Research article

Improved intelligent clonal optimizer based on adaptive parameter strategy


  • Received: 01 June 2022 Revised: 11 July 2022 Accepted: 12 July 2022 Published: 21 July 2022
  • The intelligent clonal optimizer (ICO) is a new evolutionary algorithm, which adopts a new cloning and selection mechanism. In order to improve the performance of the algorithm, quasi-opposition-based and quasi-reflection-based learning strategy is applied according to the transition information from exploration to exploitation of ICO to speed up the convergence speed of ICO and enhance the diversity of the population. Furthermore, to avoid the stagnation of the optimal value update, an adaptive parameter method is designed. When the update of the optimal value falls into stagnation, it can adjust the parameter of controlling the exploration and exploitation in ICO to enhance the convergence rate of ICO and accuracy of the solution. At last, an improved intelligent chaotic clonal optimizer (IICO) based on adaptive parameter strategy is proposed. In this paper, twenty-seven benchmark functions, eight CEC 2104 test functions and three engineering optimization problems are used to verify the numerical optimization ability of IICO. Results of the proposed IICO are compared to ten similar meta-heuristic algorithms. The obtained results confirmed that the IICO exhibits competitive performance in convergence rate and accurate convergence.

    Citation: Jiahao Zhang, Zhengming Gao, Suruo Li, Juan Zhao, Wenguang Song. Improved intelligent clonal optimizer based on adaptive parameter strategy[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10275-10315. doi: 10.3934/mbe.2022481

    Related Papers:

  • The intelligent clonal optimizer (ICO) is a new evolutionary algorithm, which adopts a new cloning and selection mechanism. In order to improve the performance of the algorithm, quasi-opposition-based and quasi-reflection-based learning strategy is applied according to the transition information from exploration to exploitation of ICO to speed up the convergence speed of ICO and enhance the diversity of the population. Furthermore, to avoid the stagnation of the optimal value update, an adaptive parameter method is designed. When the update of the optimal value falls into stagnation, it can adjust the parameter of controlling the exploration and exploitation in ICO to enhance the convergence rate of ICO and accuracy of the solution. At last, an improved intelligent chaotic clonal optimizer (IICO) based on adaptive parameter strategy is proposed. In this paper, twenty-seven benchmark functions, eight CEC 2104 test functions and three engineering optimization problems are used to verify the numerical optimization ability of IICO. Results of the proposed IICO are compared to ten similar meta-heuristic algorithms. The obtained results confirmed that the IICO exhibits competitive performance in convergence rate and accurate convergence.



    加载中


    [1] J. H. Holland, Genetic Algorithms, Sci. Am., 267 (1992), 66-73. https://doi.org/10.1038/scientificamerican0792-66
    [2] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671-680. https://doi.org/10.1126/science.220.4598.671 doi: 10.1126/science.220.4598.671
    [3] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: a novel optimization algorithm, Knowledge Based Syst., 191 (2020), 105190. https://doi.org/10.1016/j.knosys.2019.105190 doi: 10.1016/j.knosys.2019.105190
    [4] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43 (2011), 303-315. https://doi.org/10.1016/j.cad.2010.12.015 doi: 10.1016/j.cad.2010.12.015
    [5] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, in 2007 IEEE Congress on Evolutionary Computation, (2007), 4661-4667. https://doi.org/10.1109/CEC.2007.4425083
    [6] Q. Zhang, R. Wang, J. Yang, K. Ding, Y. Li, J. Hu, Collective decision optimization algorithm: a new heuristic optimization method, Neurocomputing, 221 (2017), 123-137. https://doi.org/10.1016/j.neucom.2016.09.068 doi: 10.1016/j.neucom.2016.09.068
    [7] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, 4 (1995), 1942-1948. https://doi.org/10.1109/ICNN.1995.488968
    [8] J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic Eng., 18 (2021), 674-710. https://doi.org/10.1007/s42235-021-0050-y doi: 10.1007/s42235-021-0050-y
    [9] G. G. Wang, Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, Memetic Comput., 10 (2018), 151-164. https://doi.org/10.1007/s12293-016-0212-3 doi: 10.1007/s12293-016-0212-3
    [10] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell. Mag., 1 (2006), 28-39. https://doi.org/10.1109/MCI.2006.329691 doi: 10.1109/MCI.2006.329691
    [11] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459-471. https://doi.org/10.1007/s10898-007-9149-x doi: 10.1007/s10898-007-9149-x
    [12] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [13] A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine predators algorithm: a nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377
    [14] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300-323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
    [15] K. Zervoudakis, S. Tsafarakis, A mayfly optimization algorithm, Comput. Ind. Eng., 145 (2020), 106559. https://doi.org/10.1016/j.cie.2020.106559 doi: 10.1016/j.cie.2020.106559
    [16] S. Mirjalili, SCA: a Sine Cosine Algorithm for solving optimization problems, Knowledge Based Syst., 96 (2016), 120-133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [17] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849-872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [18] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [19] D. Whitley, A genetic algorithm tutorial, Stat. Comput., 4 (1994), 65-85. https://doi.org/10.1007/BF00175354 doi: 10.1007/BF00175354
    [20] A. Cheraghalipour, M. Hajiaghaei-Keshteli, M. M. Paydar, Tree Growth Algorithm (TGA): a novel approach for solving optimization problems, Eng. Appl. Artif. Intell., 72 (2018), 393-414. https://doi.org/10.1016/j.engappai.2018.04.021 doi: 10.1016/j.engappai.2018.04.021
    [21] I. Rechenberg, Evolution strategy: nature's way of optimization, in Optimization: Methods and Applications, Possibilities and Limitations, (1989), 106-126. https://doi.org/10.1007/978-3-642-83814-9_6
    [22] R. Storn, K. Price, Differential evolution - A simple and efficient heuristic for global Optimization over continuous spaces, J. Global Optim., 11 (1997), 341-359. https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
    [23] L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609
    [24] H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), (2005), 695-701. https://doi.org/10.1109/CIMCA.2005.1631345
    [25] W. Guo, P. Xu, F. Dai, F. Zhao, M. Wu, Improved Harris hawks optimization algorithm based on random unscented sigma point mutation strategy, Appl. Soft Comput., 113 (2021), 108012. https://doi.org/10.1016/j.asoc.2021.108012 doi: 10.1016/j.asoc.2021.108012
    [26] T. Si, P. B. C. Miranda, D. Bhattacharya, Novel enhanced Salp Swarm Algorithms using opposition-based learning schemes for global optimization problems, Expert Syst. Appl., 207 (2022), 117961. https://doi.org/10.1016/j.eswa.2022.117961 doi: 10.1016/j.eswa.2022.117961
    [27] A. G. Hussien, An enhanced opposition-based Salp Swarm Algorithm for global optimization and engineering problems, J. Ambient Intell. Hum. Comput., 13 (2022), 129-150. https://doi.org/10.1007/s12652-021-02892-9 doi: 10.1007/s12652-021-02892-9
    [28] W. Wang, L. Xu, K. Chau, Y. Zhao, D. Xu, An orthogonal opposition-based-learning Yin-Yang-pair optimization algorithm for engineering optimization, Eng. Comput., 38 (2022), 1149-1183. https://doi.org/10.1007/s00366-020-01248-9 doi: 10.1007/s00366-020-01248-9
    [29] A. Aleti, I. Moser, A systematic literature review of adaptive parameter control methods for evolutionary algorithms, ACM Comput. Surv., 49 (2017), 1-35. https://doi.org/10.1145/2996355 doi: 10.1145/2996355
    [30] Z. Lei, S. Gao, S. Gupta, J. Chen, G. Y ang, An aggregative learning gravitational search algorithm with self-adaptive gravitational constants, Expert Syst. Appl., 152 (2020), 113396. https://doi.org/10.1016/j.eswa.2020.113396 doi: 10.1016/j.eswa.2020.113396
    [31] V. Sahargahi, V. Majidnezhad, S. T. Afshord, Y. Jafari, An intelligent chaotic clonal optimizer, Appl. Soft Comput., 115 (2022), 108126. https://doi.org/10.1016/j.asoc.2021.108126 doi: 10.1016/j.asoc.2021.108126
    [32] S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama, Quasi-oppositional differential evolution, in 2007 IEEE Congress on Evolutionary Computation, (2007), 2229-2236. https://doi.org/10.1109/CEC.2007.4424748
    [33] A. A. Ewees, M. A. Elaziz, E. H. Houssein, Improved grasshopper optimization algorithm using opposition-based learning, Expert Syst. Appl., 112 (2018), 156-172. https://doi.org/10.1016/j.eswa.2018.06.023 doi: 10.1016/j.eswa.2018.06.023
    [34] R. Tanabe, A. S. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in 2014 IEEE Congress on Evolutionary Computation (CEC), (2014), 1658-1665. https://doi.org/10.1109/CEC.2014.6900380
    [35] A. W. Mohamed, A. A. Hadi, A. M. Fattouh, K. M. Jambi, LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC2017 benchmark problems, in 2017 IEEE Congress on Evolutionary Computation (CEC), (2017), 145-152. https://doi.org/10.1109/CEC.2017.7969307
    [36] K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186 (2000), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8 doi: 10.1016/S0045-7825(99)00389-8
    [37] S. Das, P. N. Suganthan, Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems, 2010. Available from: https://al-roomi.org/multimedia/CEC_Database/CEC2011/CEC2011_TechnicalReport.pdf.
    [38] C. A. C. Coello, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41 (2000), 113-127. https://doi.org/10.1016/S0166-3615(99)00046-9 doi: 10.1016/S0166-3615(99)00046-9
    [39] K. S. Lee, Z. W. Geem, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput. Methods Appl. Mech. Eng., 194 (2005), 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007 doi: 10.1016/j.cma.2004.09.007
    [40] Q. He, L. Wang, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20 (2007), 89-99. https://doi.org/10.1016/j.engappai.2006.03.003 doi: 10.1016/j.engappai.2006.03.003
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1742) PDF downloads(65) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog