Research article Special Issues

Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders

  • Received: 01 August 2022 Revised: 09 September 2022 Accepted: 25 September 2022 Published: 10 October 2022
  • In this paper, a delayed fractional Lotka-Volterra food chain chemostat model with incommensurate orders is proposed, and the effect on system stability and bifurcation of this model are discussed. First, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Taking the time delay as the bifurcation parameter, the relevant characteristic equations are analyzed, and the conditions for Hopf bifurcation are proposed. The results show that the controller can fundamentally affect the stability of the system, and that they both have an important impact on the generation of bifurcation at the same time. Finally, numerical simulation is carried out to support the theoretical data.

    Citation: Xiaomeng Ma, Zhanbing Bai, Sujing Sun. Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020

    Related Papers:

  • In this paper, a delayed fractional Lotka-Volterra food chain chemostat model with incommensurate orders is proposed, and the effect on system stability and bifurcation of this model are discussed. First, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Taking the time delay as the bifurcation parameter, the relevant characteristic equations are analyzed, and the conditions for Hopf bifurcation are proposed. The results show that the controller can fundamentally affect the stability of the system, and that they both have an important impact on the generation of bifurcation at the same time. Finally, numerical simulation is carried out to support the theoretical data.



    加载中


    [1] H. I. Freedman, S. G. Ruan, Hopf bifurcation in three-species food chain models with group defense, Math. Biosci., 111 (1992), 73–87. https://doi.org/10.1016/0025-5564(92)90079-C doi: 10.1016/0025-5564(92)90079-C
    [2] B. T. Li, G. S. K. Wolkowicz, Y. Kuang, Global asymptotic behavior of a chemostat model with two perfectly complementary resources and distributed delay, Siam J. Appl. Math., 60 (2000), 2058–2086. https://doi.org/10.1137/S0036139999359756 doi: 10.1137/S0036139999359756
    [3] Y. K. Li, L. H. Lu, Positive periodic solutions of discrete n-species food-chain systems, Appl. Math. Comput., 167 (2005), 324–344. https://doi.org/10.1016/j.amc.2004.06.082 doi: 10.1016/j.amc.2004.06.082
    [4] K. B. Sun, T. H. Zhang, Y. Tian, Dynamics analysis and control optimization of a pest management predator-Prey model with an integrated control strategy, Appl. Math. Comput., 292 (2017), 253–271. https://doi.org/10.1016/j.amc.2016.07.046 doi: 10.1016/j.amc.2016.07.046
    [5] H. L. Li, L. Zhang, Z. D. Teng, Y. L. Jiang, A. Muhammadhaji, Global stability of an SI epidemic model with feedback controls in a patchy environment, Appl. Math. Comput., 321 (2018), 372–384. https://doi.org/10.1016/j.amc.2017.10.057 doi: 10.1016/j.amc.2017.10.057
    [6] V. P. Latha, F. A. Rihan, R. Rakkiyappan, G. Velmurugan, A fractional-order model for Ebola virus infection with delayed immune response on heterogeneous complex networks, J. Comput. Appl. Math., 339 (2018), 134–146. https://doi.org/10.1016/j.cam.2017.11.032 doi: 10.1016/j.cam.2017.11.032
    [7] L. H. Zhu, G. Guan, Y. M. Li, Nonlinear dynamical analysis and control strategies of a network-based SIS epidemic model with time delay, Appl. Math. Model., 70 (2019), 512–531. https://doi.org/10.1016/j.apm.2019.01.037 doi: 10.1016/j.apm.2019.01.037
    [8] R. B. Gong, Y. B. Ma, Y. Zhou, Confident estimation for density of a biological population based on line transect sampling, Acta. Math. Appl. Sin-E., 26 (2010), 79–92. https://doi.org/10.1007/s10255-009-9008-2 doi: 10.1007/s10255-009-9008-2
    [9] D. Greenhalgh, Y. Liang, X. Mao, SDE SIS epidemic model with demographic stochasticity and varying population size, Appl. Math. Comput., 276 (2016), 218–238. https://doi.org/10.1016/j.amc.2015.11.094 doi: 10.1016/j.amc.2015.11.094
    [10] P. H. Chavanis, Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations, Eur. Phys. J. B., 62 (2008), 179–208. https://doi.org/10.1140/epjb/e2008-00142-9 doi: 10.1140/epjb/e2008-00142-9
    [11] X. H. Wang, Z. Wang, J. W. Xia, Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders, J. Franklin. I., 356 (2019), 8278–8295. https://doi.org/10.1016/j.jfranklin.2019.07.028 doi: 10.1016/j.jfranklin.2019.07.028
    [12] D. P. Hu, Y. Y. Li, M. Liu, Y. Z. Bai, Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey and Ivlev-type functional response, Nonlinear. Dynam., 99 (2020), 3323–3350. https://doi.org/10.1007/s11071-020-05467-z doi: 10.1007/s11071-020-05467-z
    [13] N. A. M. Aris, S. S. Jamaian, Dynamical analysis of fractional-order chemostat model, AIMS. Biophysics., 8 (2021), 182–197. 10.3934/biophy.2021014 doi: 10.3934/biophy.2021014
    [14] M. Zeinadini, M. Namjoo, A numerical method for discrete fractional-order chemostat model derived from nonstandard numerical scheme, B. Iran. Math. Soc., 43 (2017), 1165–1182.
    [15] T. Fang, J. T. Sun, Stability of complex-valued recurrent neural networks with time-delays, IEEE Trans. Neural Networks Learn. Syst., 25 (2014), 1709–1713. https://doi.org/10.1109/TNNLS.2013.2294638 doi: 10.1109/TNNLS.2013.2294638
    [16] W. H. Deng, C. P. Li, J. H. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear. Dynam., 48 (2006), 409–416. https://doi.org/10.1007/s11071-006-9094-0 doi: 10.1007/s11071-006-9094-0
    [17] G. M. Mahmoud, A. A. Arafa, T. Abed-Elhameed, E. Mahmoud, Chaos control of integer and fractional orders of chaotic Burke-Shaw system using time delayed feedback control, Chaos Solitons Fractals, 104 (2017), 680–692. https://doi.org/10.1016/j.chaos.2017.09.023 doi: 10.1016/j.chaos.2017.09.023
    [18] M. M. Gao, D. Q. Jiang, Stationary distribution of a chemostat model with distributed delay and stochastic perturbations, Appl. Math. Lett., 123 (2022), 107585. https://doi.org/10.1016/j.aml.2021.107585 doi: 10.1016/j.aml.2021.107585
    [19] I. Podlubny, Fractional differential equations, Academic. Press., 1999.
    [20] G. Jumarie, Laplace-transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative, Appl. Math. Lett., 22 (2009), 1659–1664. https://doi.org/10.1016/j.aml.2009.05.011 doi: 10.1016/j.aml.2009.05.011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1905) PDF downloads(152) Cited by(5)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog