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Abstract: Modal identification involves primarily the determination of natural frequencies, damping 

ratios, mode shapes of a dynamic system, etc. It is usually regarded as an essential task in a wide 

branch of structural dynamics and civil engineering, such as structural vibration control and damage 

identification of buildings or bridges. There are many modal identification techniques. Basically, 

these techniques can be categorized into two groups: deterministic methods and Bayesian approaches. 

The first group can be used to provide deterministic (or optimal) estimations of modal parameters, 

but they are unable to quantify the estimation uncertainties. The second group is based on a usage of 

the Bayesian framework. Compared to the first group, the second group of methods has a typical 

merit of being able to offer uncertainty information of identified parameters, which is of great 

interests, or even necessary, for some follow-up studies. In this paper, both a deterministic method, 

i.e., a combination of spectral analysis, filtering and Random Decrement Technique (RDT), and a 

Bayesian method, i.e., Bayesian Spectral Density Approach (BSDA), are exploited to experimentally 

identify the modal parameters of a 303 m high-rise building that was subjected to a landfall typhoon. 

The validity and efficiency of each method is verified by comparing the two kinds of results. 

Meanwhile, the identified modal parameters are used for the serviceability assessment of this 

high-rise building against some frequency-specific criteria. 

Keywords: modal identification; Bayesian approach; deterministic method; high-rise building; 

typhoon 
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1. Introduction 

Modal parameters (i.e., natural frequency, ratio damping, mode shape, etc.) index the inherent 

properties of a dynamic system, by which the dynamic characteristics of the system can be quantified 

and predicted. Thus, modal analysis is normally recognized as one of the most important tasks in a 

wide branch of structural mechanics, such as finite element model (FEM) updating, fault diagnosis 

and health monitoring of civil structures. 

During the last decades, numerous large-scale civil structures have been constructed, including 

high-rise buildings and long-span bridges. These structures take a significant role in the social and 

economic developments. Therefore, their safety and serviceability have received great concerns at 

both the design and maintain stages. For related engineering practices, it is essential to identify the 

modal parameters of these structures effectively. For example, to restrain the wind-induced vibration 

of a super-tall building via a tuned-mass-damper (TMD) system, one has first to identify the 

fundamental natural frequency of the building accurately so that the pendulum length of the TMD 

system can be determined [1,2]. 

There are many modal identification techniques. Basically, these techniques can be categorized 

into two groups: deterministic methods and Bayesian approaches. The first group can be used to 

provide deterministic (or optimal) estimations of modal parameters. According to the working 

conditions, the deterministic methods can be further divided into experimental modal analysis (EMA) 

methods, and operational modal analysis (OMA) methods. An EMA method is conventionally 

established on the basis of the frequency response function (FRF) of the dynamic system under an 

experimental working condition. It requires both the input and output information of the system. 

Unfortunately, it is usually quite expensive or even unfeasible in practices to get the output and input 

records simultaneously. By contrast, an OMA method identifies the modal parameters of a system 

under an operational condition (e.g., a building excited by wind load), typically based on output-only 

records. Since there are no special requirements of input records, using OMA methods for modal 

analysis becomes considerably economical and convenient. Thus, they have been adopted widely in 

recent years especially for the cases of large-scale civil structures. 

Technically, the OMA methods can be categorized into the following groups: time-domain 

method, frequency-domain method and time-frequency domain method. The time-domain methods 

include the auto-regressive-moving-average (ARMA) method [3], random decrement technique 

(RDT) [4,5], Ibrahim time domain (ITD) method [6], eigensystem realization algorithm (ERA) [7], 

stochastic subspace identification (SSI) method [8], natural excitation technique (NExT) [9], and 

least square complex exponential (LSCE) method [10]. The frequency-domain methods are based on 

spectral analysis of output signals of the dynamic systems, which include peak picking method (PP) [11,12], 

and frequency domain decomposition (FDD) method [13]. The time-frequency domain methods are 

developed by using time-frequency domain data analysis techniques, such as wavelet transform [14] 

and Hilbert-Huang transform (HHT) [15]. They are attractive to deal with problems with 

non-stationary and/or non-linear features. 

Despite the wide utilization of deterministic modal identification methods, there are some 

limitations for this kind of methods. Typically, they are unable to quantify the estimation 

uncertainties. It is undoubted that due to the wide existence of noise in measurement records and 

errors in estimation models or methods, there must be some uncertainty of the modal identification 

results. Studies have also revealed that the values of modal parameters of civil structures may vary 
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noticeably with some ambient factors, e.g., temperature [16–19]. Thus, it would be of great interests, 

or even necessary, to evaluate the estimation uncertainty for some follow-up studies. The Bayesian 

modal identification methods are established by using a Bayesian analysis framework. Compared to 

the deterministic methods, this kind of methods are able to offer uncertainty information of identified 

parameters besides the optimal values of modal parameters. 

The pioneering work on modal analysis via Bayesian methods may be traced back to the late of 

1990s when Katafygiotis and Beck [20,21] for the first time proposed a modal identification method 

by using spectral analysis and Bayesian statistical framework to estimate the optimal values of modal 

parameters based on output-only records of a dynamic system subjected to random excitation. 

During the past two decades, great developments have been achieved in this researching area. 

Following the study by Katafygiotis and Beck, Katafygiotis and Yuen [22] proposed a Bayesian 

spectral density approach (BSDA) which can offer not only the optimal values of modal parameters 

but also the estimation uncertainty. Later, Yuen [23] proposed the fast Bayesian FFT, which can 

improve the computational efficiency of Bayesian modal identification methods significantly. Au [24,25] 

investigated further on the posterior uncertainty of the modal parameters based on the fast Bayesian 

FFT method. In recent years, many studies have been conducted to use Bayesian methods for modal 

analysis [26–29]. 

In this paper, both a deterministic method and a Bayesian method are exploited for the modal 

analysis of a 303 m high building that was subjected to a landfall typhoon, with a primary objective 

of examining the working performances of these two kinds of modal identification methods. The 

involved deterministic method is actually a combination of a series of techniques that include power 

spectral density (PSD) analysis, filtering and RDT method; while the Bayesian method refers to the 

BSDA method.  

The reminders of this article are organized as follows: Section 2 introduces the adopted 

methodology which includes two PSD estimation methods, a zero-phase filtering technique and the 

RDT and BSDA methods. Section 3 states the studied building and datasets. In Section 4, results 

obtained via the two kinds of methods are presented and compared. The identified modal parameters 

are further used for the serviceability assessment of this high-rise building against some 

frequency-specific criterion. Main conclusions are summarized in Section 5. 

2. Methodology statement 

2.1. Overview of the methodology 

Figure 1 illustrates an overview of the methodology adopted in this study. The PSD analysis is 

conducted first to identify the natural frequencies and frequency bands for each mode of the studied 

civil structure. Two specific PSD estimation techniques are utilized herein: Welch method and 

Yule–Walker method. Based on the PSD analysis results, filtering process is manipulated to separate 

each modal component from the total response, since both the deterministic and Bayesian modal 

identification methods adopted in this study are only applicable for single-degree-of-freedom (SDOF) 

cases. Note that the RDT method involved in the deterministic method belongs to a time-domain 

technique, whose performance may be influenced negatively if the phase information is distorted 

during the filtering process. To avoid such phase-distortion effects, this study utilizes a zero-phase 

filtering technique. On obtaining the separated modal responses, the two modal identification 

methods, i.e., RDT and BSDA, are adopted to determine the modal parameters of the civil structure.  
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Figure 1. Flowchart of the methodology. 

2.2. PSD analysis 

There exist many PSD estimation methods. Basically, these methods can be classified into two 

groups: classic methods and modern methods. The classic methods are principally based on 

Fourier transform, while the modern methods are established on the basis of parametric models. Two 

specific PSD estimation methods are considered in this study: the Welch method which belongs to 

the classic group and the Yule–Walker method which belongs to the modern group. 

2.2.1. Welch method 

Technologically, the Welch method is a combination of the fast Fourier transform (FFT) and the 

windowing and averaging techniques. It has been well recognized that analyzing PSD via a pure FFT 

method usually suffers from severe effects of sidelobe leakage. By bringing in the windowing 

technique, the sidelobe leakage effects can be suppressed effectively. Meanwhile, by encapsulating 

the averaging technique into FFT, the obtained results can be improved significantly in terms of the 

stability of PSD estimations. 

Specifically, this method consists of four successive steps: (1) dividing the time series of signals 

into a pre-assigned number of segments, with the number of samples in each segment uniformly 

equal to an integral power of 2 so that the FFT can be conducted smoothly; (2) operating windowing 

process (e.g., using Hanning window) on each segment so that the segmental signals can be 

smoothed at both edges; (3) estimating PSD for each windowed segment via the so-called 

periodogram method (which is essentially the same to FFT); (4) calculating the average of PSD 

results obtained in (3). 

It is worthy to note that, although the averaging technique can improve the estimation variance, 

this improvement is achieved at the price of reducing the number of samples in each segment, which 

results in a reduction of resolution in the frequency resolution. Thus, special attention is needed so 

that an acceptable balance between variance inhibition and resolution performance can be obtained [30]. 

2.2.2. Yule–Walker method 

Modern PSD estimators are established by using certain parametric models. Each parametric 

model can be embodied by a linear system: 

( ) ( ) ( )x n L z X n         (1) 
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where, ( )x n denotes the discrete-time signal, ( )L z  stands for the linear system, or the transfer 

function of a discrete-time system, ( )X n  corresponds to the output of ( )L z  excited by ( )x n . 

The basic idea of modern PSD estimation methods lies in that the PSD of ( )x n  can be 

estimated via ( )L z , while ( )L z  can be identified based on ( )X n  or the auto-correlation function 

of ( )X n . 

Apparently, by contrast to classic PSD estimation methods which assume that signals vanish 

outside the window range, modern methods use parametric models so that the signals can be treated 

as if they were infinite in length. Thus, modern methods are able to offer more accurate estimation 

results at a much finer frequency resolution. 

 Among numerous modern PSD estimation methods, the Yule–Walker auto-regression (AR) 

method is one of the most widely utilized ones. This method, which is also called the 

auto-correlation method, fits an AR model to the windowed input data. It does so by minimizing the 

forward prediction error in the least squares sense.  

Given a signal sequence ( )x n , the variance of ( )x n  or the variance of estimations of ( )x n  

via an AR model is given as follows: 

2

1

1
variance ( ) ( ) ( )

p

n k

x n a k x n k
N




 

           (2) 

where, N is the length of ( )x n , ( ) 1,2,...a k k p，  are coefficients of the p-th order AR model. The 

unobserved samples of the ( )x n process (i.e., samples not in the range 0 1n N   ) are set as zero 

in Eq 2.  

To obtain the estimations of ( )a k , one may minimize the prediction error power by 

differentiating Eq 2 with respect to the real and imaginary parts of ( )a k : 

*

1

1
( ) ( ) ( ) ( ) 0

p

n k

x n a k x n k x n l
N



 

 
    

 
  ，  1 , 2 , . . . , pl      (3) 

which can be equally rewritten as a function of autocorrelation function estimates: 

ˆˆ ˆ 0p pr R a             (4) 

with the estimators expressed as: 
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1
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( ) ( ), 0,1,...,

ˆ( )

ˆ ( ), ( 1), ( 2),..., 1

N k

n

x n x n k k p
r k N

r k k p p

 







 

 
       


    (5) 

From Eq 4, the estimations of AR parameters can be computed: 

1ˆ ˆˆ
pp

a rR


             (6) 

The white noise variance
2  is estimated as: 

2

1

ˆ ˆ ˆ ˆ(0) ( ) ( )
p

k

r a k r k


            (7) 

Now that the autoregressive parameters have been determined, the PSD of ( )x n  can be 

estimated as [31]: 

2

2

2

1

ˆ ( )

ˆ1 ( )
p

j fk

k

p f

a k e 











        (8) 

2.3. Zero-phase filter 

Filtering manipulations are frequently employed for data processing and analyzing. Although 

filters are designed primarily according to the amplitude frequency function, great attention should 

be also paid to the phase frequency function since the phase information of filtered signals is 

generally distorted after the filtering process. In this study, a zero-phase filtering technique, i.e., the 

forward--reverse filtering-and-reverse-output (or FRR for short) technique, is adopted to avoid such 

phase-distortion effects. 

The basic idea of conducting a zero-phase filtering process via the FRR method is expressed as 

follows: (1) the input signal ( )x t  (  0,t T ) is firstly filtered via a traditional filter (which is 

designed according to its amplitude-frequency function) to obtain output 1( )y t ; (2) 1( )y t  is then 

reversed to produce another sequence 2 ( )y t ; (3) 2 ( )y t  is further filtered via the same filter adopted 

in (1) to generate output 3( )y t ; (4) 2 ( )y t  is reversed again to get 4 ( )y t . It can be proved that 4 ( )y t  

is similar to 1( )y t  except that the phase of 4 ( )y t  is not distorted with respect to ( )x t . 
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2.4. Random decrement technique 

Random decrement technique (RDT) is a time-domain method that uses the ensemble average 

of output data to approximate the free vibration response of a linear structure that is subjected to 

Gaussian white noise excitation. The free vibration response is often referred to as a random 

decrement signature (RDS). This method is based on the assumption that the dynamic response ( )y t  

is a superposition of response components associated respectively with initial displacement 
0
( )ay t , 

initial velocity 
0
( )ay t  and random excitation ( )fy t . 

The RDT procedure starts with selecting a series of response thresholds 0 , 1,2,...,ia i M ( M ), 

according to which, a sufficient number of segments associated with each value of 0ia and 

meanwhile with the same length can be extracted. These segments are then average so that the 

response components associated with 
0
( )ay t  and ( )fy t can be eliminated, retaining only the 

component of 
0
( )ay t . The RDS ( )x   is expressed as [32]: 

1

1
( ) ( )

N

i

i

x y t
N

 


           (9) 

where,   is the duration (or the length) of the RDS, N  is the number of segments involved in the 

ensemble average.  

The logarithmic decrement technique is then used to extract the damping ratio and natural 

frequency from each of RDSs. 

00( ) cos( ) exp( )dx t a t t            (10) 

in which, 0a  is the initial displacement, 0  is the circular natural frequency,
 d  is the damped 

circular natural frequency, and   is the damping ratio. 

2.5. Bayesian spectral density approach 

The BSDA method is a frequency-domain approach for modal identification. It utilizes the 

statistical properties of the PSD of SDOF response to obtain not only the optimal values of model 

parameters but also associated estimation uncertainties. The posterior probability density function of 

modal parameters is constructed by considering the statistical properties of the discrete Fourier 

transform. Supposing that the excitation can be regarded as a zero-mean white noise process, the 

PSD of the SDOF response would approximately follow the Chi-square probability distribution. One 

may then construct a likelihood function of modal parameters to represent the probability of the PSD. 
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By maximizing the function, or equally by minimizing the logarithm of the function, the optimal 

estimates of modal parameters can be obtained. 

According to the Bayes’ theorem, the posterior/updated PDF of the model parameter vector 

0 0( , , )fS    is: 

, ,0( ) ( ) ( )
avg avg

y N y NP K P PS S           (11) 

where, 0K is a non-dimensional constant, 0 0( , , )fS    consists of the damping ratio , natural 

frequency 0  and spectral densities of the modal force 0fS , while ( )P   is the prior PDF of the 

empirical parameters (determined based on previous knowledge) which can be regarded as a constant 

in engineering practices. In the above equation, 
,( )

avg

y NP S   denotes the likelihood function which 

reflects the contribution of measurements in the posterior PDF. Note that the construction of 

,( )
avg

y NP S   is a key step in identifying the modal parameters via the Bayesian analysis framework. 

Consider the dynamics of a linear SDOF system: 

2

0 02 ( )x x x f t            (12) 

where, 0, , x  are the damping ratio, natural frequency and the displacement response of the 

oscillator, ( )f t  is the input excitation which may be regarded as a zero-mean Gaussian white noise 

process, with its PDF equal to a constant within the concerned frequency range: 

0( )f fS S            (13) 

Assuming that the measured acceleration response of the system ny  is: 

 ( ) 0,1,..., 1n ny x n t n N            (14) 

where, t  is the sample interval, n  indexes the sample number (0 ≤ n  ≤ N–1), n  represents 

noise or errors involved in the measurement, which is also regarded as a zero-mean white noise 

process. Conventionally, it is assumed that the PSD of n  
, i.e., S , is independent to that of x : 

2

2

t
S 




           (15) 

in which,   is the standard deviation of the noise. 
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The discrete Fourier transform of the stochastic process ny  can be expressed as: 

1

0

( ) exp( )
2

N

nk k

n

t
y in t

N
  








         (16) 

where, -1, 2 / , , ( 0,..., ),k nqyi T T N t k k N           with nqyN being an integer nearest 

to but no larger than half of N . 

The PSD of ny  can be then estimated: 

 

2
12

,

0

( ) ( )
2

k

N
in t

y N k k
n

t
S ye

N

  



 




         (17) 

Accordingly, the mathematical expectation of ,y NS  can be expressed as: 

, ,( ) ( )y N x Nk kS S S                   (18) 

with [33]: 

( ) ( )k kSx Sx              (19) 

The PSD of acceleration response of the system subjected to input force ( )f t  can be deduced 

as: 

00

4

2 222

( )
( )

(2 )( )

f k k
x k

kk

S
S

 





        (20) 

On the other hand, to investigate the statistical properties of ,y NS , ,y NS  can be rewritten in the 

following form based on Eq 17: 

2 2

, ( ) ( ) ( )y N k c k s kS               (21) 

with c  
and s  denoting the scaled Fourier cosine and sine functions: 

1

0

1

0

( )= cos( )
2

( )= sin( )
2

N

c k n k

n

N

s k n k

n

t
y n t

N

t
y n t

N

  


  




















       (22) 
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As ny  belongs to a zero-mean Gaussian stochastic process, so does ( )c k   or ( )s k  . 

Meanwhile, when 0t   , the two random variables
 

( )c k  and ( )s k   tend to be independent 

with each other, and the associated variance values become asymptotically equal. Therefore, it 

follows that the PDF of , ( )y N kS   can be approximated by a Chi-square distribution. 

, 1
0

1
lim ( ) ( )

2
y N k x k

t
S S S  

 

           (23) 

where, 1  is the Chi-square distributed with two degrees of freedom. 

For k l , , ( )y N kS  and , ( )y N lS  are uncorrelated in the same frequency segment, and 

uncorrelated Chi-square random variables should be independent. Thus, for 1 2, ( , )k l k k , 

 , , ,1 2( ),..., ( )
T

y N y N y NS S k S k    represents the PSD set in range of 
1 2

[ , ]k k  . The joint PDF can 

be then expressed as: 

 

2

1

,
,

, ,

( )1
( ) exp

( ) ( )

k
y N k

y N

y N y Nk k k k

S
P S

S S




  

  
   

     
     (24) 

It is worth noting that the frequency range [ 1 2,k k  ] should be selected around a PSD peak of 

the structural response. 

If there are several sets of independent time histories  ( )

0, 1, 2,..., ( )S

N s sY s N N NY   , the 

averaged PSD estimator can be obtained [34]: 

, ,

1

1
( ) ( )

sN

avg s
y N y Nk k

s s

S S
N

 


          (25) 

where, sN  is the number of segments, Y  represents the time history of output signal, k  denotes 

the frequency which is in range of [
1 2
,k k  ].

  

Thus, the averaged joint PDF can be expressed as:
 

 

2

1

, ,1

1

, ,

( ) ( )

exp ( ( ) ( ))

sNk

avg
y N y N k

k k

avg
y N y Ns k k

P KS S

N tr S S

  
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





    

        


     (26) 
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with 1K  being a constant for a given set of data. Note that 1K  is independent of the modal 

parameters. 

The optimal parameters vector *
  can be then obtained by maximizing the updated PDF or, 

equivalently, by minimizing the objective function: 

,( ) ln ( ) ( )
avg

y Ng P P S              (27) 

On the other hand, the uncertainty of identified modal parameters can be quantified by the 

posterior coefficient of variation (COV) which is defined as the standard deviation of a variable 

divided by its optimal estimation value [21]. According to the information theory, the standard 

deviation of each modal parameter is equal to the square of the diagonal element of the inverse 

matrix of the posteriori covariance matrix, i.e., 1( )
 , where ( )  stands for the Hessian 

matrix of ( )g   calculated at [35]: 

* *
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2 2
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= =
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





 

 

 





 
  
   

          
           



 

(28) 

where, “tr” stands for the trace of a matrix. 

3. Database 

As shown in Figure 2a, the studied building is the Leatop Plaza which is located at the urban 

center of Guangzhou, Guangdong Province of China. This building is of 303 m in height and 

contains 65 floors above ground. The structural system of the building is composed of a steel 

diagonal frame and a concrete core tube. 

  

Figure 2. Leatop Plaza and location of accelerometers. 
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Typhoon Mangkhut is one of the strongest tropical cyclones that have ever influenced 

Guangzhou. Mangkhut formed over the Northwest Pacific Ocean on September 7, 2018. It landed at 

the northern part of Philippines with a strength of super typhoon at 1:40 am on September 15. After 

that, it steered to the South China Sea at a speed of 25 km/h. At 17:00 on September 16, Mangkhut 

landed at Haiyan Town of Guangdong Province with a maximum sustained wind estimated as 162 

km/h (central pressure: 955 hPa). It then weakened rapidly as it moved northwestward continuously 

until it was finally dissipated. The track of Mangkhut during 16–17 September when the storm 

influenced the studied building is depicted in Figure 3. 

During the passage of Mangkhut, a bi-axial accelerometer was placed at the 56
th

 floor of this 

high-rise building to measure the wind-induced structural response. The location of the 

accelerometer is shown in Figure 2(b). Acceleration signals from the accelerometer were first filtered 

and then recorded at 32 Hz and 64 Hz, respectively. A 30-hr (from 00:00/16 to 06:00/17) database 

has been collected which covers the whole passage process of Mangkhut around Guangzhou. 

 

Figure 3. Track of typhoon Mangkhut. 

4. Results and discussions 

4.1.  Acceleration response of the building 

Figure 4 illustrates the time histories of measured instantaneous response along the two 

orthogonal directions. Also depicted are the evolutions of the root-mean-square (RMS) values of 

each 10-min segment during the passage of Mangkhut. The peak responses along Direction-X were 

recorded as 2.81 cm/s
2
 (instantaneous acceleration) and 1.32 cm/s

2
 (RMS), while those along 

Direction-Y were 5.63 cm/s
2
 and 1.83 cm/s

2
. Note that the peak responses occurred at ~17:00/16 

when Typhoon Mangkhut got closest to the studied building. 
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Figure 4. Time history of acceleration response along two orthogonal directions (Ax, Ay) 

at 56
th

 floor of the building and associated RMS values for each 10-min segment. 

4.2. Structural dynamic properties 

4.2.1. Optimal estimations of natural frequency and damping ratio 

The modal parameters are first determined via the determinist methods. The natural frequencies 

are identified with the PP method based on the spectral analysis results, while the damping ratios are 

estimated via the RDT method. Figure 5 exhibits the PSDs of the structural response estimated via 

both the Welch and Yule-Walker (Yulear) methods from a segment of acceleration data which passed 

the stationarity test by using the reverse method. As can be seen, results from the two PSD estimation 

methods show good agreement, and three natural frequencies can be identified in the frequency range 

below 0.8 Hz. The fundamental natural frequencies are recognized as 0.184 Hz (X-direction) and 

0.182 Hz (Y-direction), respectively. 

 

Figure 5. PSD of acceleration responses estimated via Welch and Yule-Walker (Yulear) methods. 

Figure 6 plots two typical RDSs. Both the time histories and envelopes of the RDSs are fitted by 

associated theoretical models to obtain the damping ratio values. The parametric values involved in 

RDT herein are set in a consistent way to the one adopted in our previous studies [36,37]. The trigger 

condition (i.e., the initial response of RDS) is set as integer multiples of 0.1σ, σ being the standard 

deviation of the total response. The length of signature τ is set as a value of 14 times the length of the 

natural period of concerned mode. For the sake of obtaining damping ratio at high response 
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amplitudes, the minimum segment number for each RDS is set at a relatively relaxed level of 17. 

Meanwhile, each obtained RDS has been examined annually to grantee the effectiveness of derived 

results. As demonstrated, the fitting results agree well with the measured results, with the damping 

ratios estimated as 0.99% and 0.76% for these two RDSs respectively.  

 

Figure 6. RDSs for 1st mode along two orthogonal directions. 

 

  

Figure 7. Comparison of modal parameters identified via RDT and BSDA methods for 

the first two orders of swaying modes and the first torsional mode along two orthogonal 

directions. 
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The BSDA method is then applied to estimate the optimal values of modal parameters and 

corresponding estimation uncertainties. As the wind excitation for the studied building was 

non-stationary during the passage of the typhoon, the whole dataset is divided into 600 segments (the 

length of each segment is 3 min), and every ten successive segments (i.e., 10sN  in equation (28)) 

are treated as a subset of data for follow-up computations. It is assumed that each subset of data is 

stationary. Thus, the BSDA method can by adopted properly for modal analysis. It should be pointed 

out that this assumption is only roughly satisfied for some subsets, which results in estimation errors 

via the BSDA method. The averaged spectrum , ( )avg
y N kS  for each subset is then calculated and fitted 

to obtain the optimal estimations of modal parameters. These optimal values are further averaged 

over every 90-min duration, so that the results can be compared to those obtained via the RDT 

method which should be exploited on a sufficiently long segment.   

Figure 7 plots the identified natural frequencies and damping ratios for the first three orders of 

modes via the BSDA method against those obtained via the RDT method. It is observed that for 

higher orders of modes (i.e., 2nd and 3rd modes), the estimations of both natural frequency and 

damping ratio via these two methods show pretty good agreements. By contrast, the results for the 

1st mode demonstrate larger differences. Overall, the optimal values of damping ratio via the BSDA 

method, which are in range of 0.7%–1.2% (mean value = 0.98%), are found to be ~30% larger than 

those estimated via RDT which are in range of 0.5%-1.1% (mean value = 0.75%). Even though, the 

largest relative difference between the two kinds of results for natural frequency is no larger than 2%. 

4.2.2. Join PDF of natural frequency and damping ratio 

The optimal values of modal parameters can be estimated via the BSDA method for each 3-min 

segment. Based on these results, the joint PDF of natural frequency and damping over a longer 

segmental duration can be computed. Figure 8 illustrates the joint PDF of these two parameters 

estimated from the measurement segment during 17:00/16–18:30/16. The results are compared with 

the optimal values estimated via the RDT method. Similar to the observations mentioned previously, 

the damping ratios estimated by RDT for 1
st
 mode are found to be noticeably lower than those via 

BSDA, while the two kinds of optimal values show good agreement under higher modal order 

conditions. 

 

Figure 8. Joint PDF of natural frequency and damping ratio estimated via BSDA 

overlaid by the result via RDT for the first two orders of swaying modes and the first 

torsional mode along Direction-Y (the contours describe the confidence intervals of 30%, 

50% ,70% and 90% of the marginal updated PDFs). 
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4.2.3. PSD of modal force identified via BSDA 

Figure 9 plots the time histories of identified PSD of modal force 
0fS (in terms of optimal value 

and error bands, with each error band corresponding to one standard deviation of the variable away 

from the optimal value). For reference purpose, the evolutions of 10-min mean wind speed meanU  

and the peak speed in each 10-min segment peakU  are also presented. From these results, the values 

of 
0fS  varied in a consistent way with wind speed. In addition, the peak value of 

0fS  appeared at 

the time when Mangkhut got closest to the study site and exerted the strongest wind load on the 

building. 

 

 

 

Figure 9. Comparison of time history of identified modal forces (in form of PSD: Sf0) via 

BSDA with measured mean (Umean) and peak (Upeak) wind speeds. 
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4.3. Estimation uncertainty via BSDA 

As introduced in the introduction section, there exist many factors in reality (e.g., noise 

interference, accuracy of experimental instrument and operation method of tests) which can result in 

evident uncertainty in modal identification results. In order to evaluate the quality of modal analysis 

results, it is necessary to quantify the estimation uncertainty. 

Table 1 illustrates the posterior COV values for each modal parameter identified via the BSDA 

method. As demonstrated, the maximum COV values for natural frequency f , damping ratio  and 

modal force 0fS  are 0.21%, 10.08% and 12.00%, respectively. The value for f  is much lower 

than those for 0fS  and  , indicating that the estimation uncertainties for 0fS  and  are 

comparatively higher than that for f . The above finding may be partially attributed to the large 

difference between the two kinds of results of   estimated respectively via the deterministic 

method and the BSDA method.  

Table 1. Posterior COV of identified modal parameters via BSDA. 

COV (%) X-direction Y-direction 

1
st 

swaying 

mode
 

1
st 

torsional 

mode
 

2
nd

 swaying 

mode
 

1
st 

swaying 

mode
 

1
st 

torsional 

mode
 

2
nd

 swaying 

mode
 

f 0.21 0.10 0.08 0.02 0.10 0.08 

ξ 7.01 5.31 8.54 6.15 10.08 3.09 

Sfo 
5.60 12.00 8.00 6.40 7.57 9.10 

4.4. Serviceability assessment of the building 

Occupants may become uncomfortable or even panic when the building is vibrating with 

excessively large amplitudes. Previous studies have shown that human bodies are more sensitive to 

the acceleration response of buildings, and the critical levels, exceeding which evident 

uncomfortable reactions may happen, depend upon frequency. Therefore, a number of 

frequency-specific criteria have been proposed in terms of acceleration for serviceability assessment 

of high-rise buildings.  

In this paper, four frequency-specific criteria are selected which include the ones stipulated in or 

proposed by ISO 10137 [38], Melbourne and Palmer [39,40], AIJ-GBV-2004 [41,42], JGJ 3-2010 [43]. 

All these criteria utilize the peak acceleration response for assessment. As an example, the criterion 

proposed by Melbourne and Palmer [39,40]is given as follows: 

1 1

ln( )
ˆ 2ln( )(0.68 )exp[ 3.65 0.41ln( )]

5

R
a f T f        (29) 

where, 1f is the fundamental frequency of a building, T is the duration of observation in seconds, R  

is the return period in years. 
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It is worth noting that, to take into account the perception discrepancies from different persons, 

the criterion stipulated in AIJ-GBV-2004 adopts varied critical levels for different percentages of 

populations [41,42]. Five percentage groups are considered: H-10, H-30, H-50, H-70 and H-90, with 

the number in each group indicating the perception probability as a percentage. For example, H-10 

indicates that 10% of people can perceive the vibration.  

 

Figure 10. Serviceability assessment of the Leatop plaza against varied 

frequency-specific comfort criteria (criteria include those documented in ISO 1037 

(2007), JGJ 3-2010, Melbourne & Paler (1992), AIJ-GBV-2004; the solid circles stand 

for the peak structural acceleration responses along the two measurement directions). 

Figure 10 illustrates the peak structural response at 56
th

 floor of Leatop Plaza during the passage 

of Typhoon Mangkhut (2.81 cm/s
2
 and 5.63 cm/s

2
) against the critical acceleration levels as 

suggested in the four criteria. It is found that the measured peak acceleration along Direction-y was 

slightly lower than the H-50 level in AIJ-GBV-2004, and both the peak responses alone the two 

directions were well below the critical levels suggested by the other three criteria. Therefore, 

although Typhoon Mangkhut is one of the strongest TCs that have ever impacted Guangzhou, the 

Leatop Plaza building could work with an acceptable serviceability performance during the passage 

of this typhoon.  

5. Concluding remarks 

This paper presents a field study on the modal analysis of a 303 m high-rise building subjected 

to a landfall typhoon, with a primary objective of comparing the working performance of both a 

deterministic modal identification method and a Bayesian modal identification approach. The 

deterministic method is actually a combination of spectral analysis, filtering and random decrement 

technique (RDT), while the Bayesian method refers to the Bayesian spectral density approach 

(BSDA).  

Through comparison, it is found that for higher orders of modes, the optimal values of natural 

frequency f  and damping ratio  estimated via the BSDA method and the adopted deterministic 

method show good agreements, but the results for 1
st
 mode demonstrate larger differences. Overall, 
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the optimal values of  for 1
st
 mode via BSDA are in a range of 0.7%–1.2%, which are ~30% (the 

optimal values of damping ratio estimated via the BSDA method are found to be roughly 30% larger 

than those estimated via RDT) larger than those estimated via RDT (in range of 0.5%-1.1%). Further 

efforts are needed to clarify the reasons for this discrepancy. 

It is stressed that there are two typical advantages by using BSDA against by using the 

deterministic method: (1) the Bayesian method can be used to estimate the PSD of modal force 
0fS , 

but the deterministic method fails to; (2) the Bayesian method can offer uncertainty information of 

identified modal parameters, which makes it feasible to evaluate the quality of associated estimation 

results. In this study, 
0fS  is found to vary in a consistent way with wind speed, with its peak values 

appearing at the time when Mangkhut got closest to the study site and exerted the strongest wind 

load on the building. On the other hand, the maximum COV values for f ,  and 
0fS  estimated 

via BSDA are 0.21%, 10.08% and 12.00%, respectively. The value for f  is much lower than those 

for 
0fS  and  , indicating that the estimation uncertainties for the latter two modal parameters are 

comparatively higher than that for f . It is noted that the COV values of natural frequency and 

damping ratio are also related to the physical sensitivity of these parameters to loading and external 

conditions [17,18]. 

The identified natural frequency is finally utilized for the serviceability assessment of this 

high-rise building against several frequency-specific criteria. Results show that although Typhoon 

Mangkhut is one of the strongest TCs that have ever impacted Guangzhou, the Leatop Plaza building 

could work with an acceptable serviceability performance during the passage of this typhoon. 
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