This paper investigates the speed selection mechanism for traveling wave fronts of a reaction-diffusion-advection lattice stream-population model with the Allee effect. First, the asymptotic behaviors of the traveling wave solutions are given. Then, sufficient conditions for the speed determinacy of the traveling wave are successfully obtained by constructing appropriate upper and lower solutions. We examine the model with the reaction term $ f (\psi) = \psi(1-\psi)(1+\rho\psi) $, with $ \rho $ being a nonnegative constant, as a specific example. We give a novel conjecture that there exists a critical value $ \rho_c > 1 $, such that the minimal wave speed is linearly selected if and only if $ \rho\leq\rho_c $. Finally, our speculation is verified by numerical calculations.
Citation: Chaohong Pan, Xiaowen Xu, Yong Liang. Speed determinacy of traveling waves for a lattice stream-population model with Allee effect[J]. AIMS Mathematics, 2024, 9(7): 18763-18776. doi: 10.3934/math.2024913
This paper investigates the speed selection mechanism for traveling wave fronts of a reaction-diffusion-advection lattice stream-population model with the Allee effect. First, the asymptotic behaviors of the traveling wave solutions are given. Then, sufficient conditions for the speed determinacy of the traveling wave are successfully obtained by constructing appropriate upper and lower solutions. We examine the model with the reaction term $ f (\psi) = \psi(1-\psi)(1+\rho\psi) $, with $ \rho $ being a nonnegative constant, as a specific example. We give a novel conjecture that there exists a critical value $ \rho_c > 1 $, such that the minimal wave speed is linearly selected if and only if $ \rho\leq\rho_c $. Finally, our speculation is verified by numerical calculations.
[1] | Y. V. Bebikhov, S. V. Dmitriev, S. V. Suchkov, A. Khare, Effect of damping on kink ratchets in the Klein-Gordon lattice free of the Peierls-Nabarro potential, Phys. Lett. A, 374 (2010), 1477–1480. http://dx.doi.org/10.1016/j.physleta.2010.01.044 doi: 10.1016/j.physleta.2010.01.044 |
[2] | Y. A. Lee, Z. Mousavikhamene, A. K. Amrithanath, S. M. Neidhart, S. Krishnaswamy, G. C. Schatz, et al., Programmable Self Regulation with Wrinkled Hydrogels and Plasmonic Nanoparticle Lattices, Small, 18 (2022), 2103865. http://dx.doi.org/10.1002/smll.202103865 doi: 10.1002/smll.202103865 |
[3] | Y. Zhao, Lattice Boltzmann based PDE solver on the GPU, Visual Comput., 24 (2008), 323–333. http://dx.doi.org/10.1007/s00371-007-0191-y doi: 10.1007/s00371-007-0191-y |
[4] | Y. Benoist, P. Foulon, F. Labourie, Anosov flows with stable and unstable differentiable distributions, SIAM J. Appl. Math., 59 (1998), 1998. https://doi.org/10.1137/S0036139996312703 doi: 10.1137/S0036139996312703 |
[5] | S. N. Chow, R. Conti, R. Johnson, J. Mallet-Paret, R. Nussbaum, J. Mallet-Paret, Traveling waves in spatially discrete dynamical systems of diffusive type, Dynam. Syst., 2000 (2003), 1998. https://doi.org/10.1007/978-3-540-45204-1-4 doi: 10.1007/978-3-540-45204-1-4 |
[6] | S. N. Chow, J. Mallet-Paret, W. Shen, Traveling waves in lattice dynamical systems, J. Differ. Equations, 149 (1998), 248–291. https://doi.org/10.1002/1099-1476(20000925)23:14<1223::AID-MMA162>3.0.CO;2-Y doi: 10.1002/1099-1476(20000925)23:14<1223::AID-MMA162>3.0.CO;2-Y |
[7] | Y. Y. Chen, J. S. Guo, F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity., 30 (2017), 2334. https://doi.org/10.1088/1361-6544/aa6b0a doi: 10.1088/1361-6544/aa6b0a |
[8] | B. J. Sun, F. Z. Wu, Invasion speed of predator in a Lattice Dynamical System, Hokkaido Math. J., 51 (2022), 211–224. https://doi.org/10.14492/hokmj/2020-313 doi: 10.14492/hokmj/2020-313 |
[9] | C. C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differ. Equations, 262 (2017), 272–282. https://doi.org/10.1016/j.jde.2016.09.022 doi: 10.1016/j.jde.2016.09.022 |
[10] | E. S. Zaitseva, Y. K. Tovbin, Numerical Analysis of the Thermodynamic Definition of the Surface Tension of a Vapor-Liquid System in the Lattice Gas Model, Russ. J. Phys. Chem. A, 96 (2022), 2088–2097. https://doi.org/10.1134/S0036024422100351 doi: 10.1134/S0036024422100351 |
[11] | W. C. Allee, Animal aggregations, Q. Rev. Biol., 2 (1927), 367–398. https://doi.org/10.1086/394281 |
[12] | M. H. Wang, M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171 (2001), 83–97. https://doi.org/10.1016/S0025-5564(01)00048-7 doi: 10.1016/S0025-5564(01)00048-7 |
[13] | J. Zu, M. Mimura, The impact of Allee effect on a predator-prey system with Holling type Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542–3556. https://doi.org/10.1016/j.amc.2010.09.029 doi: 10.1016/j.amc.2010.09.029 |
[14] | L. Roques, J. Garnier, F. Hamel, E. K. Klein, Allee effect promotes diversity in traveling waves of colonization, P. Natl. Acad. Sci., 109 (2012), 8828–8833. https://doi.org/10.1073/pnas.1201695109 doi: 10.1073/pnas.1201695109 |
[15] | H. Weinberger, On sufficient conditions for a linearly determinate spreading speed, Discrete Cont. Dyn-B, 17 (2012), 2267–2280. https://doi.org/10.3934/dcdsb.2012.17.2267 doi: 10.3934/dcdsb.2012.17.2267 |
[16] | Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model, B. Math. Biol., 60 (1998), 435–448. https://doi.org/10.1006/bulm.1997.0008 doi: 10.1006/bulm.1997.0008 |
[17] | A. Alhasanat, C. Ou, Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Differ. Equations, 266 (2019), 7357–7378. https://doi.org/10.1016/j.jde.2018.12.003 doi: 10.1016/j.jde.2018.12.003 |
[18] | Y. Tang, C. Pan, H. Wang, Z. Ouyang, Speed determinacy of travelling waves for a three-component lattice Lotka-Volterra competition system, J. Biol. Dynam., 16 (2022), 340–353. https://doi.org/10.1080/17513758.2021.1958934 doi: 10.1080/17513758.2021.1958934 |
[19] | H. Wang, C. Pan, Speed selection of wavefronts for lattice Lotka-Volterra competition system in a time periodic habitat, J. Math. Anal. Appl., 517 (2023), 126617. https://doi.org/10.1016/j.jmaa.2022.126617 doi: 10.1016/j.jmaa.2022.126617 |
[20] | X. Liang, X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pur. Appl. Math., 60 (2007), 1–40. https://doi.org/10.1002/cpa.20154 doi: 10.1002/cpa.20154 |
[21] | Z. Huang, C. Ou, Speed determinacy of traveling waves to a stream-population model with Allee effect, SIAM J. Appl. Math., 80 (2020), 1820–1840. https://doi.org/10.1137/19M1275486 doi: 10.1137/19M1275486 |
[22] | A. Alhasanat, C. Ou, On a conjecture raised by Yuzo Hosono, J. Dyn. Differ. Equ., 31 (2019), 287–304. https://doi.org/10.1007/s10884-018-9651-5 doi: 10.1007/s10884-018-9651-5 |
[23] | J. Fang, X. Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678–3704. https://doi.org/10.1137/140953939 doi: 10.1137/140953939 |
[24] | X. Yu, X. Q. Zhao, A periodic reaction-advection-diffusion model for a stream population, J. Differ. Equations, 258 (2015), 3037–3062. https://doi.org/10.1016/j.jde.2015.01.001 doi: 10.1016/j.jde.2015.01.001 |