Research article Special Issues

Bifurcation analysis and optimal control of SEIR epidemic model with saturated treatment function on the network

  • Received: 05 October 2021 Accepted: 09 November 2021 Published: 14 December 2021
  • In order to study the impact of limited medical resources and population heterogeneity on disease transmission, a SEIR model based on a complex network with saturation processing function is proposed. This paper first proved that a backward bifurcation occurs under certain conditions, which means that $ R_{0} < 1 $ is not enough to eradicate this disease from the population. However, if the direction is positive, we find that within a certain parameter range, there may be multiple equilibrium points near $ R_{0} = 1 $. Secondly, the influence of population heterogeneity on virus transmission is analyzed, and the optimal control theory is used to further study the time-varying control of the disease. Finally, numerical simulations verify the stability of the system and the effectiveness of the optimal control strategy.

    Citation: Boli Xie, Maoxing Liu, Lei Zhang. Bifurcation analysis and optimal control of SEIR epidemic model with saturated treatment function on the network[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1677-1696. doi: 10.3934/mbe.2022079

    Related Papers:

  • In order to study the impact of limited medical resources and population heterogeneity on disease transmission, a SEIR model based on a complex network with saturation processing function is proposed. This paper first proved that a backward bifurcation occurs under certain conditions, which means that $ R_{0} < 1 $ is not enough to eradicate this disease from the population. However, if the direction is positive, we find that within a certain parameter range, there may be multiple equilibrium points near $ R_{0} = 1 $. Secondly, the influence of population heterogeneity on virus transmission is analyzed, and the optimal control theory is used to further study the time-varying control of the disease. Finally, numerical simulations verify the stability of the system and the effectiveness of the optimal control strategy.



    加载中


    [1] R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200–3203. doi: 10.1103/PhysRevLett.86.3200. doi: 10.1103/PhysRevLett.86.3200
    [2] R. Pastor-Satorras, A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63 (2001), 066117. doi: 10.1103/PhysRevE.63.066117. doi: 10.1103/PhysRevE.63.066117
    [3] Y. Moreno, R. Pastor-Satorras, A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B, 26 (2002), 521–529. doi: 10.1140/epjb/e20020122. doi: 10.1140/epjb/e20020122
    [4] C. Li, C. Tsai, S. Yang, Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks, Commun. Nonlinear Sci., 19 (2014), 1042–1054. doi: 10.1016/j.cnsns.2013.08.033. doi: 10.1016/j.cnsns.2013.08.033
    [5] S. Huang, F. Chen, L. Chen, Global dynamics of a network-based SIQRS epidemic model with demographics and vaccination, Commun. Nonlinear Sci., 43 (2017), 296–310. doi: 10.1016/j.cnsns.2016.07.014. doi: 10.1016/j.cnsns.2016.07.014
    [6] T. Li, Y. Wang, Z. Guan, Spreading dynamics of a SIQRS epidemic model on scale-free networks, Commun. Nonlinear Sci., 19 (2014), 686–692. doi: 10.1016/j.cnsns.2013.07.010. doi: 10.1016/j.cnsns.2013.07.010
    [7] J. Juang, Y. H. Liang, Analysis of a general SIS model with infective vectors on the complex networks, Physica A, 437 (2015), 382–395. doi: 10.1016/j.physa.2015.06.006. doi: 10.1016/j.physa.2015.06.006
    [8] Y. Wang, Z. Jin, Z. Yang, Z. Zhang, T. Zhou, G. Sun, Global analysis of an SIS model with an infective vector on complex networks, Nonlinear Anal. Real World Appl., 13 (2012), 543–557. doi: 10.1016/j.nonrwa.2011.07.033. doi: 10.1016/j.nonrwa.2011.07.033
    [9] M. Yang, G. Chen, X. Fu, A modified SIS model with an infective medium on complex networks and its global stability, Phys. A, 390 (2011), 2408–2413. doi: 10.1016/j.physa.2011.02.007. doi: 10.1016/j.physa.2011.02.007
    [10] Q. Wu, X. Fu, M. Yang, Epidemic thresholds in a heterogenous population with competing strains, Chinese Phys. B, 20 (2011), 046401. doi: 10.1088/1674-1056/20/4/046401. doi: 10.1088/1674-1056/20/4/046401
    [11] Q. Wu, M. Small, H. Liu, Superinfection behaviors on scale-free networks with competing strains, J. Nonlinear Sci., 23 (2013), 113–127. doi: 10.1007/s00332-012-9146-1. doi: 10.1007/s00332-012-9146-1
    [12] J. Yang, C. H. Li, Dynamics of a competing two-strain SIS epidemic model on complex networks with a saturating incidence rate, J. Phys. A, 49 (2016), 215601. doi: 10.1088/1751-8113/49/21/215601. doi: 10.1088/1751-8113/49/21/215601
    [13] L. J. Chen, J. T. Sun, Global stability and optimal control of an SIRS epidemic model on heterogeneous networks, Phys. A, 410 (2014), 196–204. doi: 10.1016/j.physa.2014.05.034. doi: 10.1016/j.physa.2014.05.034
    [14] L. J. Chen, J. T. Sun, Optimal vaccination and treatment of an epidemic network model, Phys. Lett. A, 378 (2014), 3028–3036. doi: 10.1016/j.physleta.2014.09.002. doi: 10.1016/j.physleta.2014.09.002
    [15] D. G. Xu, X. Y. Xu, Y. F. Xie, C. H. Yang, Optimal control of an SIVRS epidemic spreading model with virus variation based on complex networks, Commun. Nonlinear Sci., 48 (2017), 200–210. doi: 10.1016/j.cnsns.2016.12.025. doi: 10.1016/j.cnsns.2016.12.025
    [16] N. Jia, L. Ding, Y. J. Liu, P. Hu, Global stability and optimal control of epidemic spreading on multiplex networks with nonlinear mutual interaction, Phys. A, 502 (2018), 93–105. doi: 10.1016/j.physa.2018.02.056. doi: 10.1016/j.physa.2018.02.056
    [17] K. Li, G. Zhu, Z. Ma, L. Chen, Dynamic stability of an SIQS epidemic network and its optimal control, Commun. Nonlinear Sci., 66 (2019), 84–95. doi: 10.1016/j.cnsns.2018.06.020. doi: 10.1016/j.cnsns.2018.06.020
    [18] L. J. Chen, S. Y. Huang, F. D. Chen, M. J. Fu, The bifurcation analysis and optimal feedback mechanism for an SIS epidmic model on networks, Adv. Differ. Equations, 529 (2019), 1–13. doi: 10.1186/s13662-019-2460-2. doi: 10.1186/s13662-019-2460-2
    [19] C. J. Xu, M. X. Liao, P. L. Li, Y. Guo, Q. M. Xiao, S. Yuan, Influence of multiple time delays on bifurcation of fractional-order neural networks, Appl. Math. Comput., 361 (2019), 565–582. doi: 10.1016/j.amc.2019.05.057. doi: 10.1016/j.amc.2019.05.057
    [20] Y. K. Xie, Z. Wang, J. W. Lu, Y. X. Li, Stability analysis and control strategies for a new SIS epidemic model in heterogeneous networks, Math. Comput., 383 (2020), 125381. doi: 10.1016/j.amc.2020.125381. doi: 10.1016/j.amc.2020.125381
    [21] Y. K. Xie, Z. Wang, Transmission dynamics, global stability and control strategies of a modified SIS epidemic model on complex networks with an infective medium, Math. Comput. Simul., 188 (2021), 23–34. doi: 10.1016/j.matcom.2021.03.029. doi: 10.1016/j.matcom.2021.03.029
    [22] C. J. Xu, Z. X. Lin, M. X. Liao, P. L. Li, Q. M. Xiao, S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation, Math. Comput. Simulat., 182 (2021), 471–494. doi: 10.1016/j.matcom.2020.11.023. doi: 10.1016/j.matcom.2020.11.023
    [23] C. J. Xu, Z. X. Lin, L. Y. Yao, C. Aouiti, Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays, Appl. Math. Comput., 410 (2021), 126458. doi: 10.1016/j.amc.2021.126458. doi: 10.1016/j.amc.2021.126458
    [24] W. D. Wang, S. G. Ruan, Bifurcation in epidemic model with constant removal rate infectives, J. Math. Anal. Appl., 291 (2015), 775–793. doi: 10.1016/j.jmaa.2003.11.043. doi: 10.1016/j.jmaa.2003.11.043
    [25] W. D. Wang, Backward Bifurcation of An Epidemic Model with Treatment, Math. Biosci., 201 (2006), 58–71. doi: 10.1016/j.mbs.2005.12.022. doi: 10.1016/j.mbs.2005.12.022
    [26] X. Zhang, X. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433–443. doi: 10.1016/j.jmaa.2008.07.042. doi: 10.1016/j.jmaa.2008.07.042
    [27] J. Wang, S. Liu, B. Zhang, Y. Takeuchi, Qualitative and bifurcation analysis using an SIR model with a saturated treatment function, Math. Comput. Model., 55 (2012), 710–722. doi: 10.1016/j.mcm.2011.08.045. doi: 10.1016/j.mcm.2011.08.045
    [28] J. Wei, J. Cui, Dynamics of SIS epidemic model with the standard incidence rate and saturated treatment function, Int. J. Biomath., 5 (2012), 1260003. doi: 10.1142/S1793524512600030. doi: 10.1142/S1793524512600030
    [29] J. Cui, X. Mu, H. Wan, Saturation recovery leads to multiple endemic equilibria and backward bifurcation, J. Theor. Biol., 254 (2008), 275–283. doi: 10.1016/j.jtbi.2008.05.015. doi: 10.1016/j.jtbi.2008.05.015
    [30] L. H. Zhou, M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal. Real World Appl., 13 (2012), 312–324. doi: 10.1016/j.nonrwa.2011.07.036. doi: 10.1016/j.nonrwa.2011.07.036
    [31] I. M. Wangari, S. Davis, L. Stonea, Backward bifurcation in epidemic models: Problems arising with aggregated bifurcation parameters, Appl. Math. Model., 40 (2016), 1669–1675. doi: 10.1016/j.apm.2015.07.022. doi: 10.1016/j.apm.2015.07.022
    [32] P. Van Den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6. doi: 10.1016/S0025-5564(02)00108-6
    [33] F. D. Sahneh, C. Scoglio, P. V. Mieghem, Generalized epidemic mean-field model for spreading processes over multilayer complex networks, IEEE/ACM Trans. Netw., 21 (2013), 1609–1620. doi: 10.1109/TNET.2013.2239658. doi: 10.1109/TNET.2013.2239658
    [34] R. C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete, American Mathematical Society, 2012.
    [35] D. E. Kirk, Optimal Control Theory: An Introduction, Dover Publications, 2004.
    [36] B. Buonomo, D. Lacitignola, C. Vargas-De-León, Qualitative analysis and optimal control of an epidemic model with vaccination and treatment, Math. Comput. Simulat., 100 (2014), 88–102. doi: 10.1016/j.matcom.2013.11.005. doi: 10.1016/j.matcom.2013.11.005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2669) PDF downloads(236) Cited by(3)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog