Citation: Chuanlong Li, Xingming Sun, Yuqian Li. Information hiding based on Augmented Reality[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4777-4787. doi: 10.3934/mbe.2019240
[1] | P. Pucer, Augmented reality,ZDR VESTN-Slov. Med. J.,80 (2011), 7–8. |
[2] | L. Avila and M. Bailey, Augment your reality,IEEE Comput. Graph.,36 (2016), 6–7. |
[3] | J. Wang, S. Lian and Y. Q. Shi, Hybrid multiplicative multi-watermarking in DWT domain,Multidim. Syst. Sign. P., 28 (2017), 617–636. |
[4] | Q. Cui, S. McIntosh and H. Sun, Identifying materials of photographic images and photorealistic computer generated graphics based on deep CNNs, CMC-Comput. Mater. Con., 55 (2018), 229–241. |
[5] | A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inform. Process. Syst., (2012), 1097–1105. |
[6] | J. Redmon, S. Divvala, R. Girshick, et al., You only look once: Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, (2016), 779–788. |
[7] | S. Ren, K. He, R. Girshick, et al., Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell, 6 (2017), 1137–1149. |
[8] | K. He, G. Gkioxari, P. Dollár, et al., Mask R-CNN,IEEE International Conference on Computer Vision,(2017), 2980–2988. |
[9] | C. Yuan, X. Li, Q. J. Wu, et al., Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis. Computers, CMC-Comput. Mater. Con., 53 (2017), 357–371. |
[10] | R. Rahim and M. S. Nadeem, End-to-end trained CNN encode-decoder networks for image steganography, preprint, arXiv:1711.07201. |
[11] | S. Baluja, Hiding images in plain sight: Deep steganography, Adv. Neural Inform. Process. Syst., (2017), 2066–2076. |
[12] | C. Li, Y. Jiang and M. Cheslyar, Embedding image through generated intermediate medium using deep convolutional generative adversarial network, CMC-Comput. Mater. Con.,56 (2018), 313–324. |
[13] | M. J. Kim, A framework for context immersion in mobile augmented reality,Automat. Constr.,33 (2013), 79–85. |
[14] | O. Bimber, What's real about augmented reality,Computer,45 (2012), 24–25. |
[15] | T. J. Brigham, Reality check: basics of augmented, virtual, and mixed reality,Med. Ref. Serv. Q.,36 (2017), 171–178. |
[16] | J. Carmigniani, B. Furht, M. Anisetti, et al., Augmented reality technologies, systems and applications,Multimed. Tools Appl.,51 (2011), 341–377. |
[17] | K. Kroeker, Mainstreaming augmented reality,Commun. ACM,53 (2010), 19–21. |
[18] | M. Gervautz and D. Schmalstieg, Anywhere interfaces using handheld augmented reality,Computer,45 (2012), 26–31. |
[19] | P. Diao and N. Shi, MARINS: A mobile smartphone AR system for pathfinding in a dark environment,Sensors,18 (2018), 3442.1–3442.14. |
[20] | J. S. Park, AR-Room: a rapid prototyping framework for augmented reality applications,Multimed. Tools Appl.,55 (2011), 725–746. |
[21] | M. R. Mine, J. Van Baar, A. Grundhofer, et al., Projection-based augmented reality in disney theme parks,Computer,45 (2012), 32–40. |
[22] | G. Papagiannakis, G. Singh and N. Magnenat-Thalmann, A survey of mobile and wireless technologies for augmented reality systems,Comput. Animat. Virt. W.,19 (2008), 3–22. |
[23] | T. Langlotz, D. Wagner and A. Mulloni, Online creation of panoramic augmented reality annotations on mobile phones,IEEE Pervas. Comput.,11 (2012), 56–63. |
[24] | F. Roesner, T. Kohno and D. Molnar, Security and privacy for augmented reality systems,Commun. ACM,57 (2014), 88–96. |
[25] | M. Gattullo, G. W. Scurati, M. Fiorentino, et al., Towards augmented reality manuals for industry 4.0: A methodology,Robot CIM-INT Manuf.,56 (2019), 276–286. |
[26] | V, Kohn and D. Harborth, Augmented Reality–A game changing technology for manufacturing process?, Twenty-Sixth European Conference on Information Systems, (2018). |
[27] | J. Grubert, T. Langlotz, S. Zollmann, et al., Towards pervasive augmented reality: Context-awareness in augmented reality,IEEE T. Vis. Comput. Gr.,23 (2017), 1706–1724. |
[28] | Z. Zhou, Q. M. J. Wu, C. Yang, et al., Coverless Image Steganography Using Histograms of Oriented Gradients-based Hashing Algorithm, J. Internet Technol., 18 (2017), 1177–1184. |
[29] | Y. Cao, Z. Zhou, C. Yang, et al., Dynamic content selection framework applied to coverless information hiding,J. Internet Technol.,19 (2018), 1179–1186. |
[30] | H. Fan, H. Su and L. Guibas, A point set generation network for 3D object reconstruction from a single image,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, (2017), 605–613. |
[31] | Z. Wu, S. Song, A. Khosla, et al., 3D shapenets: A deep representation for volumetric shapes, Proceedings of the IEEE conference on computer vision and pattern recognition, (2015), 1912–1920. |
[32] | M. Tatarchenko, A. Dosovitskiy and T. Brox, Multi-view 3d models from single images with a convolutional network,Knowl. Inf. Syst.,38 (2015), 231–257. |
[33] | M. Gadelha, S. Maji and R. Wang, 3D Shape Induction from 2D Views of Multiple Objects, 2017 International Conference on 3D Vision (3DV), (2017), 402–411. |
[34] | J. K. Pontes, C. Kong, S. Sridharan, et al, Image2mesh: A learning framework for single image 3d reconstruction, preprint, arXiv:1711.10669. |
[35] | P. Mandikal, N. KL and R. Venkatesh Babu, 3D-psrnet: Part segmented 3D point cloud reconstruction from a single image, Proceedings of the European Conference on Computer Vision (ECCV), (2018). |
[36] | A. Kar, S. Tulsiani, J. Carreira, et al., Category-specific object reconstruction from a single image, Proceedings of the IEEE conference on computer vision and pattern recognition, (2015), 1966–1974. |
[37] | A. Arsalan Soltani, H. Huang, J. Wu, et al, Synthesizing 3D Shapes via modeling multi-view depth maps and silhouettes with deep generative networks,2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 1511–1519. |
[38] | A. X. Chang, T. Funkhouser, L. Guibas, et al., Shapenet: An information-rich 3d model repository, preprint, arXiv:1512.03012. |