Schistosomiasis is a parasitic disease caused by Schistosoma worm infection. Some species of snails can serve as the intermediate hosts for the parasite. Numerous interventions have been performed to repress the snail population. One of them is the use of molluscicide. Nevertheless, it is debated that molluscicide intervention has negative impacts on the ecosystem. To investigate the impact of more environmentally friendly interventions, we develop a schistosomiasis model with treatment, habitat modification and biological control. The biological control agent examined in our model is a snail predator. Moreover, to investigate the impact of snail habitat modification, we assume that the snail population grows logistically. We show that all solutions of our model are non-negative and bounded. We also study the existence and stability conditions of equilibrium points. The basic reproduction numbers are determined using the next-generation operator. Linearization combined with the Routh-Hurwitz criterion is used to prove the local stability condition of disease-free equilibrium points. Bifurcation theory is applied to investigate the local stability condition of the endemic equilibrium points. To examine the global behavior of our model, we use asymptotically autonomous system theory and construct a Lyapunov function. We perform several numerical simulations to validate and support our deductive results. Our results show that early treatment can reduce the basic reproduction number and schistosomiasis cases. In addition, modifying snail habitat and releasing the snail predator at the snail habitat can reduce schistosomiasis prevalence. We suggest using snail predators which can hunt and kill snails effectively as a biological control agent.
Citation: Wahyudin Nur, Trisilowati, Agus Suryanto, Wuryansari Muharini Kusumawinahyu. Schistosomiasis model with treatment, habitat modification and biological control[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13799-13828. doi: 10.3934/mbe.2022643
Schistosomiasis is a parasitic disease caused by Schistosoma worm infection. Some species of snails can serve as the intermediate hosts for the parasite. Numerous interventions have been performed to repress the snail population. One of them is the use of molluscicide. Nevertheless, it is debated that molluscicide intervention has negative impacts on the ecosystem. To investigate the impact of more environmentally friendly interventions, we develop a schistosomiasis model with treatment, habitat modification and biological control. The biological control agent examined in our model is a snail predator. Moreover, to investigate the impact of snail habitat modification, we assume that the snail population grows logistically. We show that all solutions of our model are non-negative and bounded. We also study the existence and stability conditions of equilibrium points. The basic reproduction numbers are determined using the next-generation operator. Linearization combined with the Routh-Hurwitz criterion is used to prove the local stability condition of disease-free equilibrium points. Bifurcation theory is applied to investigate the local stability condition of the endemic equilibrium points. To examine the global behavior of our model, we use asymptotically autonomous system theory and construct a Lyapunov function. We perform several numerical simulations to validate and support our deductive results. Our results show that early treatment can reduce the basic reproduction number and schistosomiasis cases. In addition, modifying snail habitat and releasing the snail predator at the snail habitat can reduce schistosomiasis prevalence. We suggest using snail predators which can hunt and kill snails effectively as a biological control agent.
[1] | D. P. McManus, D. W. Dunne, M. Sacko, J. Utzinger, B. J. Vennervald, X. N. Zhou, Schistosomiasis, Nat. Rev. Dis. Primers, 4 (2018), 13. https://doi.org/10.1038/s41572-018-0013-8 doi: 10.1038/s41572-018-0013-8 |
[2] | D. P. McManus, R. Bergquist, P. Cai, S. Ranasinghe, B. M. Tebeje, H. You, Schistosomiasis—from immunopathology to vaccines, Semin. Immunopathol., 42 (2020), 355–371. https://doi.org/10.1007/s00281-020-00789-x doi: 10.1007/s00281-020-00789-x |
[3] | O. P. Aula, D. P. McManus, M. K. Jones, C. A. Gordon, Schistosomiasis with a Focus on Africa, Trop. Med. Infect. Dis., 6 (2021), 109. https://doi.org/10.3390/tropicalmed6030109 doi: 10.3390/tropicalmed6030109 |
[4] | D. G. Colley, A. L. Bustinduy, W. E. Secor, C. H. King, Human schistosomiasis, Lancet, 383 (2014), 2253–2264. https://doi.org/10.1016/S0140-6736(13)61949-2 doi: 10.1016/S0140-6736(13)61949-2 |
[5] | D. G. Colley, E. S. Loker, New tools for old questions: How strictly human are "Human Schistosomes"—And does it matter?, J. Infect. Dis., 218 (2018), 344–346. https://doi.org/10.1093/infdis/jiy030 doi: 10.1093/infdis/jiy030 |
[6] | WHO, Schistosomiasis: progress report 2001–2011, strategic plan 2012–2020, WHO, United State of America, 2013. |
[7] | M. L. Nelwan, Schistosomiasis: Life cycle, diagnosis, and control, Curr. Ther. Res., 91 (2019), 5–9. https://doi.org/10.1016/j.curtheres.2019.06.001 doi: 10.1016/j.curtheres.2019.06.001 |
[8] | D. Rollinson, S. Knopp, S. Levitz, J. R. Stothard, L.-A. Tchuem Tchuenté, A. Garba, et al., Time to set the agenda for schistosomiasis elimination, Acta Trop., 128 (2013), 423–440. https://doi.org/10.1016/j.actatropica.2012.04.013 doi: 10.1016/j.actatropica.2012.04.013 |
[9] | A. G. Ross, T. N. Chau, M. T. Inobaya, R. M. Olveda, Y. Li, D. A. Harn, A new global strategy for the elimination of schistosomiasis, Int. J. Infect. Dis., 54 (2017), 130–137. https://doi.org/10.1016/j.ijid.2016.09.023 doi: 10.1016/j.ijid.2016.09.023 |
[10] | M. C. Arostegui, C. L. Wood, I. J. Jones, A. J. Chamberlin, N. Jouanard, D. S. Faye, et al., Potential biological control of schistosomiasis by fishes in the lower senegal river basin, Am. J. Trop. Med. Hyg., 100 (2019), 117–126. https://doi.org/10.4269/ajtmh.18-0469 doi: 10.4269/ajtmh.18-0469 |
[11] | P. Coelho, R. Caldeira, Critical analysis of molluscicide application in schistosomiasis control programs in Brazil, Infect. Dis. Poverty., 5 (2016), 57. https://doi.org/10.1186/s40249-016-0153-6 doi: 10.1186/s40249-016-0153-6 |
[12] | C. H. King, D. Bertsch, Historical Perspective: Snail Control to Prevent Schistosomiasis, PLoS Negl. Trop. Dis., 9 (2015), e0003657. https://doi.org/10.1371/journal.pntd.0003657 doi: 10.1371/journal.pntd.0003657 |
[13] | S. H. Sokolow, E. Huttinger, N. Jouanard, M. H. Hsieh, K. D. Lafferty, A. M. Kuris, et al., Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host, Proc Natl Acad Sci., 112 (2015), 9650–9655. https://doi.org/10.1073/pnas.1502651112 doi: 10.1073/pnas.1502651112 |
[14] | S. H. Sokolow, C. L. Wood, I. J. Jones, S. J. Swartz, M. Lopez, M. H. Hsieh, et al., Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best, PLoS Negl. Trop. Dis., 10 (2016), e0004794. https://doi.org/10.1371/journal.pntd.0004794 doi: 10.1371/journal.pntd.0004794 |
[15] | W. Evan Secor, Water-based interventions for schistosomiasis control, Pathog. Glob. Health., 108 (2014), 246–254. https://doi.org/10.1179/2047773214Y.0000000149 doi: 10.1179/2047773214Y.0000000149 |
[16] | G. M. Mkoji, C. H. Kariuki, D. K. Koech, J. H. Ouma, J. R. Rashid, J. H. Kihara, et al., Impact of the crayfish Procambarus clarkii on Schistosoma haematobium transmission in Kenya., Am. J. Trop. Med. Hyg., 61 (1999), 751–759. https://doi.org/10.4269/ajtmh.1999.61.751 doi: 10.4269/ajtmh.1999.61.751 |
[17] | J. F. Xu, P. Steinman, D. Maybe, X. N. Zhou, S. Lv, S. Z. Li, et al., Evolution of the national schistosomiasis control programmes in the People's Republic of China, Adv. Parasitol., 92 (2016), 1–38. https://doi.org/10.1016/bs.apar.2016.02.001 doi: 10.1016/bs.apar.2016.02.001 |
[18] | Y. S. Li, G. Raso, Z. Y. Zhao, Y. K. He, M. K. Ellis, D. P. McManus, Large water management projects and schistosomiasis control, Dongting Lake Region, China, Emerg. Infect. Dis., 13 (2007), 973–979. https://doi.org/10.3201/eid1307.060848 doi: 10.3201/eid1307.060848 |
[19] | G. MacDonald, The dynamics of helminth infections, with special reference to schistosomes, Trans. R. Soc. Trop. Med. Hyg., 59 (1965), 489–506. https://doi.org/10.1016/0035-9203(65)90152-5 doi: 10.1016/0035-9203(65)90152-5 |
[20] | E. T. Chiyaka, W. Garira, Mathematical analysis of the transmission dynamics of schistosomiasis in the human-snail hosts, J. Biol. Syst., 17 (2009), 397–423. https://doi.org/10.1142/S0218339009002910 doi: 10.1142/S0218339009002910 |
[21] | S. Gao, Y. Liu, Y. Luo, D. Xie, Control problems of a mathematical model for schistosomiasis transmission dynamics, Nonlinear Dyn., 63 (2011), 503–512, https://doi.org/10.1007/s11071-010-9818-z doi: 10.1007/s11071-010-9818-z |
[22] | C. Ding, Y. Sun, Y. Zhu, A schistosomiasis compartment model with incubation and its optimal control, Math. Methods Appl. Sci., 40 (2017), 5079–5094. https://doi.org/10.1002/mma.4372 doi: 10.1002/mma.4372 |
[23] | W. Nur, Trisilowati, A. Suryanto, W. M. Kusumawinahyu, Mathematical model of schistosomiasis with health education and molluscicide intervention, J. Phys. Conf. Ser., 1821 (2021), 012033. https://doi.org/10.1088/1742-6596/1821/1/012033 doi: 10.1088/1742-6596/1821/1/012033 |
[24] | K. W. Okamoto, P. Amarasekare, The biological control of disease vectors, J. Theor. Biol., 309 (2012), 47–57. https://doi.org/10.1016/j.jtbi.2012.05.020 doi: 10.1016/j.jtbi.2012.05.020 |
[25] | K. W. Okamoto, F. Gould, A. L. Lloyd, Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases, PLOS Comput. Biol., 12 (2016), e1004695. https://doi.org/10.1371/journal.pcbi.1004695 doi: 10.1371/journal.pcbi.1004695 |
[26] | M. Diaby, A. Iggidr, M. Sy, A. Sène, Global analysis of a schistosomiasis infection model with biological control, Appl. Math. Comput., 246 (2014), 731–742. https://doi.org/10.1016/j.amc.2014.08.061 doi: 10.1016/j.amc.2014.08.061 |
[27] | W. Nur, Trisilowati, A. Suryanto, W. M. Kusumawinahyu, Schistosomiasis model incorporating snail predator as biological control agent, Mathematics, 9 (2021), 1858. https://doi.org/10.3390/math9161858 doi: 10.3390/math9161858 |
[28] | B. Gryseels, K. Polman, J. Clerinx, L. Kestens, Human schistosomiasis, Lancet, 368 (2006), 1106–1118. https://doi.org/10.1016/S0140-6736(06)69440-3 doi: 10.1016/S0140-6736(06)69440-3 |
[29] | R. M. Anderson, R. M. May, Prevalence of schistosome infections within molluscan populations: observed patterns and theoretical predictions, Parasitology, 79 (1979), 63–94. https://doi.org/10.1017/s0031182000051982 doi: 10.1017/s0031182000051982 |
[30] | J. P. Carson, M. W. Robinson, M. H. Hsieh, J. Cody, L. Le, H. You, et al., A comparative proteomics analysis of the egg secretions of three major schistosome species, Mol. Biochem. Parasitol., 240 (2020), 111322. https://doi.org/10.1016/j.molbiopara.2020.111322 doi: 10.1016/j.molbiopara.2020.111322 |
[31] | A. P. Lemos-Pai˜ao, C. J. Silva, D. F. M. Torres, A cholera mathematical model with vaccination and the biggest outbreak of world's history, AIMS Math., 3 (2018), 448–463. https://doi.org/10.3934/Math.2018.4.448 doi: 10.3934/Math.2018.4.448 |
[32] | H. L. Li, L. Zhang, C. Hu, Y. l. Jiang, Z. Teng, Dynamical analysis of a gractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8 |
[33] | X. Yang, L. Chen, J. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Comput. Math. Appl., 32 (1996), 109–116. https://doi.org/10.1016/0898-1221(96)00129-0 doi: 10.1016/0898-1221(96)00129-0 |
[34] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6 |
[35] | A. D. Polyanin, A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman and Hall/CRC, 2007. |
[36] | Y. Bavafa-Toosi, Introduction to Linear Control Systems, Elsevier, London, 2019. |
[37] | M. Y. Cook, Flight Dynamics Principles, 2nd edition, Elsevier, UK, 2007. |
[38] | C. Castillo-Chavez, B. Song, Dynamical Models of Tuberculosis and Their Applications, Math. Biosci. Eng., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361 |
[39] | H. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30, (1992). https://doi.org/10.1007/BF00173267 doi: 10.1007/BF00173267 |
[40] | C. Castillo-Chavez, W. Huang, J. Li, Competitive exclusion in Gonorrhea models and other sexually transmitted diseases, SIAM J. Appl. Math., 56 (1996), 494–508. https://doi.org/10.1137/S003613999325419X doi: 10.1137/S003613999325419X |
[41] | M. Diaby, Stability analysis of a schistosomiasis transmission model with control strategies, BIOMATH, 4, https://doi.org/10.11145/j.biomath.2015.04.161 doi: 10.11145/j.biomath.2015.04.161 |
[42] | C. Castillo-Chavez, B. Song, Models for the Transmission Dynamics of Fanatic Behaviors, Bioterrorism: Mathematical Modeling Applications in Homeland Security, (2003), 155–172. https://doi.org/10.1137/1.9780898717518.ch7. doi: 10.1137/1.9780898717518.ch7 |
[43] | Y. Nakata, On the global stability of a delayed epidemic model with transport-related infection, Nonlinear Anal. Real World Appl., 12 (2011), 3028–3034. https://doi.org/10.1016/j.nonrwa.2011.05.004 doi: 10.1016/j.nonrwa.2011.05.004 |
[44] | E. Agbata, R. Morton, Z. Bisoffi, E. Bottieau, C. Greenaway, B. A. Biggs, et al., Effectiveness of screening and treatment approaches for schistosomiasis and strongyloidiasis in newly-arrived migrants from endemic countries in the EU/EEA: A systematic review, Int. J. Environ. Res. Public Health, 16 (2018), 11. https://doi.org/10.3390/ijerph16010011 doi: 10.3390/ijerph16010011 |
[45] | E. Calizza, M. L. Costantini, G. Careddu, L. Rossi, Effect of habitat degradation on competition, carrying capacity, and species assemblage stability, Ecol. Evol., 7 (2017), 5784–5796. https://doi.org/10.1002/ece3.2977 doi: 10.1002/ece3.2977 |