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Abstract: This paper investigates the speed selection mechanism for traveling wave fronts of a
reaction-diffusion-advection lattice stream-population model with the Allee effect. First, the asymp-
totic behaviors of the traveling wave solutions are given. Then, sufficient conditions for the speed
determinacy of the traveling wave are successfully obtained by constructing appropriate upper and
lower solutions. We examine the model with the reaction term f (ψ) = ψ(1 − ψ)(1 + ρψ), with ρ being
a nonnegative constant, as a specific example. We give a novel conjecture that there exists a critical
value ρc > 1, such that the minimal wave speed is linearly selected if and only if ρ ≤ ρc. Finally, our
speculation is verified by numerical calculations.
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1. Introduction

In this paper, we mainly study the speed determinacy of traveling waves in a reaction-diffusion-
advection lattice stream-population model

{dun

dt
= d(un+1 + un−1 − 2un) − σun + µvn − α(un+1 − un),

dvn

dt
= ε(vn+1 + vn−1 − 2vn) + σun − µvn + f (vn), n ∈ Z,

(1.1)

where un(t) and vn(t) are the sequence of real functions representing population density in the drift layer
and benthic layer at the time t and the location n, respectively. σ > 0 is the per capita rate of organisms
from the drifting to the benthic layer; µ > 0 is the per capita rate of organisms from the benthic layer to
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the drifting; α > 0 is the advection speed of water in the drift layer; d > 0 and ε > 0 are the diffusion
coefficients of populations in the drift layer and benthic layer, respectively. It is important to note that
ε is a small positive number because organisms in the benthic layer hardly spread.

It is well-known among the scientific community that lattice systems play an important role in
mathematical models of biological distributions, neuronal dispersions, quantum mechanics, chemical
material processing, fluid dynamics, and so on; see, for instance, the classical nonlinear Klein-Gordon
lattice model in [1], the NP system in [2], and the LBM model in [3]. In comparison to continuous
models, lattice differential systems are more realistic in describing problems such as propagation bar-
riers. In particular, Van Vleck et al. [4] found the phenomenon of “propagation failure” by studying
a lattice system, which is not found in a continuous model. Based on these observations, the lattice
system has attracted considerable attention from mathematical groups; see [5–10].

The Allee effect in biological systems is used to describe a state of low population growth. Allee
[11] revealed that beetle growth is positively influenced by population density, unlike previous analyses
from the perspective of biological uptake of resources, and can accelerate extinction at low density.
Scholars are interested in the influence of the Allee effect on invasion rate, biological stability and
species diversity [12–14]. Indicating a state with no Allee effect by assuming f (v) < f ′(0)v, Hans
Weinberger [15] improved the original hypothetical condition and analyzed the speed selection in the
Allee condition.

The determinacy of biological minimal speed governs the spreading rate of organisms, and its study
is relevant to the development of populations. The conjecture that the minimal and linear speeds
are equal was first proposed by Hosono and preliminar tested by numerical means [16]. Alhasanat
and Ou showed that when c = c0 + ε1 for sufficiently small ε1, there exists an upper solution, and
they proved theoretically that the minimal wave speed and the linear speed are equal by means of the
upper and lower solutions method and the comparison principle [17]. According to a similar approach,
conclusions are obtained for the speed selection of the lattice system in [18,19]. Wang and Kot analyzed
the invasion speed under the strong and weak Allee effects, respectively [12]. The results show that
if the Allee effect is sufficiently weak then the invasion speed can be approximated with the minimal
invasion speed.

For lattice systems, the influence of the Allee effect on speed selection has been less studied. Based
on it, this paper focuses on the influence of the weak Allee effect on the dynamical properties of
the traveling wave solutions and obtains sufficient conditions for linear and nonlinear selections. The
reaction term f (vn) is a benthic biological reaction term with the Allee effect. The conditions for the
weak Allee effect are usually denoted as f (0) = f (1) = 0, f ′(1) < 0 < f ′(0), and f (vn) > 0 with
vn ∈ (0, 1). This system has two equilibrium points, e0 = (0, 0) and e1 = ( µ

σ
, 1), and e0 is unstable and

e1 is stable. In order to study the traveling wave solution of the system (1.1), a variable transformation
of z = n − ct is first performed, which gives

un(t) = ϕ(n − ct) and vn(t) = ψ(n − ct), n ∈ Z, t ∈ R+, (1.2)

where the unknown constant c > 0 is the wave speed. By substituting (un(t), vn(t)) = (ϕ(z), ψ(z)) into
(1.1), we obtain dD2[ϕ](z) + cϕ′(z) − σϕ(z) + µψ(z) − αD1[ϕ](z) = 0,

εD2[ψ](z) + cψ′(z) + σϕ(z) − µψ(z) + f (ψ(z)) = 0,
(1.3)
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where
D2[ω](z) := ω(z + 1) + ω(z − 1) − 2ω(z) and D1[ω](z) := ω(z + 1) − ω(z). (1.4)

We focus on the speed selection of traveling wave solutions satisfying the boundary conditions

(ϕ, ψ)(−∞) =
(
µ

σ
, 1
)

and (ϕ, ψ)(+∞) = (0, 0).

By using the conclusions in [20] and theorem 1.1 in [7], the existence of the critical value cmin can be
obtained and given as

cmin := inf { c | c ∈ R such that (1.3) has a nonnegative solution}.

In general, it is difficult to directly obtain the minimal wave speed of the system (1.3). However,
the linear speed c0 determined by the linearizing system around e0 provides an estimation for cmin.
Furthermore, the selection mechanism of the wave speed can be obtained by comparing the relationship
between c0 and cmin. In the following we give the definition of speed selection.

Definition 1.1. If cmin = c0, we say that the minimal wave speed of the system (1.3) is linearly selected;
otherwise, if cmin > c0, we say that the minimal wave speed is nonlinearly selected.

The goal of this paper is to investigate the speed selection mechanism for the system (1.3) by
means of the upper and lower solution methods and the comparison principle. Firstly, the asymptotic
behavior of the traveling wave solution at the equilibrium point e0 is obtained. Secondly, based on
the asymptotic behavior, the sufficient conditions for linear selection of the wave speed are obtained
by constructing the suitable upper solution, and the sufficient conditions for nonlinear selection are
obtained by constructing the lower solution. Then, in order to obtain the effect of the Allee effect
on the wave speed, this paper investigates the selection mechanism of the minimal wave speed of the
system with the reaction term f (ψ) = ψ(1 − ψ)(1 + ρψ) and skillfully obtains the explicit conditions
for linear and nonlinear selections. Further, we find that there exists a critical value ρ1 such that the
minimal wave speed is linearly selected for ρ < ρ1. Finally, the sufficient conditions are proved to be
nonempty sets by numerical simulations, and our conjecture is verified.

2. The asymptotic behavior at e0

In this section, we consider the asymptotic behavior of the traveling wave (ϕ, ψ)(z) at e0. First, the
system (1.3) is linearized at e0 as follows:dD2[ϕ](z) + cϕ′(z) − σϕ(z) + µψ(z) − αD1[ϕ](z) = 0,

εD2[ψ](z) + cψ′(z) + σϕ(z) − µψ(z) + f ′(0)ψ(z) = 0.
(2.1)

Letting (ϕ, ψ)(z) = (A1, A2)e−λz, where A1, A2, and λ are positive constants, and substituting it into
(2.1), we get dA1(e−λ + eλ − 2) − cλA1 − σA1 + µA2 − αA1(e−λ − 1) = 0,

εA2(e−λ + eλ − 2) − cλA2 + σA1 − µA2 + f ′(0)A2 = 0.
(2.2)

The matrix form of Eq (2.2) is as follows:

cλA =
d(e−λ + eλ − 2) − σ − α(e−λ − 1) µ

σ ε(e−λ + eλ − 2) − µ + f ′(0)

 A, (2.3)
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where A = (A1, A2)T. We further simplify it to

k(λ)A = B(λ)A. (2.4)

Here k(λ) = cλ, and the matrix B(λ) is represented as

B(λ) =
 B1(λ) µ

σ B2(λ)

 ,
where

B1(λ) = d(e−λ + eλ − 2) − σ − α(e−λ − 1),

B2(λ) = ε(e−λ + eλ − 2) − µ + f ′(0).

The system (2.4) has nontrivial solutions if and only if k(λ) satisfies

k2 − (B1 + B2)k + B1B2 − σµ = 0. (2.5)

By calculating, we get

△ = (B1 + B2)2 − 4(B1B2 − σµ) = (B1 − B2)2 + 4σµ > 0,

thus, Eq (2.5) has two real roots, which are obtained by

k± =
(B1 + B2) ±

√
(B1 − B2)2 + 4σµ
2

,

where k− < k+. By substituting B1 and B2 into k+, we can obtain the exact expression as

k+ =
(d + ε)(e−λ + eλ − 2) − σ − α(e−λ − 1) − µ + f ′(0)

2

+

√
[(d − ε)(e−λ + eλ − 2) − σ − α(e−λ − 1) + µ − f ′(0)]2 + 4σµ

2
.

The first-order derivative of k+ with respect to λ can be obtained as follows:

k′+(λ) =
(d + ε)(−e−λ + eλ) + αe−λ

2
+
η[(d − ε)(−e−λ + eλ) + αe−λ]

2
√
η2 + 4σµ

,

where η = (d − ε)(e−λ + eλ − 2) − σ − α(e−λ − 1) + µ − f ′(0). Since ε is a small positive number and
the rest of the parameters are positive, we have k′+(λ) > 0 and k+ > 0 for λ ∈ (0,+∞). The principal
eigenvalues of the coefficient matrix B(λ) are expressed as

k∗(λ) = k+(λ). (2.6)

It should be noted that unlike the eigenvalues in a continuous system, the principal eigenvalues here
are not always convex functions. After a laborious calculation, for 2d ≥ α+2ε, the function k∗′′(λ) ≥ 0
with λ ∈ (0,+∞), so k∗(λ) is the continuous convex function. The solutions are determined by the
number of crossing points between the function y = k∗(λ) and the primary function y = cλ. Based on
the correspondence between c and λ, the following lemma is given:
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Lemma 2.1. If we define

c0 := inf
λ∈(0,+∞)

k∗(λ)
λ

, (2.7)

which is the linear speed, then the equation k(λ) = cλ has
(1) No solutions if c < c0;
(2) One solution λ0 if c = c0;
(3) Two solutions, λ1 and λ2, satisfying λ1 < λ2 if c > c0.

Letting d = 3, σ = 4, α = 1, ε = 0.1 and µ = 1, f ′(0) = 1, we obtain the curve of c = k∗(λ)
λ

; see
Figure 1. By numerical calculation, we know c0 = 1.82 and λ0 = 0.77. Further, there are no solutions
(see the blue line) when c < c0; there is only one exact solution λ0 when c = c0 (see the red line); and
there are two solutions denoted by λ1 and λ2 when c > c0 (see the green line). Then, we shall study the
asymptotic behavior of the traveling wave solutions (ϕ, ψ)(z) as z→ ∞.

Figure 1. The function c = k∗(λ)
λ

is expressed by the black curve for d = 3, σ = 4, α =
1, ε = 0.1, µ = 1, f ′(0) = 1. Under this condition, we get c0 = 1.82 and λ0 = 0.77.

If c > c0 and A2 = 1, the corresponding characteristic equation can be obtained as:dA1(e−λ + eλ − 2) − cλA1 − σA1 + µ − αA1(e−λ − 1) = 0,
ε(e−λ + eλ − 2) − cλ + σA1 − µ + f ′(0) = 0.

(2.8)

And the traveling wave (ϕ, ψ)(z) around e0 is represented asϕ
ψ

 ∼ C1


µ

cλ1 − B1(λ1)
1

 e−λ1z +C2


µ

cλ2 − B1(λ2)
1

 e−λ2z, (2.9)

its equivalence is expressed asϕ
ψ

 ∼ C1


cλ1 − B2(λ1)

σ

1

 e−λ1z +C2


cλ2 − B2(λ2)

σ

1

 e−λ2z, (2.10)

AIMS Mathematics Volume 9, Issue 7, 18763–18776.



18768

where C1 > 0 or C1 = 0 and C2 > 0. The two forms (2.9) and (2.10) can represent all nonzero solutions
of Eq (2.1).

3. Speed selection mechanisms

In this section, the selection mechanism for the minimal wave speed will be obtained by using the
upper and lower solution methods. For convenience, we use the following notations:

L1(ϕ, ψ) :=dD2[ϕ](z) + cϕ′(z) − σϕ(z) + µψ(z) − αD1[ϕ](z),
L2(ϕ, ψ) :=εD2[ψ](z) + cψ′(z) + σϕ(z) − µψ(z) + f (ψ(z)) .

(3.1)

Next, we give the definition of the upper and lower solutions of the system (1.3).

Definition 3.1. (Upper and lower solutions) For a given c ≥ c0, if the binary continuous function
(ϕ, ψ)(z) is differentiable on R, such that{

dD2[ϕ](z) + cϕ′(z) − σϕ(z) + µψ(z) − αD1[ϕ](z) ≤ (≥)0,
εD2[ψ](z) + cψ′(z) + σϕ(z) − µψ(z) + f (ψ(z)) ≤ (≥)0,

(3.2)

and (ϕ, ψ)(z−i ) ≥ (ϕ, ψ)(z+i ) for all zi, i = 1, 2, ..., n, then (ϕ, ψ)(z) is called the upper solution (the lower
solution) of the system (1.3).

From now on, we discuss the linear selection mechanism of the system (1.3), and the key is to
find a pair of suitable upper solutions. When c = c0 + ε1 with sufficiently small ε1, there exists
0 < λ1(c) < λ2(c) with c. According to the asymptotic behavior of ϕ(z) and ψ(z), we define a pair of
functions (ϕ(z), ψ(z)) as below

ψ(z) =
1

1 + eλ1z , λ1 = λ1(c), (3.3)

ϕ(z) = ψ(z)
[
A1

1 +

(
µ

σ
− A1

1 − a
)
ψ(z) + aψ(z)2

]
, a > 0, (3.4)

which satisfy the boundary conditions
(
ϕ(z), ψ(z)

)
(∞) = (0, 0) and

(
ϕ(z), ψ(z)

)
(−∞) =

(
µ

σ
, 1
)
, where

A1
1 = A1 (λ1(c)) = µ

cλ1−B1(λ1) . Their first-order derivatives can be obtained as

ψ
′
(z) = −λ1ψ(z)(1 − ψ(z)),

ϕ
′
(z) = −λ1ψ(z)(1 − ψ(z))

[
A1

1 + 2(
µ

σ
− A1

1 − a)ψ(z) + 3aψ
2
(z)
]
.

We need to do some preparation to prove that (ϕ(z), ψ(z)) is a pair of upper solutions. By combining
with (1.4), we can obtain

D2[ψ](z) = ψ(z)
(
1 − ψ(z)

)
γ (1 + q1(λ1, κ)) , (3.5)

D2[ψ
2
](z) = ψ(z)

(
1 − ψ(z)

)
γq2(λ1, κ), (3.6)

D2[ψ
3
](z) − D2[ψ

2
](z) = ψ

2
(z)
(
1 − ψ(z)

)
γq3(λ1, κ), (3.7)
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D1[ψ](z) = ψ(1 − ψ)τ (1 + q4(λ1, κ)) , (3.8)

D1[ψ
2
](z) = ψ(z)

(
1 − ψ(z)

)
τq5(λ1, κ), (3.9)

D1[ψ
3
](z) − D1[ψ

2
](z) = ψ

2
(z)
(
1 − ψ(z)

)
τq6(λ1, κ), (3.10)

where
γ = eλ1 + e−λ1 − 2, τ = e−λ1 − 1, κ(z) = eλ1z. (3.11)

The representations of qi(λ1, κ)(i = 1, 2, 3, 4, 5, 6) in (3.5)-(3.10) are as follows:

q1(λ1, κ) = −
eλ1κ + e−λ1κ + 2

(1 + e−λ1κ) (1 + eλ1κ)
,

q2(λ1, κ) =
(γ + 4)κ3 + 2(γ + 3)κ2 − γκ − 2

(1 + e−λ1κ)2 (1 + eλ1κ)2 ,

q3(λ1, κ) =
g(κ)

(1 + e−λ1κ)3 (1 + eλ1κ)3 ,

q4(λ1, κ) =
−1 + eλ1

1 + eλ1κ
,

q5(λ1, κ) =
eλ1[2 + κ(eλ1 + 1)]

(1 + eλ1κ)2 ,

q6(λ1, κ) = −
eλ1
[
−1 + 3eλ1κ2 + eλ1κ3(1 + eλ1)

]
(1 + eλ1κ)3 ,

where
g(κ) = g1(κ) + g2(κ) + g3(κ) + g4(κ) + g5(κ) + g6(κ),

g1(κ) = 3κ − 1,

g2(κ) = 6κ2
(
e−λ1 + eλ1 + 1

)
,

g3(κ) = κ3
(
2e2λ1 + 2e−2λ1 + 3eλ1 + 3e−λ1 + 12

)
,

g4(κ) = 3κ4
(
eλ1 + e−λ1 − 1

)
,

g5(κ) = −3κ5
(
eλ1 + e−λ1 + 1

)
,

g6(κ) = −κ6
(
eλ1 + e−λ1 + 2

)
.

In the above formulas, qi(λ1, κ) is a continuous function with respect to κ ∈ [0,∞). Next, substituting
(3.3)–(3.11) into L1(ψ, ϕ) and combining with (2.10), we obtain

L1(ϕ, ψ) = dD2[ϕ](z) − αD1[ϕ](z) − σϕ(z) + µψ(z) + cϕ
′
(z)

= dA1
1D2[ψ](z) + d

(
µ

σ
− A1

1

)
D2

[
ψ

2
]

(z) + daD2

[
ψ

3
− ψ

2
]

(z)

− αA1
1D1[ψ](z) − α

(
µ

σ
− A1

1

)
D1

[
ψ

2
]

(z) − αaD1

[
ψ

3
− ψ

2
]

(z)

− σψ(z)
[
A1

1 + (
µ

σ
− A1

1 − a)ψ(z) + aψ
2
(z)
]
+ µψ(z)

− cλ1ψ(z)(1 − ψ(z))
[
A1

1 + 2
(
µ

σ
− A1

1 − a
)
ψ(z) + 3aψ

2
(z)
]

= ψ(z)
(
1 − ψ(z)

)
Q(z),
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where
Q(z) = dA1

1γq1(λ1, κ) + d
(
µ

σ
− A1

1

)
γq2(λ1, κ) + daγq3(λ1, κ)ψ(z)

− αA1
1τq4(λ1, κ) − α

(
µ

σ
− A1

1

)
τq5(λ1, κ) − αaτq6(λ1, κ)ψ(z)

+σaψ(z) − 2cλ1

(
µ

σ
− A1

1 − a
)
ψ(z) − 3cλ1aψ

2
(z).

If the inequality
Q(z) ≤ 0 (3.12)

holds, then we have L1(ψ, ϕ) ≤ 0. Q(z) can be regarded as a quadratic function of ψ in inequality (3.12).
And analyzing optimal value through the symmetry axis ψa, we have three cases: ψa < 0, ψa > 1, or ψa

in (0, 1). But since Q(z) in (3.12) is a function of κ, it is a function with a higher exponent with respect
to z. Therefore, we give the proof that the set Q ≤ 0 is not empty.

Remark 3.2. Letting d = 8, σ = 1, α = 7, µ = 10, ε = 4.5, and f ′(0) = 1, we can calculate that
c0 = 7.66, λ0 = 0.14, and A1

1 = 9.98. Upon setting a = 1, we obtain that Q(z) is less than or equal to
0, which leads to the conclusion that L1(ϕ, ψ) ≤ 0.

Next, substituting (3.3)–(3.4) into L2(ϕ, ψ) and combining the second equation of (2.8), we get

L2(ϕ, ψ)(z) =εD2[ψ](z) + cψ
′
(z) + σψ(z)

[
A1

1 + (
µ

σ
− A1

1 − a)ψ(z) + aψ
2
(z)
]
− µψ(z) + f (ψ)

=ψ(z)(1 − ψ(z))
{
εγq1(λ1, κ) − σaψ(z) +

f (ψ) − f ′(0)ψ(z)(1 − ψ(z))

ψ(z)(1 − ψ(z))

}
≤ψ

2
(z)(1 − ψ(z))J1(ψ),

where

J1(ψ) = −2e−λ1εγ − σa +
f (ψ) − f ′(0)ψ(z)

(
1 − ψ(z)

)
ψ

2
(z)(1 − ψ(z))

.

Obviously, if the inequality
J1(ψ) ≤ 0 (3.13)

holds, then we get L2(ϕ, ψ) ≤ 0.
To demonstrate the linear selection mechanism of the wave speed, we also give a pair of lower

solutions as follows:

ψ0 = max
{
0, e−λ1z(1 − Me−δz)

}
, ϕ0 = A1

1ψ
0.

The proof of the lower solution (ϕ0, ψ0) is similar to that in the literature [21], and we omit it for
convenience.

Based on the above description, when c = c0 + ε1 with a small enough ε1, we find suitable upper
and lower solutions. By comparing the principles, we can obtain sufficient conditions for the linear
selection of the minimal traveling wave speed of the system (1.3).

Theorem 3.3. (Linear selection) When 2d ≥ α + 2ε, the minimal wave speed of the system (1.3) is
linearly selected if (3.12) and (3.13) hold.
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Then, we will construct the lower solutions to prove the nonlinear selection mechanism. It is worth-
while to note that the traveling wave speed of the system (2.1) can be nonlinear selection when the
lower solution can perform asymptotical propagation with (A1(λ2)e−λ2z, e−λ2z). Next, we state it with
following lemma:

Lemma 3.4. For c1 > c0, we can assume that there exits a pair of lower solutions (ϕ, ψ)(z) to the
system {

u′n(t) = −σun + µvn − α(un+1 − un) + d(un+1 + un−1 − 2un),
v′n(t) = σun − µvn + f (vn) + ε(vn+1 + vn−1 − 2vn), n ∈ Z,

(3.14)

The solution satisfies lim sup
z→−∞

ψ(z) < 1 and ψ(z) approaches Ce−λ2z (i.e., the faster decay rate) for C > 0

as z→ ∞. Here, λ2 is the larger solution of k(λ) = cλ and z = n−c1t. Then no traveling wave solutions
to (3.14) exist for the speed c ∈ [c0, c1).

Proof of Lemma 3.4. We prove this lemma by contradiction. Assume to the contrary, there exists a pair
of monotone and positive traveling wave solutions (ϕ, ψ)(z), z = x − ct with c ∈ [c0, c1), subject to the
initial conditions

un(0) = ϕ(n), vn(0) = ψ(n).

Recall that λ1 decreases monotonically to c while λ2 increases; thus, we usually assume (by shifting
if necessary) that (ϕ, ψ)(n) ≤ (ϕ, ψ)(n) for all n ∈ Z. Since (ϕ, ψ)(n− c1t) is the lower solution to (3.14),
we can obtain

ϕ(n − c1t) ≤ ϕ(n − ct), ψ(n − c1t) ≤ ψ(n − ct),

for all (n, t) ∈ (Z,R+). If z = n − c1t, then we have

ψ(n − c1t) ≤ ψ(n − ct) = ψ(z + (c1 − c)t)→ ψ(+∞) = 0, as t → ∞.

Therefore, ψ(z) ≤ 0 is paradoxical with ψ(z) > 0, which yields a contradiction. The proof is complete.
□

Remark 3.5. Due to the lemma, for the nonlinear selection, we only need to find a lower solution with
asymptotic behavior

(
A1(λ2(c))e−λ2z, e−λ2z

)
as z→ +∞ for c > c0.

By the above lemma, when c > c0, we give a pair of new traveling waves as follows:

ψ(z) =
1

1 + eλ2z , (3.15)

ϕ(z) = ψ(z)
[
A2

1 +

(
µ

σ
− A2

1 − a
)
ψ(z) + aψ2(z)

]
, a > 0, (3.16)

where A2
1 = A1 (λ2(c)) = µ

cλ2−B1(λ2) . The first-order derivatives of (3.15) and (3.16) are

ψ′(z) = −λ2ψ(z)
(
1 − ψ(z)

)
,

ϕ′(z) = −λ2ψ(z)(1 − ψ(z))
[
A2

1 + 2
(
µ

σ
− A2

1 − a
)
ψ(z) + 3aψ2(z)

]
.

Utilizing the notations
γ = eλ2 + e−λ2 − 2, τ = e−λ2 − 1, ζ(z) = eλ2z,
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we can derive a continuous function qi(λ2, ζ) by replacing all values of λ1 and κ in qi(λ1, κ) with λ2 and
ζ respectively. Thus, we obtain

L1(ψ, ϕ) = dD2[ϕ](z) − αD1[ϕ](z) − σϕ(z) + µψ(z) + cϕ′(z)

= dA2
1D2[ψ](z) + d

(
µ

σ
− A2

1

)
D2

[
ψ2
]

(z) + daD2

[
ψ3 − ψ2

]
(z)

− αA2
1D1[ψ](z) − α

(
µ

σ
− A2

1

)
D1

[
ψ2
]

(z) − αaD1

[
ψ3 − ψ2

]
(z)

− σA2
1ψ(z)(1 − ψ(z)) + σaψ2(z)(1 − ψ(z)) − cλ2ψ(z)(1 − ψ(z))A2

1

+ µψ(z)(1 − ψ(z)) − cλ2ψ(z)(1 − ψ(z))
[
2
(
µ

σ
− A2

1 − a
)
ψ + 3aψ2(z)

]
= ψ(z)

(
1 − ψ(z)

)
F(z),

where
F(z) =dA2

1γq1(λ2, ζ) + d
(
µ

σ
− A2

1

)
γq2(λ2, ζ) + daγq3(λ2, ζ)ψ(z)

−αA2
1τq4(λ2, ζ) − α(

µ

σ
− A2

1)τq5(λ2, ζ) − αaτq6(λ2, ζ)ψ(z)

+ σaψ(z) − cλ2

[
2
(
µ

σ
− A2

1 − a
)
ψ(z) + 3aψ2(z)

]
.

If the inequality
F(z) ≥ 0, (3.17)

holds, we have L1(ψ, ϕ) ≥ 0.

Remark 3.6. Based on the given values of d = 5000, σ = 100, α = 1, µ = 200, ε = 10, and f ′(0) = 1,
the calculation indicates that c0 = 67.38, λ0 = 0.01, and A2

1 = 2.00. When a = 0.11, it is possible to
obtain F(z) ≥ 0, which leads to L1(ϕ, ψ) ≥ 0.

Taking (3.15) and (3.16) into L2(ϕ, ψ), next we get

L2(ϕ, ψ)(z) = εD2[ψ](z) + cψ′(z) + σ
[
A2

1 + (
µ

σ
− A2

1 − a)ψ(z) + aψ2(z)
]
− µψ(z) + f (ψ(z))

= ψ(z)(1 − ψ(z))

εγq1(λ2, ζ) − σaψ(z) +
f (ψ(z)) − f ′(0)ψ(z)(1 − ψ(z))

ψ(z)(1 − ψ(z))


≥ ψ2(z)(1 − ψ(z))J2(ψ),

where

J2(ψ) = −2eλ2εγ − σa +
f (ψ) − f ′(0)ψ(z)(1 − ψ(z))

ψ2(z)(1 − ψ(z))
.

If
J2(ψ) ≥ 0, (3.18)

holds, then L2(ϕ, ψ) ≥ 0. These conditions lead to the nonlinear selection of the minimal wave speed.

Theorem 3.7. (Nonlinear selection) When 2d ≥ α + 2ε, if (3.17) and (3.18) hold, the minimal wave
speed of the system (1.3) is nonlinearly selected.
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4. Applications

In this section, we consider the speed selection of a system with the reaction term f (ψ) = ψ(1 −
ψ)(1 + ρψ), where ρ is a non-negative constant. The system (1.1) becomes

{dun

dt
= −σun + µvn − α(un+1 − un) + d(un+1 + un−1 − 2un), n ∈ Z,

dvn

dt
= σun − µvn + vn(1 − vn)(1 + ρvn) + ε(vn+1 + vn−1 − 2vn), n ∈ Z.

(4.1)

And the corresponding traveling wave system is as follows:{
−cϕ′(z) = dD2[ϕ](z) − σϕ(z) + µψ(z) − αD1[ϕ](z),
−cψ′(z) = εD2[ψ](z) + σϕ(z) − µψ(z) + ψ(z)(1 − ψ(z))(1 + ρψ(z)).

(4.2)

Many scholars have given that the minimal wave speed is linearly selected as ρ ≤ 1 under the assump-
tion f (ψ) < f ′(0)ψ; see [23,24] for details. We conjecture that there exists a critical value ρ1 > 1, such
that the minimal wave speed is linearly selected for ρ < ρ1. There also exists a critical value ρ2, such
that the traveling wave speed is nonlinearly determined for ρ > ρ2. Our conjecture is supported by the
following lemma, which yields the existence of critical values.

Lemma 4.1. If the minimal wave speed is linearly selected for a positive ρ = ρ1, then it is also linearly
selected for any ρ ≤ ρ1. On the other hand, if the minimal wave speed is nonlinearly selected for any
positive ρ2, it will also be nonlinearly selected for any ρ ≥ ρ2.

Proof of Lemma 4.1. When ρ = ρ1, assume that there exists (ϕ∗, ψ∗) as a pair of solutions with c =
c0 + ϵ2 for any sufficiently small ϵ2 > 0, such that{

dD2[ϕ∗] + cϕ∗′ − σϕ∗ + µψ∗ − αD1[ϕ∗] ≤ 0,
εD2[ψ∗] + cψ∗′ + σϕ∗ − µψ∗ + ψ∗(1 − ψ∗)(1 + ρ1ψ

∗) ≤ 0.
(4.3)

Next, we can deduce that the minimal wave speed of the system (4.3) is linearly selected. For any
ρ < ρ1, taking (ϕ∗, ψ∗) into (4.2), the first equation of (4.3) is permanent, while the second equation
becomes

εD2[ψ∗] + cψ∗′ + σϕ∗ − µψ∗ + ψ∗(1 − ψ∗)(1 + ρψ∗) ≤ ψ∗(1 − ψ∗)(ρψ∗ − ρ1ψ
∗) ≤ 0.

So (ϕ∗, ψ∗) is a pair of upper solutions of (4.2), and the minimal wave speed of the system (4.2) is
linearly selected with ρ < ρ1 .

The proof of ρ > ρ2 is similar to ρ < ρ1, and we omit it for convenience. □

Substituting the reaction term f (ψ) = ψ(1 − ψ)(1 + ρψ) into L2(ϕ, ψ), we obtain

L2(ϕ, ψ) = ψ(z)(1 − ψ(z))(εγq1(λ1, x) + ρψ(z) − σaψ(z))

≤ ψ
2
(z)(1 − ψ(z))

(
−2e−λ1εγ − σa + ρ

)
.

If ρ ≤ 2e−λ1εγ + σa, then L2(ϕ, ψ) ≤ 0. Further, when ρ < 1, f (ψ) possesses the property of subho-
mogenity. Thus, the minimal wave speed is linearly selected. Let

ρ1 = max{2e−λ1εγ + σa, 1}. (4.4)
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Based on the above discussion, we can get the linear selection mechanism for the minimal wave
speed.

Theorem 4.2. If there exist d, α, σ, µ, ε, and c satisfying 2d ≥ α+2ε and (3.13), then the minimal wave
speed of the system (4.2) is linearly selected when ρ ≤ ρ1.

Next, substituting the reaction term f (ψ) into L2(ϕ, ψ), we obtain

L2(ϕ, ψ) = ψ(z)(1 − ψ(z))
[
εγq1(λ2, ζ) + ρψ − σaψ(z)

]
≥ ψ2(z)(1 − ψ(z))(−2eλ1εγ − σa + ρ).

Let
ρ2 = 2eλ1εγ + σa. (4.5)

If ρ ≥ ρ2, then we get L2(ϕ, ψ) ≥ 0.

Theorem 4.3. When d, α, σ, µ, ε, c and A1(λ2(c)) satisfy 2d ≥ α + 2ε, there exists the constant a such
that (3.17) holds when ρ ≥ ρ2. Then the minimal wave speed of the system (4.2) is nonlinearly selected.

Conclusion 4.4. Lemma 4.1 implies the existence of ρc, so that the speed is linearly selected if and
only if ρ ≤ ρc. Now ρ1 and ρ2 founded in theorems 4.2 and 4.3 are considered as estimations of ρc.

Next, we verify that ρc > 1 through numerical calculations. Based on theorem 4.2, under the
parameter conditions of remark 3.2, we can calculate ρ1 = 1.203. When ρ ≤ 1.203, the minimal wave
speed is linearly selected. On the other hand, if we consider the nonlinear selection of the minimal wave
speed, we can use the parameter conditions of Remark 3.6 and Theorem 4.3 to calculate ρ2 = 11.002.
This means that when ρ ≥ 11.002, the minimal wave speed of the system (4.2) is nonlinearly selected.
Therefore, we have successfully verified that the conjecture holds.

5. Conclusions

In this paper, we investigate the speed selection mechanism of the traveling wave solution by the
upper and lower solutions method for the reaction-diffusion-advection lattice stream-population model
with a weak Allee effect. We construct a pair of upper solutions by applying the asymptotic behavior
in Section 2, which allows us to obtain the linear selection mechanism. By constructing suitable lower
solutions with a faster propagation speed, we demonstrate that the minimal wave speed is nonlinearly
selected. Further, we introduce the reaction term f (ψ) = ψ(1−ψ)(1+ρψ) with the classical weak Allee
effect in theorem 3.3. Further, when ρ ≤ ρ1, the minimal wave speed of the system (4.2) is linearly
selected. Additionally, we identify a critical value ρ2 such that the minimal wave speed of the system
(4.2) is nonlinearly selected when ρ > ρ2. Finally, we further verify our conjecture and theoretical
results with numerical calculations, which yield ρ1 = 1.203 and ρ2 = 11.002 when c tends to c0.
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