To increase the node coverage of wireless sensor networks (WSN) more effectively, in this paper, we propose a hybrid-strategy-improved butterfly optimization algorithm (H-BOA). First, we introduce Kent chaotic map to initialize the population to ensure a more uniform search space. Second, a new inertial weight modified from the Sigmoid function is introduced to balance the global and local search capacities. Third, we comprehensively use elite-fusion and elite-oriented local mutation strategies to raise the population diversity. Then, we introduce a perturbation based on the standard normal distribution to reduce the possibility of the algorithm falling into premature. Finally, the simulated annealing process is introduced to evaluate the solution's quality and improve the algorithm's ability, which is helpful to jump out of the local optimal value. Through numerous experiments of the international benchmark functions, the results show the performance of H-BOA has been significantly raised. We apply it to the WSN nodes coverage problem. The results show that H-BOA improves the WSN maximum coverage and it is far more than other optimization algorithms.
Citation: Donghui Ma, Qianqian Duan. A hybrid-strategy-improved butterfly optimization algorithm applied to the node coverage problem of wireless sensor networks[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 3928-3952. doi: 10.3934/mbe.2022181
To increase the node coverage of wireless sensor networks (WSN) more effectively, in this paper, we propose a hybrid-strategy-improved butterfly optimization algorithm (H-BOA). First, we introduce Kent chaotic map to initialize the population to ensure a more uniform search space. Second, a new inertial weight modified from the Sigmoid function is introduced to balance the global and local search capacities. Third, we comprehensively use elite-fusion and elite-oriented local mutation strategies to raise the population diversity. Then, we introduce a perturbation based on the standard normal distribution to reduce the possibility of the algorithm falling into premature. Finally, the simulated annealing process is introduced to evaluate the solution's quality and improve the algorithm's ability, which is helpful to jump out of the local optimal value. Through numerous experiments of the international benchmark functions, the results show the performance of H-BOA has been significantly raised. We apply it to the WSN nodes coverage problem. The results show that H-BOA improves the WSN maximum coverage and it is far more than other optimization algorithms.
[1] | I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks, IEEE Commun. Mag., 40 (2002), 102–114. https://doi.org/10.1109/MCOM.2002.1024422 doi: 10.1109/MCOM.2002.1024422 |
[2] | I. F. Akyildiz, M. C. Vuran, Wireless sensor networks, John Wiley & Sons, 2010. https://doi.org/10.1002/9780470515181 |
[3] | J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, M. Welsh, Wireless sensor networks for healthcare, Proc. IEEE, 98 (2010), 1947–1960. https://doi.org/10.1109/JPROC.2010.2065210 doi: 10.1109/JPROC.2010.2065210 |
[4] | S. Havedanloo, H. R. Karimi, Improving the performance metric of wireless sensor networks with clustering Markov chain model and multilevel fusion, Math. Probl. Eng., 2013 (2013). https://doi.org/10.1155/2013/783543 |
[5] | Z. A. A. Aziz, S. Y. A. Ameen, Air pollution monitoring using wireless sensor networks, J. Inf. Technol. Inf., 1 (2021), 20–25. Available from: https://www.qabasjournals.com/index.php/jiti/article/view/26. |
[6] | A. C. Djedouboum, A. A. Abba Ari, A. M. Gueroui, A. Mohamadou, Z. Aliouat, Big data collection in large-scale wireless sensor networks, Sensors, 18 (2018), 4474. https://doi.org/10.3390/s18124474 doi: 10.3390/s18124474 |
[7] | I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey, Comput. Networks, 38 (2002), 393–422. https://doi.org/10.1016/S1389-1286(01)00302-4 doi: 10.1016/S1389-1286(01)00302-4 |
[8] | Y. Tian, Y. Ou, H. R. Karimi, Y. T. Liu, J. Q. Han, Distributed multitarget probabilistic coverage control algorithm for wireless sensor networks, Math. Probl. Eng., 2014 (2014). https://doi.org/10.1155/2014/421753 |
[9] | X. Yang, X. Wang, W. Wang, An improved centroid localization algorithm for WSN, in 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), (2018), 1120–1123. https://doi.org/10.1109/ITOEC.2018.8740471 |
[10] | X. Lu, Y. Su, Q. Wu, Y. Wei, J. Wang, An improved coverage gap fixing method for heterogenous wireless sensor network based on voronoi polygons, Alexandria Eng. J., 60 (2021), 4307–4313. https://doi.org/10.1016/j.aej.2021.03.007 doi: 10.1016/j.aej.2021.03.007 |
[11] | F. Hajjej, M. Hamdi, R. Ejbali, M. Zaied, A distributed coverage hole recovery approach based on reinforcement learning for wireless sensor networks, Ad Hoc Networks, 101 (2020), 102082. https://doi.org/10.1016/j.adhoc.2020.102082 doi: 10.1016/j.adhoc.2020.102082 |
[12] | K. Tarnaris, I. Preka, D. Kandris, A. Alexandridis, Coverage and k-coverage optimization in wireless sensor networks using computational intelligence methods: a comparative study, Electronics, 9 (2020), 675. https://doi.org/10.3390/electronics9040675 doi: 10.3390/electronics9040675 |
[13] | A. Singh, S. Sharma, J. Singh, Nature-inspired algorithms for wireless sensor networks: a comprehensive survey, Comput. Sci. Rev., 39 (2021), 100342. https://doi.org/10.1016/j.cosrev.2020.100342 doi: 10.1016/j.cosrev.2020.100342 |
[14] | A. A. Kannan, G. Mao, B. Vucetic, Simulated annealing based localization in wireless sensor network, in The IEEE Conference on Local Computer Networks 30th Anniversary (LCN'05)l, (2005), 2–514. https://doi.org/10.1109/LCN.2005.125 |
[15] | R. V. Kulkarni, G. K. Venayagamoorthy, Particle swarm optimization in wireless-sensor networks: a brief survey, IEEE Trans. Syst., 41 (2010), 262–267. https://doi.org/10.1109/TSMCC.2010.2054080 doi: 10.1109/TSMCC.2010.2054080 |
[16] | H. ZainEldin, M. Badawy, M. Elhosseini, H. Arafat, A. Abraham, An improved dynamic deployment technique basedon genetic algorithm (iddt-ga) for maximizing coverage in wireless sensor networks, J. Ambient Intell. Humanized Comput., 11 (2020), 4177–4194. https://doi.org/10.1007/s12652-020-01698-5 doi: 10.1007/s12652-020-01698-5 |
[17] | M. Rebai, M. L. Berre, H. Snoussi, F. Hnaien, L. Khoukhi, Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks, Comput. Oper. Res., 59 (2015), 11–21. https://doi.org/10.1016/j.cor.2014.11.002 doi: 10.1016/j.cor.2014.11.002 |
[18] | C. Shivalingegowda, P. V. Y. Jayasree, Hybrid gravitational search algorithm based model for optimizing coverage and connectivity in wireless sensor networks, J. Ambient Intell. Humanized Comput., 12 (2021), 2835–2848. https://doi.org/10.1007/s12652-020-02442-9 doi: 10.1007/s12652-020-02442-9 |
[19] | H. T. T. Binh, N. T. Hanh, L. V. Quan, N. D. Nghia, N. Dey, Metaheuristics for maximization of obstacles constrained area coverage in heterogeneous wireless sensor networks, Appl. Soft Comput., 86 (2020), 105939. https://doi.org/10.1016/j.asoc.2019.105939 doi: 10.1016/j.asoc.2019.105939 |
[20] | R. R. Priyadarshini, N. Sivakumar, Enhancing coverage and connectivity using energy prediction method in underwater acoustic WSN, J. Ambient Intell. Humanized Comput., 11 (2020), 2751–2760. https://doi.org/10.1007/s12652-019-01334-x doi: 10.1007/s12652-019-01334-x |
[21] | O. I. Khalaf, G. M. Abdulsahib, B. M. Sabbar, Optimization of wireless sensor network coverage using the bee algorithm, J. Inf. Sci. Eng., 36 (2020), 377–386. |
[22] | S. Wang, X. Yang, X. Wang, Z. Qian, A virtual force algorithm-lévy-embedded grey wolf optimization algorithm for wireless sensor network coverage optimization, Sensors, 19 (2019), 2735. https://doi.org/10.3390/s19122735 doi: 10.3390/s19122735 |
[23] | Y. Feng, S. Zhao, H. Liu, Analysis of network coverage optimization based on feedback k-means clustering and artificial fish swarm algorithm, IEEE Access, 8 (2020), 42864–42876. https://doi.org/10.1109/ACCESS.2020.2970208 doi: 10.1109/ACCESS.2020.2970208 |
[24] | S. Arora, S. Singh, Node localization in wireless sensor networks using butterfly optimization algorithm, Arabian J. Sci. Eng., 42 (2017), 3325–3335. https://doi.org/10.1007/s13369-017-2471-9 doi: 10.1007/s13369-017-2471-9 |
[25] | D. M. Utama, D. S. Widodo, M. F. Ibrahim, S. K. Dewi, A new hybrid butterfly optimization algorithm for green vehicle routing problem, J. Adv. Transp., 2020 (2020). https: //doi.org/10.1155/2020/8834502 |
[26] | S. Arora, S. Singh, Butterfly optimization algorithm: a novel approach for global optimization, Soft Comput., 23 (2019), 715–734. https://doi.org/10.1007/s00500-018-3102-4 doi: 10.1007/s00500-018-3102-4 |
[27] | T. F. Lee, Enhancing the security of password authenticated key agreement protocols based on chaotic maps, Inf. Sci., 290 (2015), 63–71. https://doi.org/10.1016/j.ins.2014.08.041 doi: 10.1016/j.ins.2014.08.041 |
[28] | A. T. Azar, S. Vaidyanathan, Chaos Modeling and Control Systems Design, Springer, 2015. |
[29] | L. Zhang, X. Xin, B. Liu, Y. Wang, Secure OFDM-PON based on chaos scrambling, IEEE Photonics Technol. Lett., 23 (2011), 998–1000. https://doi.org/10.1109/LPT.2011.2149512 doi: 10.1109/LPT.2011.2149512 |
[30] | L. D. S. Coelho, A. A. R. Coelho, Model-free adaptive control optimization using a chaotic particle swarm approach, Chaos, Solitons Fractals, 41 (2009), 2001–2009. https://doi.org/10.1016/j.chaos.2008.08.004 doi: 10.1016/j.chaos.2008.08.004 |
[31] | Y. Li, M. Han, Q. Guo, Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization, KSCE J. Civil Eng., 24 (2020), 3703–3713. https://doi.org/10.1007/s12205-020-0504-5 doi: 10.1007/s12205-020-0504-5 |
[32] | Z. Ma, X. Yuan, S. Han, D. Sun, Y. Ma, Improved chaotic particle swarm optimization algorithm with more symmetric distribution for numerical function optimization, Symmetry, 11 (2019), 876. https://doi.org/10.3390/sym11070876 doi: 10.3390/sym11070876 |
[33] | Y. Wang, K. W. Wong, X. Liao, G. Chen, A new chaos-based fast image encryption algorithm, Appl. Soft Comput., 11 (2011), 514–522. https://doi.org/10.1016/j.asoc.2009.12.011 doi: 10.1016/j.asoc.2009.12.011 |
[34] | M. Wang, The diffusive logistic equation with a free boundary and sign-changing coefficient, J. Differential Equations, 258 (2015), 1252–1266. https://doi.org/10.1016/j.jde.2014.10.022 doi: 10.1016/j.jde.2014.10.022 |
[35] | M. S. Tavazoei, M. Haeri, Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms, Appl. Math. Comput., 187 (2007), 1076–1085. https://doi.org/10.1016/j.amc.2006.09.087 doi: 10.1016/j.amc.2006.09.087 |
[36] | S. Saremi, S. Mirjalili, A. Lewis, How important is a transfer function in discrete heuristic algorithms, Neural Comput. Appl., 26 (2015), 625–640. https://doi.org/10.1007/s00521-014-1743-5 doi: 10.1007/s00521-014-1743-5 |
[37] | Z. Wang, j. Wang, D. Li, Research on WSN optimization coverage of an enhanced sparrow search algorithm, Chin. J. Sens. Actuators, 34 (2021), 818–828. |
[38] | D. Whitley, A genetic algorithm tutorial, Stat. Comput., 4 (1994), 65–85. https://doi.org/10.1007/BF00175354 doi: 10.1007/BF00175354 |
[39] | K. V. Price, Differential evolution: a fast and simple numerical optimizer, in Proceedings of North American Fuzzy Information Processing, (1996), 524–527. https: //doi.org/10.1109/NAFIPS.1996.534790 |
[40] | Y. Feng, G. G. Wang, J. Dong, L. Wang, Opposition-based learning monarch butterfly optimization with gaussian perturbation for large-scale 0-1 knapsack problem, Comput. Electr. Eng., 67 (2018), 454–468. https://doi.org/10.1016/j.compeleceng.2017.12.014 doi: 10.1016/j.compeleceng.2017.12.014 |
[41] | Q. Xu, Z. Wang, Z. Zhen, Information fusion estimation-based path following control of quadrotor uavs subjected to gaussian random disturbance, ISA Trans., 99 (2020), 84–94. https://doi.org/10.1016/j.isatra.2019.10.003 doi: 10.1016/j.isatra.2019.10.003 |
[42] | S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671–680. https://doi.org/10.1126/science.220.4598.671 doi: 10.1126/science.220.4598.671 |
[43] | D. Chu, H. Chen, X. Wang, Whale optimization algorithm based on adaptive weight and simulated annealing, Chin. J. Electr., 47 (2019), 992–999. https://doi.org/10.3969/j.issn.0372-2112.2019.05.003 doi: 10.3969/j.issn.0372-2112.2019.05.003 |
[44] | L. Jin, H. Tang, B. Lin, X. Zhu, A simulated annealing algorithm for continuous functions and its convergence properties, Math. Numer. Sin., 27 (2005), 19–30. https://doi.org/10.12286/jssx.2005.1.19 doi: 10.12286/jssx.2005.1.19 |
[45] | Z. Liu, H. Lu, J. Ren, A diversity-enhanced hybrid firefly algorithm, J. Shanxi Univ., Nat. Sci. Ed., 44 (2021), 249–256. https://doi.org/10.13451/j.sxu.ns.2020034 doi: 10.13451/j.sxu.ns.2020034 |
[46] | W. Gao, S. Liu, Z. Xiao, J. Yu, Butterfly optimization algorithm based on Cauchy variation and adaptive weight, Comput. Eng. Appl., 56 (2020), 43–50. https://doi.org/10.3778/j.issn.1002-8331.1907-0048 doi: 10.3778/j.issn.1002-8331.1907-0048 |