.1.587 doi: 10.1146/annurev.ento.42.1.587
    [11] P. A. Ross, I. Wiwatanaratanabutr, J. K. Axford, V. L. White, N. M. Endersby-Harshman, A. A. Hoffmann, Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress, PLoS Pathog., 13 (2017), e1006006. https://doi.org/10.1371/journal.ppat.1006006 doi: 10.1371/journal.ppat.1006006
    [12] D. Joshi, M. J. McFadden, D. Bevins, F. R. Zhang, Z. Y. Xi, Wolbachia strain wAlbB confers both fitness costs and benefit on Anopheles stephensi, Parasites Vectors, 7 (2014), 1–9. https://doi.org/10.1186/1756-3305-7-336 doi: 10.1186/1756-3305-7-336
    [13] C. A. Hamm, D. J. Begun, A. Vo, C. C. R. Smith, P. Saelao, A. O. Shaver, et al., Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella, Mol. Ecol., 23 (2014), 4871–4885. https://doi.org/10.1111/mec.12901 doi: 10.1111/mec.12901
    [14] P. Kriesner, A. A. Hoffmann, S. F. Lee, T. Michael, A. R. Weeks, Rapid sequential spread of two Wolbachia variants in Drosophila simulans, PLoS Pathog., 9 (2013), e1003607. https://doi.org/10.1371/journal.ppat.1003607 doi: 10.1371/journal.ppat.1003607
    [15] G. Bian, D. Joshi, Y. M. Dong, P. Lu, G. L. Zhou, X. L. Pan, et al., Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection, Science, 340 (2013), 748–751. Available from: https://www.science.org/doi/abs/10.1126/science.1236192.
    [16] E. Caspari, G. S. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitoes, Evolution, 13 (1959), 568–570. https://doi.org/10.2307/2406138 doi: 10.2307/2406138
    [17] J. S. Yu, B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Differ. Equations Appl., 25 (2019), 1549–1567. https://doi.org/10.1080/10236198.2019.1669578 doi: 10.1080/10236198.2019.1669578
    [18] M. G. Huang, M. X. Tang, J. S. Yu, B. Zheng, The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio, Math. Biosci. Eng., 16 (2019), 4741–4757. https://doi.org/10.3934/mbe.2019238 doi: 10.3934/mbe.2019238
    [19] B. Zheng, M. Tang, J. S. Yu, J. X. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235–263. https://doi.org/10.1007/s00285-017-1142-5 doi: 10.1007/s00285-017-1142-5
    [20] B. Zheng, W. L. Guo, L. C. Hu, M. G. Huang, J. S. Yu, Complex Wolbachia infection dynamics in mosquitoes with imperfect maternal transmission, Math. Biosci. Eng., 15 (2018), 523–541. https://doi.org/10.3934/mbe.2018024 doi: 10.3934/mbe.2018024
    [21] Y. Z. Li, X. N. Liu, Modeling and control of mosquito-borne diseases with Wolbachia and insecticides, Theor. Popul. Biol., 132 (2020), 82–91. https://doi.org/10.1016/j.tpb.2019.12.007 doi: 10.1016/j.tpb.2019.12.007
    [22] Y. F. Liu, G. W. Sun, L. Wang, Z. M. Guo, Establishing Wolbachia in the wild mosquito population: The effects of wind and critical patch size, Math. Biosci. Eng., 16 (2019), 4399–4414. https://doi.org/10.3934/mbe.2019219 doi: 10.3934/mbe.2019219
    [23] Z. Y. Xi, D. Joshi, Genetic control of malaria and dengue using Wolbachia//Genetic control of malaria and dengue, Academic Press, (2016), 305–333. https://doi.org/10.1016/B978-0-12-800246-9.00014-4
    [24] D. M. Watts, D. S. Burke, B. A. Harrison, R. E. Whitmire, A. Nisalak, Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Army Medical Reseaech Inst of Infectious Diseases Fort Detric md, 1986. https://doi.org/10.4269/ajtmh.1987.36.143
    [25] T. Mirski, M. Bartoszcze, A. Bielawska-Drózd, Impact of climate change on infectious diseases, Pol. J. Environ. Stud., 21 (2012), 525–532. Available from: https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=76625250&lang=zh-cn&site=ehost-live.
    [26] O. J. Brady, M. A. Johansson, C. A. Guerra, S. Bhatt, N. Golding, D. M. Pigott, et al., Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings, Parasites Vectors, 6 (2013), 1–12. https://doi.org/10.1186/1756-3305-6-351 doi: 10.1186/1756-3305-6-351
    [27] R. Zhang, J. L. Wang, S. Q. Liu, Traveling wave solutions for a class of discrete diffusive SIR epidemic model, J. Nonlinear Sci., 31 (2021), 1–33. https://doi.org/10.1007/s00332-020-09656-3 doi: 10.1007/s00332-020-09656-3
    [28] H. N. Aida, H. Dieng, T. Satho, A. Nurita, M. C. Salmah, F. Miake, et al., The biology and demographic parameters of Aedes albopictus in northern peninsular Malaysia, Asian Pac. J. Trop. Biomed., 1 (2011), 472–477. https://doi.org/10.1016/S2221-1691(11)60103-2 doi: 10.1016/S2221-1691(11)60103-2
    [29] M. G. Grech, F. Ludueña-Almeida, W. R. Almirón, Bionomics of Aedes aegypti Subpopulations (Diptera: Culicidae) from Argentina, J. Vector Ecol., 35 (2010), 277–285. https://doi.org/10.1111/j.1948-7134.2010.00083.x doi: 10.1111/j.1948-7134.2010.00083.x
    [30] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (Mathematical Surveys and Monographs), Amer. Math. Soc., 41 (1995).
    [31] R. H. Martin, H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Am. Math. Soc., 321 (1990), 1–44. https://doi.org/10.2307/2001590 doi: 10.2307/2001590
    [32] M. U. Akhmet, M. Beklioglu, T. Ergenc, V. I. Tkachenko, An impulsive ratio-dependent predator-prey system with diffusion, Nonlinear Anal. Real World Appl., 7 (2006), 1255–1267. https://doi.org/10.1016/j.nonrwa.2005.11.007 doi: 10.1016/j.nonrwa.2005.11.007
    [33] Y. X. Wu, X, F. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differ. Equations, 264 (2018), 4989–5024. https://doi.org/10.1016/j.jde.2017.12.027 doi: 10.1016/j.jde.2017.12.027
    [34] X. N. Liu, L. S. Chen, Global dynamics of the periodic logistic system with periodic impulsive perturbations, J. Math. Anal. Appl., 289 (2004), 279–291. https://doi.org/10.1016/j.jmaa.2003.09.058 doi: 10.1016/j.jmaa.2003.09.058
    [35] M. Z. Xin, B. G. Wang, Global dynamics of a reaction-diffusion malaria model, Nonlinear Anal. Real World Appl., 61 (2021), 103332. https://doi.org/10.1016/j.nonrwa.2021.103332 doi: 10.1016/j.nonrwa.2021.103332
    [36] F. X. Li, X. Q. Zhao, Global dynamics of a reaction-diffusion model of Zika virus transmission with seasonality, Bull. Math. Biol., 83 (2021), 1–25. https://doi.org/10.1007/s11538-021-00879-3 doi: 10.1007/s11538-021-00879-3
    [37] L. C. Hu, C. Yang, Y. X. Hui, J. S. Yu, Mosquito control based on pesticides and endosymbiotic bacterium Wolbachia, Bull. Math. Biol., 83 (2021), 1–24. https://doi.org/10.1007/s11538-021-00881-9 doi: 10.1007/s11538-021-00881-9
    [38] M. G. Huang, J. S. Yu, L. C. Hu, B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249–1266. https://doi.org/10.1007/s11425-016-5149-y doi: 10.1007/s11425-016-5149-y
    [39] X. H. Zhang, S. Y. Tang, R. A. Cheke, Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control, Nonlinear Anal. Real World Appl., 22 (2015), 236–258. https://doi.org/10.1016/j.nonrwa.2014.09.004 doi: 10.1016/j.nonrwa.2014.09.004
    [40] X. H. Zhang, S. Y. Tang, R. A. Cheke, Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations, Math. Biosci., 269 (2015), 164–177. https://doi.org/10.1016/j.mbs.2015.09.004 doi: 10.1016/j.mbs.2015.09.004
    [41] Y. Z. Li, X. N. Liu, An impulsive model for Wolbachia infection control of mosquito-borne diseases with general birth and death rate functions, Nonlinear Anal. Real World Appl., 37 (2017), 412–432. https://doi.org/10.1016/j.nonrwa.2017.03.003 doi: 10.1016/j.nonrwa.2017.03.003
    [42] H. Hughes, N. F. Britton, Modelling the use of Wolbachia to control dengue fever transmission, Bull. Math. Biol., 75 (2013), 796–818. https://doi.org/10.1007/s11538-013-9835-4 doi: 10.1007/s11538-013-9835-4
    [43] B. Zheng, M. Tang, J. S. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74 (2014), 743–770. https://doi.org/10.1137/13093354X doi: 10.1137/13093354X
    [44] C. J. McMeniman, R. V. Lane, B. N. Cass, A. W. C. Fong, M. Sidhu, Y. F. Wang, et al., Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science, 323 (2009), 141–144. Available from: https://www.science.org/doi/abs/10.1126/science.1165326.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1888) PDF downloads(175) Cited by(3)

Article outline

Figures and Tables

Figures(10)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog