Research article

Indirect stability of a 2D wave-plate coupling system with memory viscoelastic damping

  • Received: 22 April 2024 Revised: 03 June 2024 Accepted: 07 June 2024 Published: 17 June 2024
  • MSC : 35B37, 35L55, 74D05, 93D15

  • We performed a stability analysis of a 2D wave-plate coupling system equipped with memory viscoelastic damping. The study highlights the unique functionality of the damping mechanism, which operates indirectly and exclusively within either the wave or plate subsystem. The opposing subsystem receives dissipative signals indirectly through the coupling component. The primary objective of this study was to determine whether the indirect memory damping is sufficient to ensure the overall stability of the coupled system. To address this question, a frequency domain analysis was employed to establish explicit decay rates of the coupled system. Notably, a polynomial decay rate is observed when the memory damping is applied solely to either the plate or wave subsystem, which provides a conclusive answer to the posed question.

    Citation: Peipei Wang, Yanting Wang, Fei Wang. Indirect stability of a 2D wave-plate coupling system with memory viscoelastic damping[J]. AIMS Mathematics, 2024, 9(7): 19718-19736. doi: 10.3934/math.2024962

    Related Papers:

  • We performed a stability analysis of a 2D wave-plate coupling system equipped with memory viscoelastic damping. The study highlights the unique functionality of the damping mechanism, which operates indirectly and exclusively within either the wave or plate subsystem. The opposing subsystem receives dissipative signals indirectly through the coupling component. The primary objective of this study was to determine whether the indirect memory damping is sufficient to ensure the overall stability of the coupled system. To address this question, a frequency domain analysis was employed to establish explicit decay rates of the coupled system. Notably, a polynomial decay rate is observed when the memory damping is applied solely to either the plate or wave subsystem, which provides a conclusive answer to the posed question.



    加载中


    [1] A. M. Al-Mahdi, M. M. Al-Gharabli, S. A. Messaoudi, New general decay result for a system of viscoelastic wave equations with past history, Commun. Pure Appl. Anal., 20 (2021), 389–404. https://doi.org/10.3934/cpaa.2020273 doi: 10.3934/cpaa.2020273
    [2] K. Ammari, M. Jellouli, M. Mehrenberger, Feedback stabilization of a coupled string-beam system, Netw. Heterog. Media, 4 (2009), 19–34. http://doi.org/10.3934/nhm.2009.4.19 doi: 10.3934/nhm.2009.4.19
    [3] K. Ammari, S. Nicaise, Stabilization of a transmission wave/plate equation, J. Differ. Equations, 249 (2010), 707–727. https://doi.org/10.1016/j.jde.2010.03.007 doi: 10.1016/j.jde.2010.03.007
    [4] G. Avalos, I. Lasiecka, Boundary controllability of thermoelastic plates via the free boundary conditions, SIAM J. Control Optim., 38 (2000), 337–383. https://doi.org/10.1137/S0363012998339836 doi: 10.1137/S0363012998339836
    [5] C. Batty, L. Paunonen, D. Seifert, Optimal energy decay for the wave-heat system on a rectangular domain, SIAM J. Math. Anal., 51 (2019), 808–819. https://doi.org/10.1137/18M1195796 doi: 10.1137/18M1195796
    [6] A. Borichev, Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455–478. https://doi.org/10.1007/s00208-009-0439-0 doi: 10.1007/s00208-009-0439-0
    [7] S. Chai, Uniform decay rate for the transmission wave equations with variable coefficients, J. Syst. Sci. Complex., 24 (2011), 253–260. https://doi.org/10.1007/s11424-011-8009-4 doi: 10.1007/s11424-011-8009-4
    [8] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297–308. https://doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609
    [9] B. Desjardins, M. J. Esteban, C. Grandmont, P. L. Tallec, Weak solutions for a fluid-elastic structure interaction model, Rev. Mat. Complut., XIV (2001), 523–538.
    [10] B. Feng, A. Ö. Özer, Stability results for piezoelectric beams with long–range memory effects in the boundary, Math. Nachr., 296 (2023), 4206–4235. https://doi.org/10.1002/mana.202100583 doi: 10.1002/mana.202100583
    [11] L. Gearhart, Spectral theory for contraction semigroups on Hillbert space, Trans. Am. Math. Soc., 236 (1978), 385–394. https://doi.org/10.2307/1997792 doi: 10.2307/1997792
    [12] Y. P. Guo, J. M. Wang, D. X. Zhao, Energy decay estimates for a two-dimensional coupled wave-plate system with localized frictional damping, Z. Angew. Math. Mech., 100 (2019), 1–14. https://doi.org/10.1002/zamm.201900030 doi: 10.1002/zamm.201900030
    [13] Z. J. Han, B. Chentouf, H. Geng, Stabilization of a rotating Disk-Beam system with infinite memory via minimal state variable: a moment control case, SIAM J. Control Optim., 58 (2020), 845–865. https://doi.org/10.1137/18M1231961 doi: 10.1137/18M1231961
    [14] F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hillbert spaces, Ann. Differ. Equations, 1 (1985), 43–65.
    [15] J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889–899. https://doi.org/10.1137/0523047 doi: 10.1137/0523047
    [16] I. Lasiecka, Mathematical control theory of coupled PDEs, 2 Eds., Philadelphia: Society for Industrial and Applied Mathematics SIAM, 2002. https://doi.org/10.1137/1.9780898717099
    [17] C. Lattanzio, A. Maurizi, B. Piccoli, Moving bottlenecks in car traffic flow: a PDE-ODE coupled model, SIAM J. Math. Anal., 43 (2011), 50–67. https://doi.org/10.1137/090767224 doi: 10.1137/090767224
    [18] G. Lebeau, E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Rational Mech. Anal., 148 (1999), 179–231. https://doi.org/10.1007/s002050050160 doi: 10.1007/s002050050160
    [19] X. Li, Z. Zhang, Polynomial stability of transmission viscoelastic wave and plate equations on Riemannian mainfolds, J. Math. Anal. Appl., 516 (2022), 126494. https://doi.org/10.1016/j.jmaa.2022.126494 doi: 10.1016/j.jmaa.2022.126494
    [20] G. Liu, A. Ö. Özer, M. Wang, Longtime dynamics for a novel piezoelectric beam model with creep and thermo-viscoelastic effects, Nonlinear Anal.: Real Word Appl., 68 (2022), 103666. https://doi.org/10.1016/j.nonrwa.2022.103666 doi: 10.1016/j.nonrwa.2022.103666
    [21] W. Liu, G. Williams, The exponential stability of the problem of transmission of the wave equation, Bull. Aust. Math. Soc., 57 (1998), 305–327. https://doi.org/10.1017/S0004972700031683 doi: 10.1017/S0004972700031683
    [22] R. Liu, Q. Zhang, Exponential stability of a transmission ssytem coupling plate equation and heat equation with memory, J. Math. Anal. Appl., 518 (2023), 126707. https://doi.org/10.1016/j.jmaa.2022.126707 doi: 10.1016/j.jmaa.2022.126707
    [23] Z. H. Luo, B. Z. Guo, Shear force feedback control of a single-link flexible robot with a revolute joint, IEEE Trans. Autom. Control, 42 (1997), 53–65. https://doi.org/10.1109/9.553687 doi: 10.1109/9.553687
    [24] S. A. Messaoudi, M. M. Al-Gharabli, A general decay result of a nonlinear system of wave equations with infinite memories, Appl. Math. Comput., 259 (2015), 540–551. https://doi.org/10.1016/j.amc.2015.02.085 doi: 10.1016/j.amc.2015.02.085
    [25] J. E. Munoz-Rivera, E. C. Lapa, R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity, 44 (1996), 61–87. https://doi.org/10.1007/BF00042192 doi: 10.1007/BF00042192
    [26] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, New York: Springer-Verlag, 1983. http://doi.org/10.1007/978-1-4612-5561-1
    [27] J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Am. Math. Soc., 284 (1984), 847–857. https://doi.org/10.2307/1999112 doi: 10.2307/1999112
    [28] B. Rao, Z. Liu, A spectral approach to the indirect boundary control of a system of weakly coupled wave equations, Discrete Contin. Dyn. Syst., 23 (2009), 399–414. https://doi.org/10.3934/dcds.2009.23.399 doi: 10.3934/dcds.2009.23.399
    [29] G. F. Tyszka, M. R. Astudillo, H. P. Oquendo, Stabilization by memory effects: Kirchhoff plate versus Euler-Bernoulli plate, Nonlinear Anal.: Real. World. Appl., 68 (2022), 103655. https://doi.org/10.1016/j.nonrwa.2022.103655 doi: 10.1016/j.nonrwa.2022.103655
    [30] J. M. Wang, B. Ren, M. Kristic, Stabilization and Gevrey regularity of a Schrödinger equation in boundary feedback with a heat equation, IEEE Trans. Autom. Control, 57 (2012), 179–185. https://doi.org/10.1109/TAC.2011.2164299 doi: 10.1109/TAC.2011.2164299
    [31] J. M. Wang, B. Z. Guo, B. Chentouf, Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach, ESAIM: COCV, 12 (2006), 12–34. https://doi.org/10.1051/cocv:2005030 doi: 10.1051/cocv:2005030
    [32] G. Q. Xu, Resolvent family for evolution process with memory, Math. Nachr., 296 (2023), 2626–2656. https://doi.org/10.1002/mana.202100203 doi: 10.1002/mana.202100203
    [33] X. Zhang, E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction, Arch. Rational Mech. Anal., 184 (2007), 49–120. https://doi.org/10.1007/s00205-006-0020-x doi: 10.1007/s00205-006-0020-x
    [34] X. Zhang, E. Zuazua, Polynomial decay and control of a 1-d hyperbolic- parabolic coupled system, J. Differ. Equations, 204 (2004), 380–438. https://doi.org/10.1016/j.jde.2004.02.004 doi: 10.1016/j.jde.2004.02.004
    [35] Q. Zhang, Polynomial decay of an elastic/viscoelaetic waves interaction system, Z. Angew. Math. Phys., 69 (2018), 88. https://doi.org/10.1007/s00033-018-0981-2 doi: 10.1007/s00033-018-0981-2
    [36] Q. Zhang, Stability analysis of an interactive system of wave equation and heat equation with memory, Z. Angew. Math. Phys., 65 (2013), 905–923. https://doi.org/10.1007/s00033-013-0366-5 doi: 10.1007/s00033-013-0366-5
    [37] Q. Zhang, J. M. Wang, B. Z. Guo, Stabilization of the Euler-Bernoulli equation via boundary connection with heat equation, Math. Control Signals Syst., 26 (2014), 77–118. https://doi.org/10.1007/s00498-013-0107-5 doi: 10.1007/s00498-013-0107-5
    [38] H. E. Zhang, G. Q. Xu, Z. J. Han, Stability and eigenvalue asymptotics of multi-Dimensional fully magnetic effected piezoelectric system with friction-type infinite memory, SIAM. J. Appl. Math., 83 (2023), 510–529. https://doi.org/10.1137/22M1486790 doi: 10.1137/22M1486790
    [39] H. E. Zhang, G. Q. Xu, Z. J. Han, Stability of multi-dimensional nonlinear piezoelectric beam with viscoelastic infinite memory, Z. Angew. Math. Phys., 73 (2022), 159. https://doi.org/10.1007/s00033-022-01790-0 doi: 10.1007/s00033-022-01790-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(402) PDF downloads(35) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog