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Abstract: It is well-known that mosquito control is one of the effective methods to reduce and prevent
the transmission of mosquito-borne diseases. In this paper, we formulate a reaction-diffusion impulsive
hybrid model incorporating Wolbachia, impulsively spraying of insecticides, spatial heterogeneity, and
seasonality to investigate the control of mosquito population. The sufficient conditions for mosquito
extinction or successful Wolbachia persistence in a population of natural mosquitoes are derived. More
importantly, we give the estimations of the spraying times of insecticides during a period for achieving
the mosquito extinction and population replacement in a special case. A global attractivity of the
positive periodic solution is analyzed under appropriate conditions. Numerical simulations disclose
that spatial heterogeneity and seasonality have significant impacts on the design of mosquitoes control
strategies. It is suggested to combine biological control and chemical pulse control under certain
situations to reduce the natural mosquitoes. Further, our results reveal that the establishment of a
higher level of population replacement depends on the strain type of the Wolbachia and the high initial
occupancy of the Wolbachia-infected mosquitoes.
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1. Introduction

Mosquito-borne diseases (MBDs) that spread by the bite of the infected mosquitoes, have become
increasingly serious worldwide in recent decades. Some well-known such diseases include dengue,
malaria, Zika, and so on [1,2]. The death of humans caused by MBDs is more than one million
annually [3]. Prevention and control of MBDs have always been a focus of researchers. So far, there
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has no therapeutic drug or effective vaccine for the majority of MBDs. Controlling the mosquito
population, i.e., reducing or killing the natural mosquitoes, becomes the principal means to prevent the
transmission of MBDs. Spraying insecticides was the main method to effectively control mosquitoes
in the early years. However, the excessive use of insecticides may lead to serious harm to human health
and environment, which stimulates researchers to search for alternative control methods.

A novel and environmentally friendly way, implanting Wolbachia into mosquitoes artificially, is
found by researchers to lessen the natural mosquito population and impede mosquitoes from transmit-
ting some MBDs [4-7]. Wolbachia, a maternally transmitted endosymbiotic bacterium, lives in the
reproductive organs of its hosts. The hosts’ reproductive mechanisms can be interfered by it in diverse
ways, such as cytoplasmic incompatibility (CI, the embryos do not hatch when infected males mate
with uninfected females) and maternal transmission (Wolbachia still exist in the offsprings of infected
females) [8—12]. In some insect and mosquito species, the imperfect maternal transmission was often
observed, which means that the offsprings of infected females may be uninfected [13,14]. In particular,
the same phenomenon was found in Anopheles stephensi and Aedes aegypti [11,15].

To understand the influence of Wolbachia on reducing the natural mosquito population and the in-
fection of MBDs, there are plenty of different mathematical models in recent years [16-22]. In 1959,
in order to study the impact of CI on mosquito species, Caspari and Watson [16] first put forward a
discrete-time model and derived a condition for the infection establishment. Yu and Zheng [17] pro-
posed a discrete-time model with CI effect and imperfect maternal transmission to study the population
replacement. Zheng et al. [19,20] established ordinary differential equations to analyze the influence of
imperfect maternal transmission on Wolbachia infection. The imperfect maternal transmission results
in the rising of natural mosquitoes. However, in these studies, removing the negative influence seems
to receive little attention. Therefore, we consider that another control measure (spraying insecticides)
should be taken at the same time to get command of natural mosquitoes based on the insights of Xi and
Joshi [23]. Two approaches are mainly used to spray insecticides: continuously and impulsively. The
continuously spraying may lead to the waste of material, manpower and financial resources, which can
be cut down by the pulse method. Li and Liu [21] constructed a state-dependent impulsive model to
discuss the strategies of mosquito extinction or replacing natural mosquitoes with Wolbachia-infected
mosquitoes and analyze the integrated mosquito control strategy. However, the state-dependent im-
pulse control is harder to operate than the fixed-time impulse control. As a consequence, we adopt the
method of spraying insecticides at fixed time in this paper.

It 1s worth noting that Wolbachia-infected mosquitoes may suffer fitness costs and fitness advan-
tages [12]. Thus, the reproduction rate and mortality rate of Wolbachia-infected mosquitoes are dif-
ferent from those of natural mosquitoes. Mosquitoes compete with each other for food in order to
survive, suggesting a density-dependent death rate. Hence, considering these factors mentioned above
seems to be more practical. In addition, the laboratory experiments and field demonstrate that the
reproduction rate and the mortality rate of both Aedes albopictus and Aedes aegypti are affected by
temperature [24-26], which are functions of time 7. Accordingly, it seems reasonable and unavoidable
to incorporate the seasonality into the model. Moreover, what we should actually do is considering
the diffusion of the population and spatial heterogeneity, which are not only important factors in epi-
demic modeling [27], but also affect the evolution of mosquitoes. Hence, it is essential to explore the
dynamical behaviours of mosquito population in a diffusive spatially heterogeneous environment.

In the current paper, we employ an impulsive reaction-diffusion model with all the critical fac-
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tors, including CI effect, imperfect maternal transmission and fitness effect of Wolbachia, fixed-time
impulsively spraying of insecticides, and the density-dependent decay rate and spatiotemporal hetero-
geneity of mosquito population, to study the evolutions of Wolbachia-infected mosquitoes and natural
mosquitoes. To the best of our knowledge, few studies seem to incorporate the seasonality, spatial
heterogeneity, and impulsively regulating of Wolbachia-infected mosquitoes and natural mosquitoes in
the research of the mosquito population, simultaneously. There are two goals in this work. One is to
investigate how Wolbachia can be established in natural mosquito species in the context of spatiotem-
poral heterogeneity and impulsive effect of insecticides. Another is to understand the effectiveness of
various control measures (Wolbachia and impulse control of insecticides), and the impacts of season-
ality and environmental heterogeneity on the developments of mosquito populations. Our results will
throw new insights on mosquito control and the prevention of MBDs.

The paper is organized as follows. In Section 2, we put forward an impulsive reaction-diffusion
model with insecticides and seasonality in a heterogeneous environment in terms of Wolbachia-infected
mosquitoes and natural mosquitoes. Then the existence and ultimate boundedness of the solution
are analyzed in Section 3. Section 4 presents the dynamic behavior of this model. Section 5 takes
advantage of the numerical simulations to verify the theoretical conclusions and reflect the effects of
some critical factors on the evolution of mosquitoes. In Section 6, we discuss and summarize the
obtained results.

2. The model

Inspired by the remarkable experimental studies [28, 29], it is assumed that each mosquito only
mates once in its life and the sex ratio of Wolbachia-infected mosquitoes and natural mosquitoes is
identical. Then, we divide the mosquitoes into two subclasses, Wolbachia-infected mosquitoes and nat-
ural mosquitoes. Motivated by the interaction of Wolbachia-infected mosquitoes, natural mosquitoes
and insecticides, the reaction-diffusion impulsive hybrid model with seasonality and spatial hetero-
geneity takes the form as follows:

ow ot, ) WW+ U
—— = Dy AW + pby(t, )W — dy/(t, x)W — @ YW + ), t>0,t#1,x€Q, 2.1)
ot K(x)
oU _ DyAU + (1 = p)byw(t, YW + by(t, x)U — dy(t, x)U — 6, )UW + U) (2.2)
ot K(x)
_M, I>O,I¢Z‘:,X€Q,
U+Ww
W, x) = (1 = pwp(x)W(t,, x), x € Q, (2.3)
U(ty,x) = (1 = pya(x)U(t,, x), x € Q,n €N, (2.4)

where Q € R” (m > 1) and N are a bounded domain with smooth boundary 92 and the set of all pos-
itive integers, respectively. Here the subclasses W(¢, x) and U(¢, x) denote the numbers of Wolbachia-
infected mosquitoes and natural mosquitoes at time ¢ and position x, respectively. The A manifests
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the Laplacian operator. All parameters are strictly-positive bounded and their biological meanings are
listed in Table 1. We suppose that pby (¢, x) > dy/(t, x)+06(t, x)/K(x) and by (t, x) > dy(t, x)+6(t, x)/ K(x)
since the natural or Wolbachia-infected mosquitoes do not die out naturally in the wild. A part of the
zygote produced by mating natural mosquitoes and Wolbachia-infected mosquitoes do not survive due
to CI mechanism. The term W(z, x)/[U(¢, x) + W(t, x)] indicates the probability of mating with Wol-
bachia-infected mosquitoes. Then the loss of offsprings from mating between natural mosquitoes and
Wolbachia-infected mosquitoes is gby (¢, x)U(t, x)W(t, x)/[U(t, x) + W(t, x)]. {t,,n € N} is a sequence
satisfying 0 = 1o < t; <tp <--- <t, <--- and lim ¢, = 4+oo. Further, at a fixed moment ¢,, the use

n—oo

of insecticides leads that U(¢, x) and W(¢, x) suffer transient disturbances. The initial values of systems
(2.1)—(2.4) and the homogeneous Neumann boundary conditions comply with the form

W(O0, x) = Wy(x) > (#)0, U(0, x) = Up(x) =2 (#)0,x € Q, (2.5)

and
ow(,x) oU(t,x)
o o

where v represents the outward normal unit vector on dQ and the derivative along v to the boundary
0Q is denoted by a%' Condition (2.6) means that there is no mosquitoes flux crosses 0Q.

0, t>0,x €0Q, (2.6)

Table 1. Descriptions of parameters in systems (2.1)—(2.4).

Parameter Interpretation

Dy The diffusion rate of Wolbachia-infected mosquitoes

Dy The diffusion rate of natural mosquitoes

P The maternal transmission rate of Wolbachia-infected mosquitoes

q The probability of CI mechanism

bw(t, x) The birth rate of Wolbachia-infected mosquitoes at time ¢ and location x

dw(t, x) The natural death rate of Wolbachia-infected mosquitoes at time ¢ and location x
K(x) The environmental carrying capacity of mosquitoes at location x

o(t, x)/ K(x) The density-dependent death rate of mosquitoes at time ¢ and location x

by(t, x) The birth rate of natural mosquitoes at time ¢ and location x

dy(t, x) The natural death rate of natural mosquitoes at time 7 and location x

Hwn(X) The effective rate of insecticides for Wolbachia-infected mosquitoes at time ¢, and location x
Hyn(X) The effective rate of insecticides for natural mosquitoes at time ¢, and location x

We introduce some assumptions as follows:
(P1) Functions by (t, x), dw(t, x), by(t, x), dy(t, x), 6(t, x) are bounded positive-valued functions on R X
Q, continuously differentiable in 7 and x, and 7-periodic in ¢ with a period 7' > 0.
(P2) Function K(x) is continuous and bounded positive-valued function on Q.
(P3) For impulsive sequence {¢,, n € N}, we assume that ¢,,,,, = #,+7 for all n, where w € N corresponds
to the number of spraying insecticides in a period 7.
(P4) Sequences {1 — uw,(x),n € N,x € Q} and {1 — py,(x),n € N,x € Q} satisfy 1 — Uw(sw)(X) =
I = pwn(x) > 0and 1 = uypew)(x) = 1 = uya(x) > 0 for all n, w and x, where w € N is the number of
spraying insecticides in a period 7T'.
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3. The well-posedness

The well-posedness of systems (2.1)—(2.4) is mainly derived in this section. Before stating the main
results, we make some notations firstly. For a bounded function ¢(t, x), (¢, x) € R, X 5, we denote
o = inf  @t,x), ¢* = sup (1, x). Define Y := C(Q,R?) and Y* := C(Q,R2), here Y is a

(t,x)ER XQ (t,x)e]&xﬁ
Banach space of continuous functions from Q to R? with the supremum norm ||-||y and Y™ is the positive
cone of Y.

For (t,5) € [0,#;] X [0,1;] (¢; is the first fixed impulsive moment after 0), let T(z, s), V2(z, s) :

C (5, R) — C(ﬁ, R),t > s be the evolution operators associated with

ow
E = Dy AW + pbw(l, X)W —dw(t, x)W, x € Q,
and
ou
E = DyAU + by(t, x)U —dy(t, x)U, x € Q,

subject to (2.6), respectively. From [30, Corollary 7.2.3], V;(¢, s) (i = 1,2) are compact and strongly
positive for (¢,s) € [0,#] X [0,#] with > 5. Moreover, Y(t, s) := diag{Y (¢, s), V2(t, )} : ¥ = Y,
(t,s) € [0,44] x [0,#;] with t > s, is a semigroup generated by the linear operator A(f) :=

diag{A; (1), A,(¢)} defined on the domain D(A(r)) = D(A;(t)) X D(A,(1)), where A;(t) and D(A;(1)),
i = 1,2, are given by

A(DE = DwAE + pby(t, x)€ — dw(t, X)é,YE € D(A(D)),

A& = DyA& + by(t, )& — dy(t, )&, Y& € D(A(D)),

and
D(A(D) = {€ € CHQ) : A(H)E € C(QLR), % = 0 on Q).

After that, define the nonlinear operator ¥ : [0,,] X Y* — Y by

0@ (D)W () (x)
F (6, y() o
Ly(x)) = (LW (D)W 1 (D) +2(x)  byt.)a()gy(x) |°
(1 - P)bW(t, X)Wl(x) - K(x) T ()

where ¥(x) = (¥1(x),¥2(x))T € Y™, T represents the transpose. Therefore, for ¢ € [0,1,], systems
(2.1)—(2.6) can be transformed as follows:

{w = A, () + F (1,9, - (), 1 € (0, 11],

HO, 5y () =y() e YT,

here = (91,9,)" = (W, U)" and ¢ = (1, 42)" = (Wo, Up)".
For any (¢, y(x)) € (0,#,] X Y* and small & > 0, it can be obtained that

hlilg %dist(w(x) + hF (1, ¥(x)), Y") = 0,
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where

W (X) _ hﬁ(l,x)lﬂl (OW1(x)+P2(x)

K(x)
Y(x) + hF (t,¥(x)) = SR OW (D (X)) 7 byt ()gy (x)
020 + (1 = )by, X (x) — WAL _ ettt
S )W )+ (x)
S ‘»/fl(x)(l - h K(x) )
2 0N @H() 7 but)gn )y |-
Ya()(1 = h K(x) et o))

When 7 € (0, 1,], the solutions of systems (2.1)—(2.6) are defined as the solutions of (2.1), (2.2), (2.5)
and (2.6) from [31]. Impulsive conditions (2.3) and (2.4) display that the functions W(¢],-), U(t], -) are
continuously differentiable in x and satisfy homogeneous Neumann boundary conditions. Thus, the
solution on ¢ € (f, ;] can be derived by letting (W(¢], -), U(t{,-)) as a new initial function. In the same
way, we can obtain the following theorem.

Theorem 3.1. For every initial data y(x) € Y*, systems (2.1)—(2.6) admit a unique nonnegative solu-
tion 9(t, x; Y(x)) on the maximal existence interval [0, T), where T < co.

Theorem 3.2. For every y(-) € Y™, the solution 9(t, ;¥ (")) of systems (2.1)—(2.6) with 90, -;¥(-)) =
W(-) exists globally for t > 0 and is ultimately bounded.

Proof. From Theorem 3.1, we know that systems (2.1)—(2.6) have a unique solution (¢, -; ¥(-)) on
the interval [0, ) with (0, -;/()) = ¥(-). Firstly, according to (2.1), it follows that

oW St x)yWW + U
0= W _ DuAW = (e, )W + diy(t, yw + 2O )

ot K(x)

OW 5lw2
ZE—DWAW—pbfVW+d€VW+F,t>0,t¢t:{,n€N,X€Q-

Let My = max | Wy(x) |. Then W(z, x) < W), t€[0,6],x € Q holds with the comparison principle
xeQ

and the uniqueness theorem, where W(¢) is the solution of the following ordinary differential equations

~ IYX B
T~ iy o - v - OV e 0,1,
W(0) = My,.

So, W(t,x) = (1 — uy1(x)W(t,x) < (1 — uéVl)W(tl) for x € Q. Likewise, we can conclude that
W(t,) < W@),t20,t#t and W', ) = (1 — ()W (ty, ) < (1 —,u{}Vn)W(t,,) for n € N. The solution
of the following corresponding impulsive model (3.1) is bounded from [32, Lemma 1].

5 B
dtzft(t) = pby, W(t) — dy, W(1) - M)SW(I) t>0,1 %1,

W& = (1 — iy, )W(t,),n €N, (3.1
W) = My,.
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(pb3,—d})KS
: Towt-bydpm Y =
min;—g 2. »(tir1 — t;). Accordingly, there have K; > 0 and #; > 0, such that W(t,) < K;, t > 17,
where K is independent of initial data.

The number of total mosquitoes at time ¢ and position x is denoted by N(t, x). Let N(¢, x) = W(¢, x)+
U(t, x) and N(r) = fg N(t, x)dx, by virtue of systems (2.1)—(2.6), we can get

It can be obtained that W(z,-) < Kj,,r > 0, where Kj, = max{My, 5

S'N(t)N(t)
KS

dx < b™™N(t) — d™"N(t) — > 0,1 # 1,

dt ot ot
Nt = f[W(t;, x) + U, x)]dx < (1 — f™)N(t,),n €N,
Q
N() = My + My,

dN(1) _ f [OW(t, X) N ou(t, x)
Q

here, b™* = max({bj,, b} }, d™™ = min{dy,, d,}, "™ = minfyl, ,put, } and My = maﬁx | Up(x) |. Further,
in view of [32, Lemma 1], it is easy to find that there has a Cy > 0, depending on N(0), so that

N@) = f[W(t, x)+ U(t,x)]dx < Cy,t > 0. (3.2)
Q

To proceed, we show the ultimate boundedness of U(t,-). Due to U(t{,-) = (1 — uy1(:)U(t,) <
U(t,-), hence, for t € [], 1,], it is straightforward to see that the solution of (2.2) and (2.4) is less than or
equal to the solution of (2.2). Repeating the analysis above with U(z}, ) = (1 —py,(:)U(t,, ) < U(ty, ),
n € N, we can get that the solution of (2.2) with impulsive disturbance is less than or equal to that
without impulsive disturbance for ¢ > 0. In order to study the ultimate boundedness of term U(t, -), one
only needs to verify the following Claim.

Claim. For ¢ > 0, there exist By > 0 which is independent of ¥(-) € Y*, and 7, > 7;, such that

limsup ||U(¢, )|los < Bas, VYt > 1. (3.3)

t—00

In the forthcoming, the method of induction is used to prove (3.3) step by step. For ¢ = 0, (3.3)
holds from (3.2). Suppose (3.3) is true for ¢ — 1, that is,

lim sup ||U(t, )|lps-1 < Bas-1, for Byt > 0,V > 1. (3.4)

>0

Multiplying both sides of (2.2) by U* (¢, x) and integrating over £, it is obtained that

1 (9 25 25 -1 2s-1 12 25—1
Ea_rLU dx < — 222 DUL | VU | dx+j;(1 - )by (t, x)WU* ~"dx
+ f by(t,x)U%dx,t > 0. (3.5)
Q
By the ultimate boundedness of W(, x) and Young’s inequality, one has

f (1 — p)bw(t, OWU*'dx < (1 — p)by, | Q| +B* f UZdx,t > 1,
Q Q
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where | Q | is the volume of Q, B* = (1 —p)b (Ki + )7 and ¢* = 25/(2° = 1). Let G* = (2 —
1Dy /(2%7%), H* = B* + b}, and F* = (1 — p)by, | Q |. Hence, (3.5) can be estimated by

10

U2§dx< G*f|VU2§ |dx+HfU2sdx+F for 7> 7.
2¢ it Q

Set e = G*/(2HY). Using the interpolation inequality, there exists a B® > 0 such that

1 a S < S 2 ~
fU2d < -H' fUzdx+2H*B‘9(fU2 ‘dx) +F*, for t > .
25 0t Q Q

By virtue of (3.4), then we have

limsup(f Uzc_ldx) < Big LYE> D,
Q

t—o0

Thus,

5 2 2H*BgB§;  + F
lim sup( f U dx) < Bye, Vi >y, Boc = . (3.6)
Q H*
Meaning, Claim holds. Then we know that there has a constant B, > 0 independent of initial
conditions such that limsup [|U(z,-)l|, < B, for any p > 1. Further, by the same analysis as those

[—0o0

—o0

in [33, Lemma 2.4], there exist a positive constant K, independent of initial data, and 7, > 7, such that
U(t,") < K,, t > b,. It is obvious that W(z, -) and U(¢, -) are ultimately bounded.

Therefore, the solution of systems (2.1)—(2.6) with initial data ¥(0, -;¢(-)) = ¥(-) € Y, globally
exists for # > 0 and is also ultimately bounded from the comparison argument. This finishes the proof.

Theorem 3.3. Let (¢, -;¥(-)) be the solution of systems (2.1)—(2.6) satisfying ¥(-) € Y* on [0, o). If
there is Ty > 0 such that 9(fy, ; () # (0, 0)%, then 9(t, ;¥ (-)) > (0,0)* for t > f,.

Pioof. From Theorem 3.2, there exists a positive constant Cy such that W(z, x) + U(t,x) < Cy ,
x € Q, t > 0. With the aid of systems (2.1)—(2.6), then it is apparent to find that

ow ot, )y WW+ U)
— — Dy AW — pbyw(t, X)W + dw(t, X)W +
ot w pby (1, )W + dw(t, x) K(x)
ow FWCy
<E—DWAW pbL, W + dy, W + KT
and
oUu ot, ) UW +U) qgby(t,x)UW
— — DyAU — (1 = p)by(t, x)W = by(t, x)U + dy(t, x)U +
Ey U (I = p)bw(t, x) u(t, )U + dy(t, x) ) e w
oUu sucC
S — = DyAU = byU +dyU + —= + by Ug,

where 1 > 0,1 # t/,n € N, x € Q. On account of W(%,-) # 0 and U(%, -) # 0, by maximum principle,
it can be found that W(¢,-) > 0 and U(¢,-) > O for € (%y, t;], where 7i is the first fixed impulse moment
after 7,. In the same way, for ¢ € (3, t;,1], the positiveness of W(z,-) and U(t, -) can be proved with the
positiveness of the functions (1 —uwy#(+)) and (1 — uya(+)). Obviously, by using the analogous argument,
it can be obtained that W(z,-) > 0 and U(t,-) > 0O for ¢ € (), o). This completes the proof.
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4. Dynamic analysis

In this section, we focus on the dynamics of systems (2.1)—(2.6) by applying comparison principle
of differential equations and constructing an appropriate auxiliary function.

4.1. Extinction and permanence of the mosquitoes

Theorem 4.1. When systems (2.1)—(2.6) satisfy

T(pbfy = dfy) + > In(1 = riy) < 0, T(bf, —dp) + >~ +In(l = fy)) <0, (4.1)

i=1 i=1
then lim W(z, x) = 0 and lim U(t, x) = 0, x € Q.
— o0

[—00

Proof. First of all, we consider the extinction of Wolbachia-infected mosquitoes. Take into account
the following inequality based on (2.1):

ow ot, x ) WWW+U
0= W _ DyAW = pbu(t. OW + iy, 1yW + 2OV )
ot K(x)
ow o(t, x)W?
> — — DywAW — pby(t, )W + dw(t, x) W + ——
= o 114 pbw(t, x) w(t, x) K(x)
ow
> — =~ DyAW — pby, W + dy, W,
fort>0,t #1t ,neN,x € Q. Choose a positiveAconstant M, which satisfies M; > Wy(-) and denote by
W(?) the solution of the initial value problem % = W(t)(pbi‘, - d{,‘,), W(0) = M. By employing the

comparison principle, it can be found that W(z,-) < W(t) for 0 < t < t,. Further, impulsive condition
(2.3) implies that W(zf,-) < (1 — ,u{m)VAV(tl). Analogously, the corresponding solutions of the following
linear system (4.2) with impulse are bounded from below by solutions of (2.1) and (2.3).

aw) .
dt() = W) (pbS, —dl),t > 0,t # 1,

W(th) = (1 = uhy,)W(t,),n €N,
W(0) = M,.

4.2)

It follows from condition (4.1) that all solutions of the impulsive ODE (4.2) tend to zero as t — co.
Hence, with (4.1), we can find that W(z,-) » 0 as t — oo.

After that, the extinction of the natural mosquitoes is taken into account in event of the elimination
of Wolbachia-infected mosquitoes. Combining with (4.1), we know that for any constant €, there exist
0<é& <§&90>0andf >0 suchthat W(t,-) < &, t > 7, and

— S e
Sl ] )bel) <-d. (4.3)

> in(1 - ) + T(bf] —dl+

i=1
Assume that M, > 0, satisfying M, > Uy(-), is a fixed constant, and U(?) is the solution of the
problem %€ = U(#)(b3,—d!,)+(1-p)b3,& with initial value U(0) = M,. Further, fort > #,¢ # t7,n € N
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and x € Q, from (2.3), we yield the following inequality:

oU ot, ) )UW +U) gby(t,x)UW
0= — —DyAU — (1 — p)bw(t, X)W — by(t,x)U + dy(t, x)U
ot U (1 = p)bw(t, x) v(t, )U +dy(t,x)U + K(x) + U+ W
6_U _ S 177 (1 _ RS 5_U _ S L7171 _ RS 2
> o DyAU - b, U +d,U - (1 - p)by, W > ” DyAU - b, U +d,;U — (1 — p)by, €.

By the comparison principle, one has that U(t, x) < U(¢) for t € [f,,,], 71 is the first fixed impulse
moment after 7. Moreover, we acquire that U #,) <1~ ,ugm)l? (t;) by using impulsive condition
(2.4). Proceeding in this fashion, for ¢ > #, it is concluded that solutions of (2.2) and (2.4) are bounded
from above by the homologous solutions of the following impulsive system

av@ - .
% = U@t)(by, — di)) + (1 — p)by,éi,t > fy,t # 1,
U =1 -uy,)0(t,),n>n,neN.

(4.4)

In fact, in order to prove U(t,-) — 0 as ¢ tends to co, we only need to consider the following three
cases for any positive solution U(f) of system (4.4).

Case I: There is a 75; > #; such that U(7) > & for all ¢ > 7.

Lett = £y +IT, [ > 0 is any positive integer. By integrating system (4.4) from 7, to ¢ with (4.3), we
can get

_ _ H1+T 1= bS ¢ 1 +2T 1= bS e
U(t) < U(E) exp( ®5 —d. + #)ds + f b5 —d. + #)ds +

b1 1+T

t~21+lT 1 _ bS 2 )4 5
T f B —dl) + #)ds +1" In(1 = ) < U exp(-19).
Z i=1

21+(l—1)T

Therefore, U(f) — 0 as [ tends to oo, which leads to a contradiction.

Case II: U(?) is oscillatory about & for all ¢ > 7.

We can select two sequences {{;, j € N} and {{},j € N}, satisfying lim {; = lim {7 = oo and
J—ooo J—oo

fl <{ <)< << <, suchthat
U¢)<eU)2eU)2e U ) <& U@ > eforallt e ({;,)and U(p) < &forallt € (7, L)

Forany t > £y, if 1 € (¢}, {7] for some integer j, then we can choose integer / and constant0 <v < T

_ _ s,
such that 1 = ; + IT + v. Because 90 < U(n)(b}, - diy + “22%%) forall 1 € (£;,{)).1 # £}, then
integrating this inequality from {; to 7, we have

0 < U(Z)) exp( £ _t(bf, —dl+ %)ds + 3 (i - Mgn))

i<ty <t
o 1 —p)b3 e ¢j+2T 1 =p)bS ¢
Séexp(f (bfj_d{]_km)ds_'_f (bil_d{]+( [i) Wl)ds+
g € [+ €
T (1 - p)byén g
+ (bs —dy + fw)ds +1) In(1—pup;)
LHZ—I)T v v € ; U
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Ji+IT +v | Y, -
N f (bf, —d+ ﬂ)ds £ > ma —y{m))
g

. €
T LHT <ty <{j+HT+v

Ji+IT+v 1 =) ¢
Séexp(—l@+f (bfj—d{]+ﬂ)ds+
Ci+IT

J

In(t - 4,

HIT <ty <{+IT+v

< éexp(eT + G),

p
where e = max{lbf] - d{]| + (1 - p)bg‘,}, G = El |In(1 — ,ugﬁ)l. If there exists an integer j such that

t € (g’;f,{ i+1], then we obviously have U(t) < & < éexp(eT + G). Thus, for all t > ¢;, we obtain
U(t) < €exp(eT + G) for Case II.

Case III: there is a 7»; > 7, such that U(¢) < & for all > 7.

When Case III holds, one yields that U@t) < eéexp(eT + G). In brief, due to the arbitrary of €, it
follows that all solutions of (4.4) tend to O as t tends to co. Namely, it is directly gotten under (4.1) that
U(t,-) — 0 as t — oo. Therefore, the mosquitoes will go to extinction with (4.1). This ends the proof.

Remark 4.1. When pl,, = ub, = -+ = by, and i, = pub, = --- = ut, . Theorem 4.1 indicates that
~T(pby,~dl,) -T(b3—d})
] ’ 1 }' It
ln(l_ﬂw;) ln(l_ﬂy;)
means that mosquitoes will die out when the spraying number of insecticides w exceeds critical value

w} and the other parameters remain unchanged.

the number of mosquitoes may eventually reduce to zero if w > w., w, = max{

Theorem 4.2. For systems (2.1)—(2.6) with nonnegative nontrivial initial value, if

T(pby, —dyy) + > In(1 = riy) < 0,T(by —dyy = byq) + D | In(1 = ) > 0, (4.5)

i=1 i=1
then lim W(t,-) = 0 and liminf U(t,-) > 0.

t—o00 t—o00

Proof. Firstly, we think about that the Wolbachia-infected mosquitoes will become extinct with
some conditions. Taking the first inequality of (4.5), it is distinctly testified that W(z,-) = O ast — o
via same argument as in the proof of Theorem 4.1.

Afterwards, we consider the evolution of natural mosquitoes under the extinction of Wolbachia-
infected mosquitoes. By Theorem 3.3, we know that W(¢, x) > O and U(¢, x) > Oforall r > O and x € Q
while Wy(x) > 0 and Uy(x) > O that are not identically zero. It is result that the solution separates
from zero on [g, co) with some sufficiently small € > 0. Therefore, it can be assumed, in general, that

min Wy(x) := m; > 0 and min Uy(x) := my > 0. From Theorem 3.2 and (4.5), we have that there exist
xX€Q XEQ

€11 > 0 small enough, 7;, > 0 large enough and y > 0 such that W(¢,-) < &, t > f;, and
5 €11
K1

DIl = ) + Ty - dj) - big - —) > 7. (4.6)

i=1

Further, for r > 715, # t/,n € Nand x € ﬁ, considering the inequality as follows:

oUu ot, ) UW+U) qgby(t,x)UW

2 _ DyAU = (1 = pYby(t, )W = by(t, )U + dy(t, x)U

” U (1 = p)bw(t, x) v(t, )U +dy(t, x)U + K0 oW
55 g

S%—?—DUAU—bLU+d5U+w+b@Uq,
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and applying the comparison principle, U(t, x) > U(t) for t € [f2, t;], 1 is the first ﬁxed impulse mo-
ment after 7,,, where U(¢) is the solution of the initial value problem == dU(t) =U (t)(b’ M) +
bS U (1g, U(0) = m,. Moreover, impulsive condition (2.4) results in U (t;: )=>(- ,uUn)U (t3). Proceed-
ing in this fashion, U(t, -), the solution of (2.2) and (2.4), is bounded from below by the corresponding
solution of the following logistic model with impulse for ¢ > 7,
auve) .. oo . SUM+&))
Ry U by —dy - — x
Ut = —p} )U(t,),n=>,neN.

S
)—b U([)q,[ > flo,t # t 4.7

Actually, system (4.7) possesses a unique strictly positive and piece-wise continuous periodic so-
lution U*(7) by using [34, Theorem 2.1] and condition (4.6). Every solution U(t) of system (4.7) with
my > 0 possesses the property lim U@) = U*®). Together with U(t, x) > U(z), hence, there exists a

—o0

positive constant o such that liminf U(¢, x) > o. Thus, Wolbachia-infected mosquitoes will be wiped

—00

out and natural mosquitoes will permanent with (4.5) when time ¢ is sufficiently large. The proof is
finished.

I 0 — .
Remark 4.2. Assume iy, =y, = -+ = wy,, and gy, = @, = -+ = . It follows from Theorem 4.2
that Wolbachia-infected mosquitoes will die out and natural mosquitoes are permanent if w < w < ©,
_ —Tby,-dl) — _ -T®—d5—b%q)
C= iy YT T haw)

For the sake of simplicity, let

. KS S g 4(17?/_‘1{])21{* S _ gl g 4
H= e = U Pbuky e = b = o Ky = max iy, My exp(=))

Theorem 4.3. Let (W, U)" be the solution of systems (2.1)—(2.6) with non-negative nontrivial initial
value. If

SK* w
T(pb!, ) + Z In(1 - 1£5,) > 0, (4.8)

then liminf W(z, x) > 0| and hm 1nf U(t,x) > 0y, x € Q, where o and o are positive constants.

t—0o0

Proof. From Theorem 3.3, we have that if Wy(-) > 0, Uy(-) > 0, and Wy(-) # 0, Uy(-) £ 0, then
W(t,-) > 0 and U(¢,-) > O for all # > 0. That implies W(e, -), U(e, ) separate from zero for some small
& > 0. Therefore, it is relatively reasonable to take min, g Wy(x) := m; > 0, and min 5 Up(x) := m;, >
0. Based on the proof of Theorem 3.2 and Young’s inequality, it can be obtained that

oU St UMW +U)  agby(t, )YUW
= = DuAU = (1= p)by(t. W = by(t. U + du(t, U + ( )Kéx) ) 4 ISJV
oU 5(t, X)U?
> W DUAU = (1 = pYou(t. W — (by(t. x) + dy (2. xpU + 20V
o K(x)
oU 4y H*
> 2 _DyAU - (1 - p)bS Ky —y'U +2y'U — -2
ot Ve
> B_U - DyAU -0 + kU.
ot v
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Then, it is deduced that U(t,x) < K}, fort > 0,x € Q by using the same analysis process as the
proof of Theorem 3.2. Subsequently, for r > 0,7 # #/,n € N and x € Q, the following inequality is
given by (2.1):

oW 5(t, OW(W + U
0= _ DyAW = pby(t. W + diy(t, oW + 2V W+ U)
ot K
ow SWW +Ky)
<2 DyAW - pbl, W+ dw 4 T 0
-~ DyAW = bl W+ di W +

Combining with the condition (4.8) and using the same analysis as U(¢, -) in Theorem 4.2 , it is easy
to yield that liminf W(¢,-) > 0. Then, there are o-; > 0 and 7; > 0, such that W(¢,-) > o fort > 7.
—00

Later, with regard to the following inequality:

oUu ot, x ) UW +U) qby(t,x)UW
— — DyAU — (1 — p)bw(t, x)W — by(t, x)U + dy(t, x)U +
or U (I = p)bw(t, x) u(t, )U + dy(t, x) K@) + U+ W
oU ¢ SUKy, +K;) ;
< E_DUAU-i_dUU K1 bUUq—(l—p)bWW
oU 6SU Ky, + K]
<= - DyAU +dy,U ( i ) +bj,Uq — (1 — p)biyo,

fort>f,t #t/,neN, xe€ Q, by the comparison principle, we can conclude that U(t, x) > U(z) for

t € [f1,t;], where 7i is the first fixed impulse moment after 7; and U(¢) represents the solution of the
S * *

initial value problem dU(t) = U(n)(—d}, - %TKU) b$q) + (1 — p)bh,o1, U(0) = my. Furthermore,

combining with (2.4), an 1mpulswe condltion, one getsthat U(t},-) > (1 — Un)l_] (t7). In a similar way,

according to the impulsive equations as follows:

du( . (K +Kp)
a - V0 K!
U@y) = (1= uy,)0,),n > fi,n €N,

—bjq) + (1 —p)byo,t >, 1 # 1,

4.9)

it is achieved that the corresponding solutions of system (4.9) are bounded from above by solutions of
(2.2) and (2.4) for ¢t > ;. As a matter of fact, system (4.9) has a unique and strictly positive solution
U*(t), which is periodic and piece-wise continuous. Then U(t,-) > U(t) and U(t) — U*(t) as t — oo
for any solution U(z) of system (4.9). In a words, there has o > 0 such that liminf U(z,-) > 0. As

t—00

a result, Wolbachia-infected mosquitoes and natural mosquitoes are permanent under conditions. This
accomplishes the proof.

Remark 4.3. Theorem 4.3 shows that increasing maternal transmission rate p to pass p. will ensure
w

the persistence of the Wolbachia-infected mosquitoes in the habitat, where p, = —% > In(1 - ,ufw) +
i=1
S g
d;,gv + 2 KIf”. This means that large p is better chance for the establishment of Wolbachia in natural

mosquito population.

Remark 4.4. When #€V1 = :“%/2 == ,uWw, if w < w*, Wolbachia-infected mosquitoes and natural

6 K*
~T(pb,—d5,— U )

mosquitoes coexist, where w* =
e
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Remark 4.5. Although the eradication of mosquitoes can be came true by the use of large quantities
of highly effective insecticides (see Theorem 4.1 and Figure 2), it is unrealistic because the overuse
of insecticides will cause a lot of pollution to the environment on which we live, the mosquito resis-
tance to insecticides, and may cause cancer, nerve paralysis and other human diseases. Therefore, we
should use insecticides appropriately to reduce the number of natural mosquitoes under the premise of
ensuring the establishment of Wolbachia in natural mosquito population (see Theorem 4.3, Figures 1
and 6). This is exactly what we pay attention to and is one of the main research objectives of this work.

4.2. Periodic solution

The existence, uniqueness and stability of periodic solution for systems (2.1)—(2.6) are basic and
vital problem. Thus, we study this problem by constructing an appropriate auxiliary function in this
subsection.

Based on Theorems 3.2 and 4.3, it is obtained that there have o* > 0 and K* > 0 such that the
solutions of systems (2.1)—(2.6) with non-negative nontrivial initial value satisty (W(z,-), U(t,-)) €

={(W(,-),U(t, ) : 0" < W(t,-) < K*,o" < U(t,-) < K*} for sufficiently large ¢.

Theorem 4.4. Assume that the condition of Theorem 4.3 holds. If

ZlnSi + Ty, <0, (4.10)

i=1

then, systems (2.1)—(2.6) satisfying Wy > (£)0, Uy > (£)0 has a unique, strictly positive, and global

attractive, piece-wise continuous T-periodic solution, here S; = max{(1 — uwi(x))?, (1 — uyi(x))*}, and
xeQ
Ay delegates for the maximal eigenvalue of the matrix E:

z(pr d[ 35 a' p) bS + bS

2K6

p)bS +bSC[ 2(195 d[ 36’ _ U‘I‘T ) ’

4K*2

Proof. We will prove this result in three steps. It should illustrate that by, dw, by, dy, 6, K, twn,
and uy, are the abbreviations for by (t, ), dw(t,-), by(t, ), dy(t,-), 6(t,-), K(-), uw,(-) and uy,(-) for the
convenience of marking below, respectively.

Step 1: At first, the periodic solutions for systems (2.1)—(2.6) exist. From Theorems 3.2 and 4.3,
it is easy to know that the permanent of systems (2.1)—(2.6) is ensured. Defined operator ¥ : II — II
by Y(W(z)), U(ty)) = (W(z;), U(t;)). Then the operator ¥ has at least one fixed point (W*, U*) € II
on account of the Brouwer’s fixed point theorem. Hence, systems (2.1)—(2.6) have at least one strictly
positive and piecewise continuous 7 -periodic solution.

Step 2: Assume that the (W, U)" is a periodic solution of systems (2.1)—(2.6) and (W, U)" is another
solution in I1. Next, we need to prove the global attractively of the solution, that is, it is verified that

lim | W — W|_011m|U Ul=0

—o00

Constructing the auxiliary function V(f) = fQ[(W — W)? + (U — U)?]dx, the derivative of V(¢) at
t # t is as follows:
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d(V(t)

1]
[\]
gl

OW oW ou oU
fg E‘E) - U)(E_E)]dx

bUUCZW

SW(W + U _ -
:2f W - W) DWAW+pbWW dgw = WV b AW~ pby W+ dy W
Q
L W+ T ] SUW + U
(K+ ))+(U—U)(DAU+(1—p)bWW+bUU—dUU— (K+ ) _

_ - _ _ SUW+U) byUgWw
_DAD (1 = p)boygW — by + dy 0 + 2LV ) | buUdh )]dx
K U+w

=2 f [DW(W — W)AW = W) + Dy(U — O)A(U - U)]dx +2 f [(W - V_V)Z(pbw —dy
Q Q

_6(W1:W))]dx_2fg

_5(UI: U))]dx—zfg[w U)‘SWU]def

W — W)(SWU + (W - W)‘SWU]def
K Q

WU

= Jax

(U-0)

W

+2f(W—W)(U—U)(1—p)bwdx—Zf
Q

Q

After some simple calculations, we can obtain
V= Zf[DW(W - WAW = W) + Dy(U — U)A(U - U))dx
Q

< —Zf[DW | VW = W) > +Dy | V(U = U) |*1dx < 0,
Q

S(W + W)

V,=2

5— 55—

] _ WU

[(W — W) (oby — dw — )]dx - 2f [(W - W)T (W-W)
Q

S(W+W+0)

K

2 [(W - V_V)z(pbw —dy -

(U-0)

>
I

[(U _ U)Z(bU —dy - 6(UI: 0 )]dx _2 f
(U +U+W) ’
K

Il
\®)

S 5

| - 02(bu - dv -

wU wU )]
U+W U+W

=
Il
NS}

[(W = W)U - U)(1 - p)by]ldx - ZL

(U - Db

2 | [(W=W)U - U)(1 - p)bwldx -2

WU
- U)qu(U WO+ W)]dx'

5WU

)]dx _2 L [(W - W)EW(U - U)]dx

6V£U]dx+2f[(U o)

)]dx _2 fQ [(U _ U)%U(W _ W)]dx,

(U = OPbugWW (U= O)W = WibyqUU |,
X

5 5

QL(U+WYU+W)
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Therefore, it follows from Theorems 3.2 and 4.3 that

dV(t)
dt

é(Vl-l-(Vz+(V3+(V4

<2f[(W—W)2(pbW—dW—M dx—2f
K Q

f(U U) bU_dU_(S(U+U+W))] f

Q Q

\fiav ‘qu>—0x1—;nMde—2\f‘(U—-Ufbyq
Q

_ 90 _
(W= W2 W(U - U)]dx

(U—@%WW—W*M

WwW ]
(U + W)U + W)

uvu
+2 f [(U DW= Whboa 5 5 W)]dx

f(W W) b, — dl, - 32*51)]dx+2j;[|(W W) || (U - U)|265K*]dx

ng[l W-wl (U—U)I(l—p)bfv]dX+2fQ[| (U= 0) | (W= W) | byqldx

_ 305! bl qO'*2
2( .S 1 U
2L[(U—U) (bU—dU— Y- )]dx

< Ay f [(W=W)*+ (U - U)*)dx.
Q

Thus, we get V(t:11) < V(£ exp(Ay(tis1 — t;)) and

V) = f[(l — pwir )W = (1 = g y) W1dx + f[(l — pwas)U — (1 = pgs1) OFPdx
Q Q

< S V(i) < S V(@) exp(Ay(tiv — 1)),i =0,1,2, - -

Let S* = [[S;exp(AyT). Itis obvious to find that V(¢ + T) < S*V(¢) = [ S:V(¢) exp(AyT). The
i=1 i=1

condition (4.1_0) implies §$* < 1. Accordingly, V(wT + s) < S*"V(s) — 0 as @w — oo, which means
that || W—-W || L@— Oand || U - U | L,@— 0as ¢ tends to infinity. Due to the boundary of the solution
of systems (2.1)—(2.6) in the space Y from [32, Theorem 9], we can get

limsup | W(t,x) — W(t,x) |= 0, hm sup | U(t,x) = U(t,x) |= 0 “4.11)
120 ey % xeQ
Therefore, the solutions are globally attractive.
Step 3: It is vital to demonstrate the uniqueness of the periodic solutions. Let us consider the
sequence {v(nT,vy) = (W(nT, x),U(nT, x)),n € N, x € Q}). We know that the sequence is compact in
the space Y from [32, Theorem 9]. Let ¥ be a limit point of this sequence, that is, v = lim v(n;T, vy).

k—o0

Since (T, v(n;T, vy)) = v(ni T, v(T, vy)) and lim v(niT, (T, vo)) — v(n;T, vo) = 0, then
k— o0

1T, ¥) =V lly<I| W(T, ) = W(T, v(ng T, vo)) lly + | (T, v(ngT, vo)) = v(ngT, vo) lly + Il v(ngT,vo) = v [ly— 0
as k — oo. This implies ¥ = w(T, ¥). For {v(nT,vy)}, the limit point is unique. On the contrary, for the

sequence, suppose that there exist two limit points v = lim v(n;T,vo) and ¥ = lim v(n;T, vy). Thus,

—)DO —)DO
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according to (4.11) and ¥ = v(n;T, V), then || V=V ||y <|| V = v(nz T, vo) |ly + || v(nzT,vo) —V |[y— O when
k tends to co. Therefore, # = ¥, which shows that the solution (W, U) is the unique periodic solution of
systems (2.1)—(2.6). This ends the proof of Theorem 4.4.

Corollary 4.1. For systems (2.1)—(2.6), if there are no impulsive controls, the condition (4.8) can be
S K;,
KI

reduced to: pbl, — dﬁ, — > 0, which is sufficient to have the permanence for the system.

S g
Corollary 4.2. Suppose that there are no impulsive controls in systems (2.1)—(2.6), if pb}, —d5, — 2 KIfU

0 and Ay < 0, where Ay is the same definition as Theorem 4.4, then systems (2.1)—(2.6) without
impulsive controls have a unique and strictly positive T-periodic solution which is globally attractive.

5. Numerical simulations

In this section, some numerical simulations will be utilized to derive some important insights about
the developments of mosquito populations from our analytic conclusions. More importantly, we will
present the effects of some relevant critical factors on the evolution of mosquito species and the in-
fluences of the two control policies for reducing the number of natural mosquitoes infected by some
viruses.

5.1. Long term behavior

In this part, some numerical simulations are presented to substantiate the analytic results of Sec-
tion 4. For simplicity, suppose = (0, 6). With the reference to [35,36], fix 7 = 12 months,

K(x) = 12300000(1 + 0.1 cos(zx/3)), (5.1)
by(t, x) = 2.325 % 9.6794(1 + 0.1 cos(n£/6))(1 + 0.1 cos(rx/3)) month™", (5.2)
dy(t, x) = 3.316(1 + 0.085 cos(nt/6)(1 + 0.11 cos(mx/3)) month ™. (5.3)

Motivated by recent work [37], we assume that the insecticides are sprayed on average 5 times a
month, then w = 60 and ¢, = 0.2n month. All the parameters and their values are listed in Table 2. For
illustration, we take by /(t, x) = 0.9by (¢, x), dw(t, x) = 0.85dy (¢, x) and select the initial data as

Wo(x) = Woo(1 + 0.05 cos(rrx)/3), Up(x) = Upo(1 + 0.05 cos(rrx)/3), x € [0, 6],

where Wy, = 1,500, 000, Uy = 2,500, 000. Applying this set of parameters, we numerically calculate
condition (4.8) to obtain

S prx

© 5K
D In(1 = ga3y) + T(pbly — diy = —=2) ~ 39.76 > 0.
i=1

KI
Clearly, as shown in Figure 1, the Wolbachia-infected mosquitoes and natural mosquitoes will co-
exist. This is coincident with the consequence of Theorem 4.3. That is to say, the partial substitution

with Wolbachia is a feasible strategy.
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Table 2. Parameters values in simulation.

Parameter Value(range) References Parameter Value(range) References
Dy 0.02 (km?month)~! [38] Dy 0.04 (km’*month)~! [38]

Ie) 0.9 [21,39-41] q 0.8 [21,39,40]
K(x) (GR)) [35,36] by(t, x) (5.2) [35]

dy(t, x) (5.3) [35] o(t, x) 10 month™! Assumed
bw(t, x) aby(t, x),a € [0.5,1] [42,43] dw(t, x) Bdy(t, x),B>0 [38,44]
Hwn(x) 0.5 [21] H