Citation: Xiao Tu, Qinran Zhang, Wei Zhang, Xiufen Zou. Single-cell data-driven mathematical model reveals possible molecular mechanisms of embryonic stem-cell differentiation[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5877-5896. doi: 10.3934/mbe.2019294
[1] | J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, et al., Blastocysts Embryonic Stem Cell Lines Derived from Human, Science, 282 (1998), 1145–1147. |
[2] | C. E. Murry, M. A. Laflamme, X. Yang, et al., Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate heart, Nature, 510 (2014), 273–277. |
[3] | P. P. Tam and D. A. Loebel, Gene function in mouse embryogenesis: get set for gastrulation, Nat. Rev. Genet., 8 (2007), 368–381. |
[4] | A. Adamo, I. Paramonov, M. J. Barrero, et al., LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells, Nat. Cell Biol., 13 (2011), 652–659. |
[5] | L. Chu, J. Zhang, J. A. Thomson, et al., Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm, Genome Biol., 17 (2016), 173. |
[6] | S. Larabee, H. Coia, G. Gallicano, et al., miRNA-17 Members that Target Bmpr2 Influence Signaling Mechanisms Important for Embryonic Stem Cell Differentiation In Vitro and Gastrulation in Embryos, Stem Cells Dev., 24 (2015), 354–371. |
[7] | R. A. Young, L. A. Boyer, T. I. Lee, et al., Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells, Cell, 122 (2005), 947–956. |
[8] | L. W. Jeffrey, T. A. Beyer, J. L. Wrana, et al., Switch enhancers interpret TGF- and Hippo signaling to control cell fate in human embryonic stem cells, Cell Rep., 5 (2013), 1611–1624. |
[9] | J. Rossant, J. S. Draper, A. Nagy, et al., Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells, Cell Stem Cell, 3 (2008), 182–195. |
[10] | N. Ivanova, Z. Wang, S. Razis, et al., Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells, Cell Stem Cell, 10 (2012), 440–454. |
[11] | A. F. Schier, A. Regev, D. Gennert, et al., Spatial reconstruction of single-cell gene expression data, Nat. Biotechnol., 33 (2015), 495–502. |
[12] | J. L. Rinn, C. Trapnell, T. S. Mikkelsen, et al., The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells, Nat. Biotechnol., 32 (2014), 381–386. |
[13] | J. Tan and X. Zou, Complex dynamical analysis of a coupled network from innate immune responses, Int. J. Bifurcat. Chaos, 23 (2013), 1350180. |
[14] | S. Jin, D. Wang and X. Zou, Trajectory control in nonlinear networked systems and its applications to complex biological systems, SIAM J. Appl. Math, 78 (2018), 629–649. |
[15] | S. Jin, F. Wu and X. Zou, Domain control of nonlinear networked systems and applications to complex disease networks, Discrete Cont. Dyn. B, 22 (2017), 2169–2206. |
[16] | X. Shu, D. Pei, S. Wei, et al., A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes, Nat. Commun., 8 (2017), 15166. |
[17] | M. A. Nieto, J. P. Thiery, R. Y. Huang, et al., Epithelial-mesenchymal transitions in development and disease, Cell, 139 (2009), 871–890. |
[18] | J. P. Thiery and J. P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions, Nat. Rev. Mol. Cell Biol., 7 (2006), 131–142. |
[19] | H. Peinado, F. Portillo and A. Cano, Transcriptional regulation of cadherins during development and carcinogenesis, Int. J. Dev. Biol., 48 (2004), 365–375. |
[20] | A. Voulgari and A. Pintzas, Epithelial mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic, Biochim. Biophys. Acta, 1796 (2009), 75–90. |
[21] | J. Zhao, X. Wang, M. Hung, et al., Krüppel-Like Factor 8 Induces Epithelial to esenchymal Transition and Epithelial Cell Invasion, Cancer Res., 67 (2007), 7184–7193. |
[22] | Y. Ma, X. Zheng, K. Chen, et al., ZEB1 promotes the progression and metastasis of cervical squamous cell carcinoma via the promotion of epithelial-mesenchymal transition, Int. J. Clin. Exp. Pathol., 8 (2015), 11258–11267. |
[23] | D. Chen, Y. Chu, S. Li, et al., Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells, Chin. J. Cell. Mol. Immunol., 33 (2017), 1073–1078. |
[24] | B. L. Li, J. M. Cai, F. Gao, et al., Inhibition of TBK1 attenuates radiation-induced epithelial-mesenchymal transition of A549 human lung cancer cells via activation of GSK-3β and repression of ZEB1, Lab. Invest., 94 (2014), 362–370. |
[25] | J. Comijn, G. Berx, Roy F. van, et al., The two-handed E box binding zinc finger protein SIP1 down-regulates E-cadherin and induces invasion, Mol. Cell, 7 (2001), 1267–1278. |
[26] | M. Moes, E. Friederich, A. Sol, et al., A novel network integrating a mi-RNA 203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition, PloS One, 7 (2012), e35440. |
[27] | U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, 1st edition, Taylor & Francis Inc, Boca Raton, FL, 2006. |
[28] | D. Chu, N. R. Zabet and B. Mitavskiy, Models of transcription factor binding: Sensitivity of activation functions to model assumptions, J. Theor. Biol., 257 (2009), 419–429. |
[29] | J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95, International Conference on Neural Networks, Perth, WA, Australia, 4 (1995), 1942–1948. |
[30] | D. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, J. Phys. Chem., 81 (1977), 2340–2361. |
[31] | X.Xiang, Y.Chen, X.Zou, etal., UnderstandinginhibitionofviralproteinsontypeIIFNsignaling pathways with modeling and optimization, J. Theor. Biol., 265 (2010), 691–703. |
[32] | S. Shin, O. Rath, K. Cho, et al., Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway, J. Cell Sci., 122 (2009), 425–435. |
[33] | T. Tian and K. Burrage, Stochastic models for regulatory networks of the genetic toggle switch, Proc. Natl. Acad. Sci., 103 (2006), 8372–8377. |
[34] | M. R. Birtwistle, J. Rauch, B. N. Kholodenko, et al., Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise, BMC Syst. Biol., 16 (2012), 109. |
[35] | L. K. Nguyen, M. R. Birtwistle, B. N. Kholodenko, et al., Stochastic models for regulatory networks of the genetic toggle switch, Proc. Natl. Acad. Sci., 103 (2006), 8372–8377. |