Citation: Yuncheng He, Zhen Liu, Zhi Li, Jiurong Wu, Jiyang Fu. Modal identification of a high-rise building subjected to a landfall typhoon via both deterministic and Bayesian methods[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7155-7176. doi: 10.3934/mbe.2019359
[1] | Q. S. Li, L. H. Zhi, A.Y. Tuan, et al., Dynamic behavior of Taipei 101 tower: Field Measurement and Numerical Analysis, J. Struct. Eng., 137 (2010), 143–155. |
[2] | W. Shi, J. Shan and X. Lu, Modal identification of Shanghai World Financial Center both from free and ambient vibration response, Eng. Struct., 36 (2012), 14–26. |
[3] | H. Akaike, Power spectrum estimation through autoregressive model fitting, Ann. I. Stat. Math., 21 (1969), 407–419. |
[4] | H. A. Cole Jr, On-line failure detection and damping measurement of aerospace structures by random decrement signatures, NASA Cr-2205: Washington, DC, USA, (1973). |
[5] | F. Nasser, Z. Li, N. Martin, et al., An automatic approach towards modal parameter estimation for high-rise buildings of multicomponent signals under ambient excitations via filter-free Random Decrement Technique, Mech. Syst. Signal Proc., 70(2016), 821–831. |
[6] | S. R. Ibrahim and E. C. Mikulcik, A time domain modal vibration test technique, Shock Vib. Bull., 43 (1973), 21–37. |
[7] | J. N. Juang and R. S. Pappa, An eigensystem realization algorithm for modal parameter identification and model reduction, JGCD., 8 (1985), 620–627. |
[8] | B. Peeters and G. De Roeck, Reference-based stochastic subspace identification for output-only modal analysis, Mech. Syst. Signal Proc., 13 (1999), 855-878. |
[9] | G. H. J. Ill, T. G. Carrie and J. P. Lauffer, The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating Wind Turbines, NASA STI/Rec on Technical Report N., 93 (1993), 260–277. |
[10] | D. L. Brown, R. J. Allemang, R. Zimmerman, et al., Parameter Estimation Techniques for Modal Analysis, SAE transactions., (1979), 828–846. |
[11] | J. S. Bendat and A. G. Piersol, Engineering applications of correlation and spectral analysis, New York, Wiley-Interscience., (1993), 315. |
[12] | Y. He, Q. Li, H. Zhu, et al., Monitoring of structural modal parameters and dynamic responses of a 600m-high skyscraper during a typhoon, Struct. Des. Tall Spec. Build., 27(2018), 1456. |
[13] | R. Brincker, L. Zhang and P. Andersen, Modal identification from ambient responses using frequency domain decomposition, Process of the 18th International Modal Analysis Conference, San Antonio, Texas., (2000), 625–630. |
[14] | I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inf. Theory., 36 (1990), 961–1005. |
[15] | N. E. Huang, Z. Shen, S. R. Long, et al., The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis, Proc. Roy. Soc. London., 454 (1998), 903–995. |
[16] | J. F. Clinton, S. C. Bradford, T. H. Heaton, et al., The observed wander of the natural frequencies in a structure, Bull Seismol Soc Am., 96 (2006), 237–257. |
[17] | R. D. Nayeri, S. F. Masri, R. G. Ghanem, et al., A novel approach for the structural identification and monitoring of a full-scale 17-story building based on ambient vibration measurements, Smart Mater. Struct., 17 (2008), 1–19. |
[18] | A. Mikael, P. Gueguen, P. Y. Bard, et al., The analysis of long-term frequency and damping wandering in buildings using the Random Decrement Technique, Bull Seismol Soc Am., 103 (2013), 236–246. |
[19] | Z. C. Yang, Y. H. Huang, A. R. Liu, et al., Nonlinear in-plane buckling of fixed shallow functionally graded grapheme reinforced composite arches subjected to mechanical and thermal loading, Appl. Math. Model., 70 (2019), 315–327. |
[20] | J. L. Beck and L S. Katafygiotis, Updating Models and Their Uncertainties. I: Bayesian Statistical Framework, J. Eng. Mech., 124 (1998), 455–461. |
[21] | L. S. Katafygiotis, C. Papadimitriou and H. F. Lam, A probabilistic approach to structural model updating, Soil Dyn. Earthq. Eng., 17 (1998), 495–507. |
[22] | L. S. Katafygiotis and K. V. Yuen, Bayes spectral density approach for modal updating using ambient data, Earthq. Eng. Struct. Dyn., 30 (2001), 1103–1123. |
[23] | K. V. Yuen and L. S. Katafygiotis, Bayesian Modal Updating Using Complete Input and Incomplete Response Noisy Measurements, J. Eng. Mech., 128 (2002), 340–350. |
[24] | S. K. Au, Fast Bayesian FFT method for ambient modal identification with separated modes, J. Eng. Mech., 137 (2011), 214–226. |
[25] | S. K. Au, Connecting Bayesian and frequentist quantification of parameter uncertainty in system identification, Mech. Syst. Signal Proc., 29 (2012), 328–342. |
[26] | F. L. Zhang, H. B. Xiong, W. X. Shi, et al., Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach, Struct. Control. Health Monit., 23 (2016), 1366–1384. |
[27] | X. Li and Q. S. Li, Observations of typhoon effects on a high-rise building and verification of wind tunnel predictions, J. Wind Eng. Ind. Aerodyn., 84 (2019), 174–184. |
[28] | S. C. Kuok and K. V. Yuen, Structural health monitoring of Canton Tower using Bayesian framework, Smart. Struct. Syst., 10 (2012), 375–391. |
[29] | Z. Li, M. Q. Feng, L. Luo, et al., Statistical analysis of modal parameters of a suspension bridge based on Bayesian spectral density approach and SHM data, Mech. Syst. Signal Proc., 98 (2018), 352–367. |
[30] | A. Alkan and M. K. Kiymik, Comparison of AR and Welch Methods in Epileptic Seizure Detection, J. Med. Syst., 30 (2006), 413–419. |
[31] | A. Alkan and A. S. Yilmaz, Frequency domain analysis of power system transients using Welch and Yule-Walker AR methods, Energy Conv. Manag., 48 (2007), 2129–2135. |
[32] | W. Shi, J. Shan and X. Lu, Modal identification of Shanghai World Financial Center both from free and ambient vibration response, Eng. Struct., 36 (2012), 14–26. |
[33] | K. V. Yuen and J. L. Beck, Updating properties of nonlinear dynamical systems with uncertain input, J. Eng. Mech., 129 (2003), 9–20. |
[34] | P. R. Krishnaiah, Some recent developments on complex multivariate distributions, J. Multivariate Anal., 6 (1976), 1–30. |
[35] | K. V. Yuen, Bayesian methods for structural dynamics and civil engineering, Wiley: New York., 2010. |
[36] | Y. C. He and Q. S. Li, Dynamic responses of a 492-m-high tall building with active tuned mass damping system during a typhoon, Struct. Control. Health Monit., 21(2014), 705–720. |
[37] | Z. Li, J. Y. Fu, H. J. Mao, et al., Modal identification of civil structures via covariance-driven stochastic subspace method, Math. Biosci. Eng., 16 (2019), 5709–5728. |
[38] | International Standardization Organization (ISO), Bases for Design of Structures-Serviceability of Buildings and Walkways against Vibrations, ISO 10137 (2nd Ed.), Geneva., 2007. |
[39] | W. H. Melbourne, Probability distributions associated with the wind loading structures, Civ. Eng. Trans. Inst. Eng. Aust. CE19., 1 (1977), 58–67. |
[40] | W. H. Melbourne and T. R. Palmer, Accelerations and comfort criteria for buildings undergoing complex motions, J. Wind Eng. Ind. Aerodyn., 44 (1992), 105–116. |
[41] | Y. Tamura, H. Kawai, Y. Uematsu, et al., Documents for wind resistant design of buildings in Japan. Workshop on Regional Harmonization of Wind Loading and Wind Environmental Specifications in Asia-Pacific Economies (APEC-WW), (2004), 61–84. |
[42] | AL-GBV, Guidelines for the evaluation habitability to building vibration, AIJE-V001-2004, Tokyo, Japan, (2004). |
[43] | JGJ 3-2010. Technical specification for concrete structures of tall building, China Building Industry Press: Beijing, (2010). |