Citation: Poonkuzhali Sugumaran, Vinodhkumar Sukumaran. Recommendations to improve dead stock management in garment industry using data analytics[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8121-8133. doi: 10.3934/mbe.2019409
[1] | P. Ignaciuk, Base-stock distributed inventory management in continuous-review logistic systems-control system perspective, 2017 22nd International Conference on Methods and Models in Automation and Robotics, (2017), 1027-1032. Available from: https://ieeexplore.ieee.org/abstract/document/8046971. |
[2] | O. Bounou, A. E. Barkany and A. E. Biyaali, Bayesian model for spare parts management, 10 th International Colloquium on Logistics and Supply Chain Management, (2017), 204-208. Available from: https://ieeexplore.ieee.org/document/7962899. |
[3] | R. Guidotti, G. Rossetti, L. Pappalardo, et al., Market basket prediction using user-centric temporal annotated recurring sequences, 2017 IEEE International Conference on Data Mining, (2017), 895-900. Available from: https://ieeexplore.ieee.org/abstract/document/8215574. |
[4] | Y. Sun, C. Liang, S. Sutherland, et al., Modeling player decisions in a supply chain game, 2016 IEEE Conference on Computational Intelligence and Games (CIG), (2016), 1-8. Available from: https://ieeexplore.ieee.org/abstract/document/7860444. |
[5] | G. S. Karakozov, G. B. Virabyan, S. V. Verlinski, et al., Construction of decision support system in business design based on integration of information technology, 2016 6th International Conference on Computers Communications and Control, (2016), 240-243. Available from: https://ieeexplore.ieee.org/abstract/document/7496767. |
[6] | H Wani and N Ashtankar, Big data in supply chain management, 2017 4th International Conference on Advanced Computing and Communication Systems, (2017), 1-4. Available from: https://ieeexplore.ieee.org/abstract/document/8014602. |
[7] | U. S. Dharmapriya, S. B. Kiridena and N. Shukla, A review of supply network configuration literature and decision support tools, 2016 IEEE International Conference on Industrial Engineering and Engineering Management, (2016), 149-153. Available from: https://ieeexplore.ieee.org/abstract/document/7797854. |
[8] | D. Das, L. Sahoo and S. Datta, A Survey on Recommendation System, Int. J. Comput. Appl., 160 (2017), 6-10. |
[9] | S. Zhang, L. Yao, A. Sun et al., Deep Learning based Recommender System: A Survey and New Perspectives, ACM Comput. Surv., 52 (2017), 1-35. |
[10] | A. Mugdha and L. Vina, Survey: Collaborative Recommender Systems Using Multiclass Co-Clustering, Int. J. Innovative Res. Comput. Commun. Eng., 5 (2017), 452-457. |
[11] | S. Sehgala, S. Chaudhrya, P. Biswasa, et al., A new genre of Recommender systems based on modern paradigms of data filtering, Proc. Comput. Sci., 92 (2016), 562-567. |
[12] | K. Kulkarni, K. Wagh, S. Badgujar, et al., A Study Of Recommender Systems With Hybrid Collaborative Filtering, Int. Res. J. Eng. Technol., 4 (2016), 2216-2219. |
[13] | S. Jeble, S. kumari and Y. Patil, Role of big data and predictive analytics, Int. J. Autom. Log., 2 (2016), 307-331. |
[14] | K. Anusha, C. Yashaswini and S. Manishankar, Segmentation of Retail Mobile Market Using HMS Algorithm, Int. J. Electr. Comput. Eng., 6 (2016), 1818-1827. |
[15] | D. S Jasim, Data mining approach and its application to dresses sales recommendation, Available from: https://www.researchgate.net/publication/293464737. |
[16] | M. A. Ullah, A Model for Predicting Outfit Sales: Using Data Mining Methods, in Emerging Technologies in Data Mining and Information Security, Springer, (2019), 813. |
[17] | U. Muhammad and A. Adeel, Dresses Attribute Sales Dataset. Available from: https://archive.ics.uci.edu/ml/datasets/dresses_attribute_sales. |