Citation: Dennis L. Chao, Dobromir T. Dimitrov. Seasonality and the effectiveness of mass vaccination[J]. Mathematical Biosciences and Engineering, 2016, 13(2): 249-259. doi: 10.3934/mbe.2015001
[1] | Steady Mushayabasa, Drew Posny, Jin Wang . Modeling the intrinsic dynamics of foot-and-mouth disease. Mathematical Biosciences and Engineering, 2016, 13(2): 425-442. doi: 10.3934/mbe.2015010 |
[2] | Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng . The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413 |
[3] | Islam A. Moneim, David Greenhalgh . Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences and Engineering, 2005, 2(3): 591-611. doi: 10.3934/mbe.2005.2.591 |
[4] | Mahmudul Bari Hridoy . An exploration of modeling approaches for capturing seasonal transmission in stochastic epidemic models. Mathematical Biosciences and Engineering, 2025, 22(2): 324-354. doi: 10.3934/mbe.2025013 |
[5] | Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739 |
[6] | Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez . Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences and Engineering, 2011, 8(1): 141-170. doi: 10.3934/mbe.2011.8.141 |
[7] | Lili Han, Mingfeng He, Xiao He, Qiuhui Pan . Synergistic effects of vaccination and virus testing on the transmission of an infectious disease. Mathematical Biosciences and Engineering, 2023, 20(9): 16114-16130. doi: 10.3934/mbe.2023719 |
[8] | Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615 |
[9] | Glenn Ledder . Incorporating mass vaccination into compartment models for infectious diseases. Mathematical Biosciences and Engineering, 2022, 19(9): 9457-9480. doi: 10.3934/mbe.2022440 |
[10] | Diana Bolatova, Shirali Kadyrov, Ardak Kashkynbayev . Mathematical modeling of infectious diseases and the impact of vaccination strategies. Mathematical Biosciences and Engineering, 2024, 21(9): 7103-7123. doi: 10.3934/mbe.2024314 |
[1] | Ecol Lett, 9 (2006), 467-484. |
[2] | Oxford University Press, Oxford, United Kingdom, 1991. |
[3] | J Theor Biol, 110 (1984), 665-679. |
[4] | Am J Trop Med Hyg, 89 (2013), 1066-1080. |
[5] | in Current Topics in Microbiology and Immunology: Cholera Outbreaks (eds. G. B. Nair and Y. Takeda), vol. 379, Springer-Verlag, Berlin, 2014, 195-209. |
[6] | BMC Infect Dis, 1 (2001), p1. |
[7] | Epidemiology, 20 (2009), 344-347. |
[8] | J Math Biol, 28 (1990), 365-382. |
[9] | PLoS Negl Trop Dis, 8 (2014), e3343. |
[10] | Proc Biol Sci, 277 (2010), 2775-2782. |
[11] | Clin Infect Dis, 52 (2011), 911-916. |
[12] | Clin Microbiol Infect, 18 (2012), 946-954. |
[13] | Annu Rev Public Health, 28 (2007), 127-143. |
[14] | Rev Infect Dis, 5 (1983), 463-466. |
[15] | Proc Biol Sci, 273 (2006), 2541-2550. |
[16] | Annu Rev Entomol, 53 (2008), 273-291. |
[17] | SIAM Review, 42 (2000), 599-653. |
[18] | Proc Biol Sci, 269 (2002), 335-343. |
[19] | Proceedings of the Royal Society of London. Series A, 115 (1927), 700-721. |
[20] | Proc Natl Acad Sci U S A, 108 (2011), 7460-7465. |
[21] | Math Biosci, 23 (1975), 33-46. |
[22] | Oxford University Press, Oxford, United Kingdom, 1957. |
[23] | Proc Biol Sci, 281 (2014), 20132438. |
[24] | Epidemics, 13 (2015), 17-27. |
[25] | J Infect Dis, 195 (2007), 1007-1013. |
[26] | Math Biosci, 149 (1998), 23-36. |
[27] | Math Biosci, 75 (1985), 3-22. |
[28] | Influenza Other Respir Viruses, 4 (2010), 295-306. |
[29] | Emerg Infect Dis, 14 (2008), 1081-1088. |
[30] | Math and Comp Mod, 31 (2000), 207-215. |
[31] | Math Biosci, 180 (2002), 29-48. |
[32] | World Development, 37 (2009), 399-409. |
1. | José Enrique Amaro, Jérémie Dudouet, José Nicolás Orce, Global analysis of the COVID-19 pandemic using simple epidemiological models, 2021, 90, 0307904X, 995, 10.1016/j.apm.2020.10.019 | |
2. | Zhongwei Cao, Wei Feng, Xiangdan Wen, Li Zu, Jinyao Gao, Nontrivial periodic solution of a stochastic seasonal rabies epidemic model, 2020, 545, 03784371, 123361, 10.1016/j.physa.2019.123361 | |
3. | M. A. Aziz-Alaoui, Sunita Gakkhar, Benjamin Ambrosio, Arti Mishra, A network model for control of dengue epidemic using sterile insect technique, 2017, 15, 1551-0018, 441, 10.3934/mbe.2018020 | |
4. | José L. Herrera-Diestra, Lauren Ancel Meyers, Yang Yang, Local risk perception enhances epidemic control, 2019, 14, 1932-6203, e0225576, 10.1371/journal.pone.0225576 | |
5. | J. E. Amaro, Systematic description of COVID-19 pandemic using exact SIR solutions and Gumbel distributions, 2023, 111, 0924-090X, 1947, 10.1007/s11071-022-07907-4 | |
6. | José Enrique Amaro, José Nicolás Orce, Monte Carlo simulation of COVID-19 pandemic using Planck’s probability distribution, 2022, 218, 03032647, 104708, 10.1016/j.biosystems.2022.104708 |