We investigate periodicity of functions related to the Gompertz difference equation. In particular, we derive difference equations that must be satisfied to guarantee periodicity of the solution.
Citation: Tom Cuchta, Nick Wintz. Periodic functions related to the Gompertz difference equation[J]. Mathematical Biosciences and Engineering, 2022, 19(9): 8774-8785. doi: 10.3934/mbe.2022407
We investigate periodicity of functions related to the Gompertz difference equation. In particular, we derive difference equations that must be satisfied to guarantee periodicity of the solution.
[1] | M. Bohner, A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[2] | S. G. Georgiev, K. Zennir, Boundary Value Problems on Time Scales, Volume I, Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9781003173557 |
[3] | S. G. Georgiev, K. Zennir, Boundary Value Problems on Time Scales Volume II, Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9781003175827 |
[4] | T. Cuchta, S. Streipert, Dynamic Gompertz model, Appl. Math. Info. Sci., 14 (2020), 1–9. https://doi.org/10.18576/amis/140102 doi: 10.18576/amis/140102 |
[5] | T. Cuchta, B. Fincham, Some new Gompertz fractional difference equations, Involve, 13 (2020), 705–719. https://doi.org/10.2140/involve.2020.13.705 doi: 10.2140/involve.2020.13.705 |
[6] | F. M. Atıcı, M. Atıcı, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fundam. Inform., 151 (2017), 313–324. https://doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494 |
[7] | T. Cuchta, R. J. Niichel, S. Streipert, A Gompertz distribution for time scales, Turk. J. Math., 45 (2021), 185–200. https://doi.org/10.3906/mat-2003-101 doi: 10.3906/mat-2003-101 |
[8] | E. Akın, N. N. Pelen, I. U. Tiryaki, F. Yalcin, Parameter identification for Gompertz and logistic dynamic equations, PLOS ONE, 15 (2020), e0230582. https://doi.org/10.1371/journal.pone.0230582 |
[9] | G. Albano, V. Giorno, P. Román-Román, S. Román-Román, J. J. Serrano-Pérez, F. Torres-Ruiz, Inference on an heteroscedastic Gompertz tumor growth model, Math. Biosci., 328 (2020), 108428. https://doi.org/10.1016/j.mbs.2020.108428 doi: 10.1016/j.mbs.2020.108428 |
[10] | C. Vaghi, A. Rodallec, R. Fanciullino, J. Ciccolini, J. P. Mochel, M. Mastri, et al., Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors, PLoS Comput. Biol., 16 (2020), e1007178. https://doi.org/10.1371/journal.pcbi.1007178 doi: 10.1371/journal.pcbi.1007178 |
[11] | L. Zhang, Z. D. Teng, The dynamical behavior of a predator-prey system with Gompertz growth function and impulsive dispersal of prey between two patches, Math. Meth. Appl. Sci., 39 (2015), 3623–3639. https://doi.org/10.1002/mma.3806 doi: 10.1002/mma.3806 |
[12] | M. Nagula, Forecasting of fuel cell technology in hybrid and electric vehicles using Gompertz growth curve, J. Stat. Manage. Syst, 19 (2016), 73–88. https://doi.org/10.1080/09720510.2014.1001601 doi: 10.1080/09720510.2014.1001601 |
[13] | A. Sood, G. M. James, G. J. Tellis, J. Zhu, Predicting the path of technological innovation: SAW vs. Moore, Bass, Gompertz, and Kryder, Mark. Sci., 31 (2012), 964–979. https://doi.org/10.1287/mksc.1120.0739 doi: 10.1287/mksc.1120.0739 |
[14] | P. H. Franses, Gompertz curves with seasonality, Technol. Forecast. Soc. Change, 45 (1994), 287–297. https://doi.org/10.1016/0040-1625(94)90051-5 doi: 10.1016/0040-1625(94)90051-5 |
[15] | E. Pelinovsky, M. Kokoulina, A. Epifanova, A. Kurkin, O. Kurkina, M. Tang, et al., Gompertz model in COVID-19 spreading simulation, Chaos Solit. Fractals, 154 (2022), 111699. https://doi.org/10.1016/j.chaos.2021.111699 doi: 10.1016/j.chaos.2021.111699 |
[16] | R. A. Conde-Gutiérrez, D. Colorado, S. L. Hernández-Bautista, Comparison of an artificial neural network and Gompertz model for predicting the dynamics of deaths from COVID-19 in México, Nonlinear Dyn., 2021. https://doi.org/10.1007/s11071-021-06471-7 |
[17] | M. Bohner, G. S. Guseinov, B. Karpuz, Properties of the Laplace transform on time scales with arbitrary graininess, Integral Transforms Spec. Funct., 22 (2011), 785–800. https://doi.org/10.1080/10652469.2010.548335 doi: 10.1080/10652469.2010.548335 |
[18] | M. Bohner, G. S. Guseinov, B. Karpuz, Further properties of the Laplace transform on time scales with arbitrary graininess, Integral Transforms Spec. Funct., 24 (2013), 289–301. https://doi.org/10.1080/10652469.2012.689300 doi: 10.1080/10652469.2012.689300 |
[19] | M. Bohner, T. Cuchta, S. Streipert, Delay dynamic equations on isolated time scales and the relevance of one-periodic coefficients, Math. Meth. Appl. Sci., 45 (2022), 5821–5838. https://doi.org/10.1002/mma.8141 doi: 10.1002/mma.8141 |
[20] | M. Bohner, J. Mesquita, S. Streipert, Periodicity on isolated time scales, Math. Nachr., 295 (2022), 259–280. https://doi.org/10.1002/mana.201900360 doi: 10.1002/mana.201900360 |