Research article Special Issues

Stability analysis and persistence of a phage therapy model


  • Received: 25 April 2021 Accepted: 10 June 2021 Published: 21 June 2021
  • This study deals with a phage therapy model involving nonlinear interactions of the bacteria–phage–innate immune response. The main aim of this work is to analytically and numerically examine the dynamic behavior of the phage therapy model. First, we investigate the positivity and boundedness of the system. Second, we analyze the existence and local asymptotic stability of different equilibrium solutions. Third, we investigate the global stability for equilibrium without immune system and equilibrium without phages, and coexistence equilibrium by means of the Bendixson–Dulac criterion and the Lyapunov functional method, respectively. Furthermore, we discuss the persistence and nonpersistence of the system under some conditions. Finally, we perform numerical simulations to substantiate the results obtained in this research.

    Citation: Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Htoo Kyaw Hlaing. Stability analysis and persistence of a phage therapy model[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5552-5572. doi: 10.3934/mbe.2021280

    Related Papers:

  • This study deals with a phage therapy model involving nonlinear interactions of the bacteria–phage–innate immune response. The main aim of this work is to analytically and numerically examine the dynamic behavior of the phage therapy model. First, we investigate the positivity and boundedness of the system. Second, we analyze the existence and local asymptotic stability of different equilibrium solutions. Third, we investigate the global stability for equilibrium without immune system and equilibrium without phages, and coexistence equilibrium by means of the Bendixson–Dulac criterion and the Lyapunov functional method, respectively. Furthermore, we discuss the persistence and nonpersistence of the system under some conditions. Finally, we perform numerical simulations to substantiate the results obtained in this research.



    加载中


    [1] A. Korobeinikov, A Lyapunov Function for Leslie–Gower predator–prey models, Appl. Math. Lett., 14 (2001), 697–699. doi: 10.1016/S0893-9659(01)80029-X
    [2] F. Chen, L. Chen, X. Xie, On a Leslie–Gower predator–prey model incorporating a prey refuge, Nonlin. Anal. Real World Appl., 10 (2009), 2905–2908. doi: 10.1016/j.nonrwa.2008.09.009
    [3] S. Sharma, G. P. Samanta, A Leslie–Gower predator–prey model with disease in prey incorporating a prey refuge, Chaos Soliton Fract., 70 (2015), 69–84. doi: 10.1016/j.chaos.2014.11.010
    [4] T. K. Kar, Stability analysis of a prey–predator model incorporating a prey refuge, Commun. Nonlin. Sci. Numer. Simulat., 10 (2005), 681–691. doi: 10.1016/j.cnsns.2003.08.006
    [5] T. K. Kar, Modelling and analysis of a harvested prey–predator system incorporating a prey refuge, J. Comput. Appl. Math., 185 (2006), 19–33. doi: 10.1016/j.cam.2005.01.035
    [6] T. K. Kar, Conservation of a fishery through optimal taxation: a dynamic reaction model, Commun. Nonlin. Sci. Numer. Simulat., 10 (2005), 121–131. doi: 10.1016/S1007-5704(03)00101-1
    [7] T. K. Kar, S. Misra, Influence of prey reserve in a prey–predator fishery, Nonlin. Anal., 65 (2006), 1725–1735. doi: 10.1016/j.na.2005.11.049
    [8] K. Belkhodja, A. Moussaoui, M. A. Aziz Alaoui, Optimal harvesting and stability for a prey–predator model, Nonlin. Anal. Real World Appl., 39 (2018), 321–336. doi: 10.1016/j.nonrwa.2017.07.004
    [9] M. F. Elettreby, Two-prey one-predator model, Chaos Soliton Fract., 39 (2009), 2018–2027.
    [10] J. P. Tripathi, S. Abbas, M. Thakur, Stability analysis of two prey one predator model, AIP Conf. Proc., 1479 (2012), 905–909.
    [11] J. P. Tripathi, S. Abbas, M. Thakur, Local and global stability analysis of a two prey one predator model with help, Commun. Nonlin. Sci. Numer. Simulat., 19 (2014), 3284–3297. doi: 10.1016/j.cnsns.2014.02.003
    [12] M. Biswas, N. Bairagi, On the dynamic consistency of a two-species competitive discrete system with toxicity: Local and global analysis, J. Comput. Appl. Math., 363 (2020), 145–155. doi: 10.1016/j.cam.2019.06.005
    [13] S. Jana, A. Ghorai, S. Guria, T. K. Kar, Global dynamic of a predator, weaker prey and stronger prey system, Appl. Math. Comput., 250 (2015), 235–248.
    [14] R. K. Upadhyay, R. K. Naji, Dynamics of a three species food chain model with Crowley–Martin type functional response, Chaos Soliton Fract., 42 (2009), 1337–1346. doi: 10.1016/j.chaos.2009.03.020
    [15] X. Y. Liao, Z. Ouyang, S. F. Zhou, Permanence and stability of equilibrium for a two-prey one-predator discrete model, Appl. Math. Comput., 186 (2007), 93–100.
    [16] J. P. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator–prey model with Crowley–Martin functional response, Commun. Nonlin. Sci. Numer. Simulat., 30 (2016), 45–69. doi: 10.1016/j.cnsns.2015.06.008
    [17] B. Dubey, R. K. Upadhyay, Persistence and extinction of one-prey and two-predator system, Nonlin. Anal. Model. Control, 9 (2004), 307–329. doi: 10.15388/NA.2004.9.4.15147
    [18] T. K. Kar, A. Batabyal, Persistence and stability of a two-prey one-predator system, Int. J. Eng. Sci. Tech., 2 (2010), 174–190.
    [19] D. Mukherjee, Persistence in a prey–predator system with disease in the prey, J. Biol. Syst., 11 (2003), 101–112. doi: 10.1142/S0218339003000634
    [20] A. Campbell, Conditions for the existence of bacteriophage, Evolution, 15 (1961), 153–165. doi: 10.1111/j.1558-5646.1961.tb03139.x
    [21] B. R. Levin, F. M. Stewart, L. Chao, Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage, Amer. Natur., 111 (1977), 3–24. doi: 10.1086/283134
    [22] I. Aviram, A. Rabinovitch, Bacteria and lytic phage coexistence in a chemostat with periodic nutrient supply, Bull. Math. Biol., 76 (2014), 225–244. doi: 10.1007/s11538-013-9917-3
    [23] H. L. Smith, H. R. Thieme, Persistence of bacteria and phages in a chemostat, J. Math. Biol., 64 (2012), 951–979. doi: 10.1007/s00285-011-0434-4
    [24] Z. Han, H. L. Smith, Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat, Math. Biosci. Engin., 9 (2012), 734–765.
    [25] E. Beretta, F. Solimano, Y. B. Tang, Analysis of a chemostat model for bacteria and virulent bacteriaphage, Discr. Cont. Dyn. Syst. Ser. B, 2 (2002), 495–520.
    [26] E. Beretta, H. Sakakibara, Y. Takeuchi, Stability analysis of time delayed chemostat models for bacteria and virulent phage, Fields Institute Commun., 36 (2003), 45–58.
    [27] S. K. Sahani, S. Gakkhar, A mathematical model for phage therapy with impulsive phage dose, Differ. Equ. Dyn. Syst., 28 (2020), 75–86. doi: 10.1007/s12591-016-0303-0
    [28] E. Beretta, Y. Kuang, Modeling and analysis of a marine bacteriophage infection, Math. Biosci., 149 (1998), 57–76. doi: 10.1016/S0025-5564(97)10015-3
    [29] E. Beretta, Y. Kuang, Modeling and analysis of a marine bacteriophage infection with latency period, Nonlin. Anal: Real World Appl., 2 (2001), 35–74. doi: 10.1016/S0362-546X(99)00285-0
    [30] E. Beretta, F. Solimano, The effect of time delay on stability in a bacteria–bacteriophage model, Scientiae Mathematicae Japonicae, 58 (2003), 399–405.
    [31] S. A. Gourley, Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM J. Appl. Math., 65 (2005), 550–566.
    [32] S. Q. Liu, Z. Liu, J. Tang, A delayed marine bacteriophage infection model, Appl. Math. Lett., 20 (2007), 702–706. doi: 10.1016/j.aml.2006.06.017
    [33] S. Gakkhar, S. K. Sahani, A time delay model for bacteria bacteriophage interaction, J. Biol. Syst., 16 (2008), 445–461. doi: 10.1142/S0218339008002617
    [34] A. Calsina, J. M. Palmada, J. Ripoll, Optimal latent period in a bacteriophage population model structured by infection-age, Math. Models Methods Appl. Sci., 21 (2011), 693–718. doi: 10.1142/S0218202511005180
    [35] S. T. Abedon, S. J. Kuhl, B. G. Blasdel, E. M. Kutter, Phage treatment of human infections, Bacteriophage, 1 (2011), 66–85. doi: 10.4161/bact.1.2.15845
    [36] B. R. Levin, J. J. Bull, Y. Jia, Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics, Am. Nat., 147 (1996), 881–898. doi: 10.1086/285884
    [37] B. R. Levin, J. J. Bull, Y. Jia, Population and evolutionary dynamics of phage therapy, Nat. Rev. Microbiol., 2 (2004), 166–173. doi: 10.1038/nrmicro822
    [38] W. Wang, Dynamics of bacteria–phage interaction with immune response in a chemostat, J. Biol. Syst., 25 (2017), 1–17. doi: 10.1142/S0218339017500012
    [39] M. S. Shu, R. Fu, W. Wang, A bacteriophage model based on CRISPR/CAS immune system in a chemostat, Math. Biosci. Engin., 14 (2017), 1361–1377. doi: 10.3934/mbe.2017070
    [40] C. Y. Leung, J. S. Weitz, Modeling the synergistic elimination of bacteria by phage and the innate immune system, J. Theo. Biol., 429 (2017), 241–252. doi: 10.1016/j.jtbi.2017.06.037
    [41] G. Birkhoff, G. C. Rota, Ordinary Differential Equations, Ginn, Boston, 1982.
    [42] F. D. Chen, On a nonlinear non-autonomous predator–prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180 (2005), 33–49. doi: 10.1016/j.cam.2004.10.001
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2608) PDF downloads(169) Cited by(5)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog